首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
γ暴研究的重大突破:余辉的发现与观测研究   总被引:4,自引:0,他引:4  
黄永峰 《天文学进展》1998,16(4):330-345
由于BeppoSAX卫星的独特贡献,最近观测到了若于Υ暴在X射线、光学甚至射电波段上的对应体,一度陷入困境的Υ暴研究再次取得了突破性的进展。目前已经观测到了Υ暴GRB970228持续六个月以上的光学余辉,发现它可能位于一个暗弱的宿主星系中;GRB970508的光学余辉有较为复杂的表现,并测出其红移范围0.85<z<2.1。在该暴发生约五、六天之后,还观测到了射电耀发现象。观测上的重大突破比较有力地支持了Υ暴的宇宙学起源及火球模型。  相似文献   

2.
戴子高 《天文学进展》2001,19(2):241-241
评论了γ暴能源的某些机制,比如:巨超新星爆发,磁白短星的塌缩,磁星的诞生,中子星的相变等,重点评述了中心星脉冲星的以胆注入周围环境对γ暴余辉的影响,讨论了将来在γ暴领域的可能研究。  相似文献   

3.
胡方浩 《天文学报》2011,52(4):288-296
某些伽玛射线暴(简称伽玛暴)的中心致密天体可能是一颗具有强磁场的毫秒脉冲星,它通过磁偶极辐射可对伽玛暴外激波注入能量,从而导致早期余辉光变曲线的变平.近年来,从Swift卫星观测到的大量伽玛暴X射线余辉中发现,很多X射线余辉光变曲线在暴后10~2~10~4s期间的确存在明显的变平现象.利用周期为毫秒量级的磁星能量注入模型对11个加玛暴的X射线余辉光变曲线进行了拟合,显示该模型在解释余辉变平现象上的有效性和广泛性,通过对余辉光变曲线的拟合,同时也给出了相关中心磁星的磁场强度和旋转周期.  相似文献   

4.
在标准的伽玛暴余辉模型中,电子通过费米一级加速后形成单幂律能谱分布dn/dγe∝γe-p(p≈2.3),但在某些伽玛暴事件中观测到了平缓的电子能谱分布(即p<2).在单幂律谱和分段幂律谱两种情况下,分别给出了具有平缓电子能谱的伽玛暴余辉的解析光变曲线,并以GRB 060908为例进行了讨论.同时提出了伽玛暴低能谱危机的...  相似文献   

5.
GRB主爆后,火球继续膨胀,根据暴后火球的动力学演化方程,考虑电子的分布随时间的变化,通过数值求解,得到光学R波段和X射线余辉与时间t的关系。计算结果与观测结果相比较,符合得很好。最后,还讨论了火球+激波模型的不足。  相似文献   

6.
γ射线暴研究概况   总被引:1,自引:0,他引:1  
黎卓  戴子高  陆埮 《天文学进展》2003,21(4):334-369
γ射线暴(简称γ暴)的研究自1997年以来由于余辉的发现而有了很大的突破。在此,对γ暴的观测作了简要的概述,而对γ暴的理论进展和存在问题进行了较为全面的评述,内容包括γ暴本身、余辉、能源机制、寄主星系、暴周环境、高能粒子和引力波辐射、宇宙学意义等。  相似文献   

7.
研究亮暴和暗暴的X射线余辉,发现它们的X射线和γ流量的分布基本上相同。即:从统计学的角度上讲,亮暴和暗暴没有本质不同,它们的中心机制应该是相同的,暗暴的形成应该是由环境原因引起的。  相似文献   

8.
王发印 《天文学报》2011,52(4):352-354
伽玛射线暴(简称伽玛暴,gamma-ray burst (GRB))是一种来自宇宙空间中的伽玛射线波段流量突然增亮的现象,最早由Vela卫星在1967年发现.1997年人们通过余辉测得了伽玛暴的红移,从而确定了其宇宙学的起源.伽玛暴宇宙学包括用长暴的标准烛光关系限制暗能量和宇宙学参数,用长暴研究高红移的恒星形成率,研究金属丰度的演化、尘埃及量子引力等.  相似文献   

9.
γ暴余辉的发现是γ暴研究史上的一个重大突破,火球模型几乎可以较好地解释γ暴余辉的观测特性。但在标准的火球模型中,通常只考虑电子的同步加速辐射,没有考虑电子逆康普顿散射的贡献。这里我们详细计算了逆康普顿散射对γ暴余辉的影响,发现在一定的条件下,逆康普顿散射的影响是很重要的,它可以显著地改变辐射能谱,进而改变γ暴余辉的光变特性。  相似文献   

10.
使用currentBATSE catakog中的一部分数据,定义了2个分别反映γ射线暴的能谱形和光变曲线的物理量FR和TR,同时对它们的分布作了统计分析,发现对于两类不同的γ射线暴,它们的分布存在统计上的较为明显的差异。这意味着两类暴可能产生于不同的辐射区域,两类暴的暴源可能有本质的差异,这些结果支持了把γ射线暴分为长暴和短暴的分类方法。  相似文献   

11.
By applying the fireball model of γ-ray burst with a central pulsar, the radiation fluxes of the afterglows of two γ-ray bursts, GRB970228 and GRB000301c, are calculated. The results of the calculation agree very well with the observations. The differing characters of the light curves with a “break” in the optical waveband R of the afterglows of two bursts are interpreted, in terms of differing pulsar parameter values.  相似文献   

12.
With the successful launch of Swift satellite,more and more data of early X-ray afterglows from short gamma-ray bursts have been collected.Some interesting features such as unusual afterglow light curves and unexpected X-ray flares are revealed.Especially,in some cases,there is a fiat segment in the X-ray afterglow light curve.Here we present a simplified model in which we believe that the flattening part is due to energy injection from the central engine.We assume that this energy injection arises from the magnetic dipole radiation of a millisecond pulsar formed after the merger of two neutron stars.We check this model with the short GRB 060313.Our numerical results suggest that energy injection from a millisecond magnetar could make part of the X-ray afterglow light curve flat.  相似文献   

13.
GRB 980519 is characterized by its rapidly declining optical and X-ray afterglows. Explanations of this behaviour include models invoking a dense medium environment, which makes the shock wave evolve quickly into the subrelativistic phase, a jet-like outflow, and a wind-shaped circumburst medium environment. Recently, Frail et al. found that the latter two cases are consistent with the radio afterglow of this burst. Here, by considering the transrelativistic shock hydrodynamics, we show that the dense medium model can also account for the radio light curve quite well. The potential virtue of the dense medium model for GRB 980519 is that it implies a smaller angular size of the afterglow, which is essential for interpreting the strong modulation of the radio light curve. Optical extinction arising from the dense medium is not important if the prompt optical–UV flash accompanying the γ -ray emission can destroy dust by sublimation out to an appreciable distance. Comparisons with some other radio afterglows are also discussed.  相似文献   

14.
The central compact object for some gamma-ray bursts (GRBs) may be a strongly magnetized millisecond pulsar. It can inject energy to the outer shock of the GRB by through the magnetic dipole radiation, and therefore causes the shallow decay of the early afterglow. Recently, from a large number of GRB X-ray afterglows observed by Swift/XRT(X-ray telescope), it is revealed that many of them exhibit the shallow decay about 102∼104 s after the burst prompt emission. We have fitted the X-ray afterglow light curves of 11 GRBs by using the energy injection model of a magnetar with the rotation period in the millisecond order of magnitude. The obtained result shows the validity and universality of the magnetar energy injection model in explaining the shallow decay of afterglows, and simultaneously provides some constraints on the magnetic field strength and rotation period of the central magnetar.  相似文献   

15.
An energy deposition of ∼1050 erg into the exterior 10−3 M⊙ layers of a red giant is calculated to produce an optical phenomenon similar to afterglows of gamma-ray bursts (GRB) recently observed. This mechanism can be realized if a GRB is generated by some mechanism in a close binary system. In contrast to a 'hypernova' scenario for GRB recently proposed by Paczyński, this model does not require huge kinetic energy in the expanding shell to explain optical afterglows of GRB.  相似文献   

16.
We present the first statistical analysis of 27 Ultraviolet Optical Telescope (UVOT) optical/ultraviolet light curves of gamma-ray burst (GRB) afterglows. We have found, through analysis of the light curves in the observer's frame, that a significant fraction rise in the first 500 s after the GRB trigger, all light curves decay after 500 s, typically as a power law with a relatively narrow distribution of decay indices, and the brightest optical afterglows tend to decay the quickest. We find that the rise could be either produced physically by the start of the forward shock, when the jet begins to plough into the external medium, or geometrically where an off-axis observer sees a rising light curve as an increasing amount of emission enters the observers line of sight, which occurs as the jet slows. We find that at 99.8 per cent confidence, there is a correlation, in the observed frame, between the apparent magnitude of the light curves at 400 s and the rate of decay after 500 s. However, in the rest frame, a Spearman rank test shows only a weak correlation of low statistical significance between luminosity and decay rate. A correlation should be expected if the afterglows were produced by off-axis jets, suggesting that the jet is viewed from within the half-opening angle θ or within a core of a uniform energy density  θc  . We also produced logarithmic luminosity distributions for three rest-frame epochs. We find no evidence for bimodality in any of the distributions. Finally, we compare our sample of UVOT light curves with the X-ray Telescope (XRT) light-curve canonical model. The range in decay indices seen in UVOT light curves at any epoch is most similar to the range in decay of the shallow decay segment of the XRT canonical model. However, in the XRT canonical model, there is no indication of the rising behaviour observed in the UVOT light curves.  相似文献   

17.
Particle acceleration in relativistic shocks is not a very well understood subject. Owing to that difficulty, radiation spectra from relativistic shocks, such as those in gamma-ray burst (GRB) afterglows, have been often modelled by making assumptions about the underlying electron distribution. One such assumption is a relatively soft distribution of the particle energy, which need not be true always, as is obvious from observations of several GRB afterglows. In this paper, we describe modifications to the afterglow standard model to accommodate energy spectra which are 'hard'. We calculate the overall evolution of the synchrotron and Compton flux arising from such a distribution. We also model two afterglows, GRB010222 and GRB020813, under this assumption and estimate the physical parameters.  相似文献   

18.
Gamma-ray burst (GRB) afterglows are well described by synchrotron emission originating from the interaction between a relativistic blast wave and the external medium surrounding the GRB progenitor. We introduce a code to reconstruct spectra and light curves from arbitrary fluid configurations, making it especially suited to study the effects of fluid flows beyond those that can be described using analytical approximations. As a check and first application of our code, we use it to fit the scaling coefficients of theoretical models of afterglow spectra. We extend earlier results of other authors to general circumburst density profiles. We rederive the physical parameters of GRB 970508 and compare with other authors.  相似文献   

19.
The declining light curve of the optical afterglow of gamma-ray burst (GRB) GRB000301C showed rapid variability with one particularly bright feature at about t − t 0=3.8 d. This event was interpreted as gravitational microlensing by Garnavich, Loeb & Stanek and subsequently used to derive constraints on the structure of the GRB optical afterglow. In this paper, we use these structural parameters to calculate the probability of such a microlensing event in a realistic scenario, where all compact objects in the universe are associated with observable galaxies. For GRB000301C at a redshift of z =2.04, the a posteriori probability for a microlensing event with an amplitude of Δ m 0.95 mag (as observed) is 0.7 per cent (2.7 per cent) for the most plausible scenario of a flat Λ-dominated Friedmann–Robertson–Walker (FRW) universe with Ωm=0.3 and a fraction f ∗=0.2 (1.0) of dark matter in the form of compact objects. If we lower the magnification threshold to Δ m 0.10 mag, the probabilities for microlensing events of GRB afterglows increase to 17 per cent (57 per cent). We emphasize that this low probability for a microlensing signature of almost 1 mag does not exclude that the observed event in the afterglow light curve of GRB000301C was caused by microlensing, especially in light of the fact that a galaxy was found within 2 arcsec from the GRB. In that case, however, a more robust upper limit on the a posteriori probability of ≈5 per cent is found. It does show, however, that it will not be easy to create a large sample of strong GRB afterglow microlensing events for statistical studies of their physical conditions on microarcsec scales.  相似文献   

20.
We calculate the very high-energy (sub-GeV to TeV) inverse Compton emission of GRB afterglows. We argue that this emission provides a powerful test of the currently accepted afterglow model. We focus on two processes: synchrotron self-Compton emission within the afterglow blast wave, and external inverse Compton emission which occurs when flare photons (produced by an internal process) pass through the blast wave. We show that if our current interpretations of the Swift X-ray telescope (XRT) data are correct, there should be a canonical high-energy afterglow emission light curve. Our predictions can be tested with high-energy observatories such as GLAST , Whipple, HESS and MAGIC. Under favourable conditions we expect afterglow detections in all these detectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号