首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clover is a new instrument being built to detect the B-mode polarization of the CMB. It consists of three telescopes operating at 97, 150, and 220 GHz and will be sited in Chile at the Llano de Chajnantor. Each telescope assembly is scaled to give a constant beam size of 8″ and feeds an array of between 320 and 512 finline-coupled TES bolometers. Here we describe the design, current status and scientific prospects of the instrument.  相似文献   

2.
The Boomerang experiment completed its final long duration balloon (LDB) flight over Antarctica in January 2003. The focal plane was upgraded to accommodate four sets of 145 GHz polarization sensitive bolometers (PSBs), identical to those to be flown on the Planck HFI instrument. Approximately, 195 hours of science observations were obtained during this flight, including 75 hours distributed over 1.84% of the sky and an additional 120 hours concentrated on a region covering 0.22% of the sky. We derive the angular power spectra of the cosmic microwave background (cmb) temperature and polarization anisotropies from these data. The temperature anisotropies are detected with high signal to noise on angular scales ranging from several degrees to 10 arcminutes. The curl-free (EE) component is detected at 4.8σ, and a two-sigma upper limit on the curl (BB) component of 8.6 μK2 is obtained on scales corresponding to 0.5°. Both the temperature and polarization anisotropies are found to be consistent with a concordance ΛCDM cosmology that is seeded by adiabatic density perturbations. In addition to the cmb observations, Boomerang03 surveyed a 300 square degree region centered on the Galactic plane. These observations represent the first light for polarization sensitive bolometers, which are currently operational in two South-Pole based polarimeters, as well as Planck HFI, at frequencies ranging from 100 to 350 GHz (3 mm to 850 μm).  相似文献   

3.
We present polarization observations of the gravitational lens system B1422+231 made at 8.4 GHz using the VLBA and the 100-m telescope at Effelsberg. All four images of the quasar show structure on the milliarcsec scale. The three bright images show tangential stretching as expected from lens models. Some basic properties of gravitational lensing are exhibited by this system. The surface brightness of images A and B are the same and the parity reversal expected in image B is revealed, for the first time, by polarization observations. There is a large differential Faraday rotation between images A and B.  相似文献   

4.
We present the first determination of the Galactic polarized emission at 353 GHz by Archeops. The data were taken during the Arctic night of February 7, 2002 after the balloon-borne instrument was launched by CNES from the Swedish Esrange base near Kiruna. In addition to the 143 and 217 GHz frequency bands dedicated to CMB studies, Archeops had one 545 GHz and six 353 GHz bolometers mounted in three polarization sensitive pairs that were used for Galactic foreground studies. We present maps of the I,Q,U Stokes parameters over 17% of the sky and with a 13 arcmin resolution at 353 GHz (850 μm). They show a significant Galactic large scale polarized emission coherent on the longitude ranges [100°,120°] and [180°,200°] with a degree of polarization at the level of 4–5%, in agreement with expectations from starlight polarization measurements. Some regions in the Galactic plane (Gem OB1, Cassiopeia) show an even stronger degree of polarization in the range 10–20%. Those findings provide strong evidence for a powerful grain alignment mechanism throughout the interstellar medium and a coherent magnetic field coplanar to the Galactic plane. This magnetic field pervades even some dense clouds. Extrapolated to high Galactic latitude, these results indicate that interstellar dust polarized emission is the major foreground for PLANCK-HFI CMB polarization measurement.  相似文献   

5.
The apex-sz instrument is designed for the discovery and study of galaxy clusters at mm-wavelengths using the Sunyaev Zel’dovich effect. The receiver consists of 320 superconducting transition edge sensor (TES) bolometers cooled to 250 mK with the combination of a three stage He sorption fridge and mechanical pulse tube cooler. The detectors are instrumented with a frequency domain multiplexing readout system. The receiver is mounted on the 12 m apex telescope located at 5100 m on the Atacama plateau in Chile. For the first light engineering deployment of December 2005, the receiver was configured with a 55 element wedge of the bolometers and operating in the 150 GHz atmospheric window. During the engineering run we achieved significant milestones in our instrumentation development efforts, including celestial observations with a monolithically fabricated TES bolometer array cooled with a mechanical cooler and successful implementation of a SQUID-based MHz AC-biased readout. These technology demonstrations point the way toward future large TES bolometer array instruments. Here we describe the results of this deployment and future plans for the apex-sz instrument.  相似文献   

6.
The primordial anisotropy polarization pathfinder array (PAPPA) is a balloon-based instrument to measure the polarization of the cosmic microwave background and search for the signal from gravity waves excited during an inflationary epoch in the early universe. PAPPA will survey a 20° × 20° patch at the North Celestial Pole using 32 pixels in 3 passbands centered at 89, 212, and 302 GHz. Each pixel uses MEMS switches in a superconducting microstrip transmission line to combine the phase modulation techniques used in radio astronomy with the sensitivity of transition-edge superconducting bolometers. Each switched circuit modulates the incident polarization on a single detector, allowing nearly instantaneous characterization of the Stokes I, Q, and U parameters. We describe the instrument design and status.  相似文献   

7.
We present previously unpublished circular polarization (cp) measurements at 4.8 and 8.0 GHz made with the University of Michigan 26-meter prime focus telescope during 1978–1984 and results of a new observational program during the past two years. Based on the preliminary analysis of our recent data, eight sources were detected at 4.8 GHz with average degrees of cp ranging from ≤ 0.1% to ≥ 1%.The results are compared with observations at other frequencies and with linear polarization and total flux density variability in the sources. The behavior of the cp variability observed to date is consistent with stochastic variations produced by mode conversion in transient, opaque emitting regions in the sources. The observed sign changes observed between different epochs and different frequencies are not consistent with the hypothesis that sources maintain a fixed handedness of cp.  相似文献   

8.
We describe a measurement of the angular power spectrum of anisotropies in the cosmic microwave background (CMB) at scales of 0&fdg;3 to 5 degrees from the North American test flight of the Boomerang experiment. Boomerang is a balloon-borne telescope with a bolometric receiver designed to map CMB anisotropies on a long-duration balloon flight. During a 6 hr test flight of a prototype system in 1997, we mapped more than 200 deg(2) at high Galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26&arcmin; and 16&farcm;5 FWHM, respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of 1 degrees with an amplitude 70 μK(CMB).  相似文献   

9.
The SPIRIT complex onboard the CORONAS-F satellite has routinely imaged the Sun in the 171, 175, 195, 284, and 304 Å spectral bands since August 2001. The complex incorporates two telescopes. The Ritchey-Chretien telescope operates in the 171, 195, 284, and 304 Å bands and has an objective similar to that of the SOHO/EIT instrument. The Herschel telescope obtains solar images synchronously in the 175 and 304 Å bands with two multilayer-coated parabolic mirrors. The SPIRIT program includes synoptic observations, studies of the dynamics of various structures on the solar disk and in the corona up to 5 solar radii, and coordinated observations with other spaceborne and ground-based telescopes. In particular, in the period 2002–2003, synoptic observations with the SPIRIT Ritchey-Chretien telescope were coordinated with regular 6-hour SOHO/EIT observations. Since June 2003, when EIT data were temporarily absent (SOHO keyholes), the SPIRIT telescope has performed synoptic observations at a wavelength of 175 A. These data were used by the Solar Influence Data Analysis Center (SIDC) at the Royal Observatory of Belgium for an early space weather forecast. We analyze the photometric and spectral parameters of the SPIRIT and EIT instruments and compare the integrated (over the solar disk) EUV fluxes using solar images obtained with these instruments during the CORONAS-F flight from August 2001 through December 2003.  相似文献   

10.
QUEST on DASI is a ground-based, high-sensitivity, high-resolution (ℓmax2500) experiment designed to map CMB polarization at 100 and 150 GHz and to measure the power spectra from E-modes, B-modes from lensing of the CMB, and B-modes from primordial gravitational waves. The experiment comprises a 2.6 m Cassegrain optical system, equipped with an array of 62 polarization-sensitive bolometers (PSBs), located at the South Pole. The instrument is designed to minimize systematic effects; features include differencing of pairs of orthogonal PSBs within a single feed, a rotatable achromatic waveplate, and axisymmetric rotatable optics. In addition the South Pole location allows both repeatable and highly controlled observations. QUEST on DASI will commence operation in early 2005.  相似文献   

11.
We investigate the photometric and polarimetric behavior of the blazar S5 0716+714 based on the observations carried out in 1991–2004 at the 125-cm Crimean Astrophysical Observatory telescope (AZT11) with a photopolarimeter that allows simultaneous polarization and brightness measurements to be made in the U BV RI bands. We also provide the U BV photometry for the blazar obtained in 2000–2009 with a 60-cm telescope at the Crimean Station of the Sternberg Astronomical Institute. The pattern of flux variability and the correlation between the brightness, color, and polarization variations have been investigated. In this time interval the blazar showed a significant brightness and polarization variability similar to noise processes.  相似文献   

12.
The COsmic Foreground Explorer (COFE) is a balloon-borne microwave polarimeter designed to measure the low-frequency and low-ℓ characteristics of dominant diffuse polarized foregrounds. Short duration balloon flights from the Northern and Southern Hemispheres will allow the telescope to cover up to 80% of the sky with an expected sensitivity per pixel better than 100 μK/deg2 from 10 GHz to 20 GHz. This is an important effort toward characterizing the polarized foregrounds for future CMB experiments, in particular the ones that aim to detect primordial gravity wave signatures in the CMB polarization angular power spectrum.  相似文献   

13.
The polarization characteristics of an astronomical telescope is an important factor that affects polarimetry accuracy. Polarization modeling is an essential means to achieve high precision and efficient polarization measurement of the telescope, especially for the alt-azimuth mount telescope. At present, the polarization model for the telescope(i.e., the physical parametric model) is mainly constructed using the polarization parameters of each optical element. In this paper, an artificial neural network(ANN) is used to model the polarization characteristics of the telescope. The ANN model between the physical parametric model residual and the pointing direction of the telescope is obtained, which reduces the model deviation caused by the incompleteness of the physical parametric model. Compared with the physical parametric model, the model fitting and predictive accuracy of the New Vacuum Solar Telescope(NVST) is improved after adopting the ANN model. After using the ANN model, the polarization cross-talk from I to Q, U, and V can be reduced from 0.011 to 0.007, and the crosstalk among Q, U, and V can be reduced from 0.047 to 0.020, which effectively improves the polarization measurement accuracy of the telescope.  相似文献   

14.
Polarized diffuse emission observations at 1.4 GHz in a high Galactic latitude area of the Northern celestial hemisphere are presented. The  3.2 × 3.2 deg2  field, centred at  RA = 10h58m, Dec. =+42°18' (B1950)  , has Galactic coordinates   l ∼ 172°, b ∼+63°  and is located in the region selected as northern target of the Balloon-borne Radiometers for Sky Polarization Observations experiment. Observations have been performed with the Effelsberg 100-m telescope. We find that the angular power spectra of the E and B modes have slopes of  β E =−1.79 ± 0.13  and  β B =−1.74 ± 0.12  , respectively. Because of the very high Galactic latitude and the smooth emission, a weak Faraday rotation action is expected, which allows both a fair extrapolation to cosmic microwave background polarization (CMBP) frequencies and an estimate of the contamination by the Galactic synchrotron emission. We extrapolate the E -mode spectrum up to 32 GHz and confirm the possibility to safely detect the CMBP E -mode signal in the Ka band found in another low-emission region. Extrapolated up to 90 GHz, the Galactic synchrotron B mode looks to compete with the cosmic signal only for models with a tensor-to-scalar perturbation power ratio   T / S < 0.001  , which is even lower than the T / S value of 0.01 found to be accessible in the only other high Galactic latitude area investigated to date. This suggests that values as low as   T / S = 0.01  might be accessed at high Galactic latitudes. Such low-emission values can allow a significant redshift of the best frequency to detect the CMBP B mode, also reducing the contamination by Galactic dust, and opening interesting perspectives to investigate inflation models.  相似文献   

15.
《New Astronomy Reviews》1999,43(2-4):289-296
We describe the BOOMERanG experiment, a stratospheric balloon telescope intended to measure the Cosmic Microwave Background anisotropy at angular scales between a few degrees and ten arcminutes. The experiment has been optimized for a long duration (7 to 14 days) flight circumnavigating Antarctica at the end of 1998. A test flight was performed on 30 August 1997 in Texas. The level of performance achieved in the test flight was satisfactory and compatible with the requirements for the long duration flight.  相似文献   

16.
给出1999年3月12日至6月8日,使用国家天文观测中心乌鲁木齐南山站25m射电望远镜在0.327GHZ,1.5GHZ,2.3GHZ,4.8GHZ和8.4GHZ频段,对脉冲星PSRB0329+54进行的多波段观测结果.PSRB0329+54的辐射呈幂律谱,并出现频谱转折现象,低频段谱指数为1.59,高频段为2.45,平均谱指数为1.72.五个频段上的平均脉冲轮廓的角宽度和二个弱成分峰值间的角宽度都随频率的增加而减小.  相似文献   

17.
We report on VLA observations of HST-1 in M87 at 8 GHz from 2003–2007, during which a long major outburst occurs from radio to X-ray wave bands. At the VLA resolution, the flux density of HST-1 rises rapidly from 2003, peaks at the end of 2004, and then falls slowly in subsequent stages, which is similar to that in optical and X-ray wave bands. It appears that HST-1 moves with an apparent speed of 1.23c±0.91c, and the fractional polarization keeps rising through the whole major outburst. The persistent increase in polarization level may mainly be attributed to the formation of a couple of new ‘subcomponents’ of relatively high degree of polarization within HST-1, and the weakening depolarization due to Faraday rotation and/or opacity through the whole major outburst.  相似文献   

18.
We present a new system of two circular polarization solar radio telescopes, POEMAS, for observations of the Sun at 45 and 90 GHz. The novel characteristic of these instruments is the capability to measure circular right- and left-hand polarizations at these high frequencies. The two frequencies were chosen so as to bridge the gap at radio frequencies between 20 and 200 GHz of solar flare spectra. The telescopes, installed at CASLEO Observatory (Argentina), observe the full disk of the Sun with a half power beam width of 1.4°, a time resolution of 10 ms at both frequencies, a sensitivity of 2?–?4 K that corresponds to 4 and 20 solar flux unit (=104 Jy), considering aperture efficiencies of 50±5 % and 75±8 % at 45 and 90 GHz, respectively. The telescope system saw first light in November 2011 and is satisfactorily operating daily since then. A few flares were observed and are presented here. The millimeter spectra of some flares are seen to rise toward higher frequencies, indicating the presence of a new spectral component distinct from the microwave one.  相似文献   

19.
We present the results of observations of the pulsar PSR B0329+54 at 0.327, 1.5, 2.3, 4.8 and 8.4 GHz during 1999 between 03–12 and 06–08, using the 25-m radio telescope of NAOC Urumqi Station. The spectrum shows a bend, the spectral index is 1.59 at the low frequency end, and 2.45 at the high frequency end. The angular width of the average pulse profile and the angular separation between two weak peaks both decrease with increasing frequency.  相似文献   

20.
FAST在深空探测中的应用前景   总被引:4,自引:0,他引:4  
苏彦 《天文学报》2001,42(1):61-69
FAST(Five hundred meters Aperture Spherical Telescope)拟利用贵州省的喀斯特洼地,建立世界上最大的500米口径的球面射电望远镜。主动反射面新概念的提出,实现了望远镜的宽频带和全偏振能力;馈源及支撑系统简化的方案,使FAST对天体和航天器的跟踪范围得到很大的补充。分析预研中的FAST的测控功能,并论证其在未来深空网(DSN)中的重要作用和地位及开展国际合作的可能性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号