首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Field observations were conducted to examine the processes governing the phytoplankton distribution and photosynthetic activity in and around a tidal front formed in Iyo Nada, the Seto Inland Sea, Japan. The existence of a middle layer intrusion, which, it has been suggested, moves from the mixed region to the stratified region of the tidal front, was ascertained by the phytoplankton distribution in addition to a T-S diagram. Skeletonema costatum, which originally inhabited the mixed region, was used as the indicator to reveal the intrusion. However, the tip of water containing the S. costatum population did not extend deeply into the stratified region. The velocity of the intrusion seemed to be slow enough to make biological processes, such as nutrient uptake by phytoplankton and subsequent growth, as well as the decrease in cell density due to zooplankton grazing, dominate during the transportation. The patchy distribution of copepod nauplii implied that grazing has an influence on the distribution pattern of phytoplankton. The location of high photosynthetic activity did not coincide spatially with the center of high phytoplankton biomass, suggesting the importance of these biological processes. Therefore, it is considered that the middle layer intrusion plays a role as an inducer of subsequent biological processes at the tidal front by not only supplying nutrients from the mixed region but also by increasing the vertical diffusivity.  相似文献   

2.
In this review article, plankton community structure observations are analyzed both for artificial iron fertilization experiments and also for experiments dedicated to the study of naturally iron-fertilized systems in the Atlantic, Indian and Pacific sectors of the Southern Ocean in the POOZ (Permanently Open Ocean Zone) and the PFZ (Polar Frontal Zone). Observations made in natural systems are combined with those from artificially perturbed systems, in order to evaluate the seasonal evolution of pelagic communities, taking into account controlling factors related to the life cycles and the ecophysiology of dominant organisms. The analysis considers several types of planktonic communities, including both autotrophs and heterotrophs. These communities are spatially segregated owing to different life strategies. A conceptual general scheme is proposed to account for these observations and their variability, regardless of experiment type. Diatoms can be separated into 2 groups: Group 1 has slightly silicified fast growing cells that are homogeneously distributed in the surface mixed layer, and Group 2 has strongly silicified slowly growing cells within discrete layers. During the growth season, Group 1 diatoms show a typical seasonal succession of dominant species, within time windows of development that are conditioned by physical factors (light and temperature) as well as endogenous specific rhythms (internal clock), and biomass accumulation is controlled by the availability of nutrients. Group 1 diatoms are not directly grazed by mesozooplankton which is fed by protozooplankton, linking the microbial food web to higher trophic levels. Instead, successive dominant species of Group 1 are degraded via bacterial activity at the end of their growth season. Organic detritus fragments feed protozooplankton and mesozooplankton. The effective silicon pump leads to the progressive disappearance of silicic acid in surface waters. In contrast, Group 2 is resistant to grazing due to its strong silicification, and its biomass accumulates continuously but relatively slowly throughout the productive period. Group 2 diatoms are concentrated at or near the seasonal pycnocline and thus benefit from upward nutrient fluxes by diapycnal mixing. The decrease in light and the deep convective mixing in the fall produce both light and nutrient limitation leading to a massive carbon export of Group 2 diatoms, a major annual event of the biological pump. This scheme describes the seasonal evolution of plankton communities in surface waters of the Southern Ocean. The scheme could probably be extended to ecosystems that are characterized by a seasonal bloom under influence of iron or other nutrients.  相似文献   

3.
We characterized the community composition of phytoplankton in the western subarctic Pacific from the pre-bloom to the decline phase of the spring bloom with special reference to decreases in the silicic acid concentration in surface waters as an index for diatom bloom development. Furthermore, responses of heterotrophic bacteria and viruses to the spring bloom were also concomitantly investigated. Under pre-bloom conditions when nutrients were abundant but the surface mixed layer depth was relatively deep, chlorophyll (Chl) a concentrations were consistently low and green algae (chlorophytes and prasinophytes), cryptophytes, and diatoms were predominant in the phytoplankton assemblages as estimated by algal pigment signatures. Together with the shallowing of the mixed layer depth and the decrease in silicic acid concentration, diatoms bloomed remarkably in the Oyashio region, though the magnitude of the bloom in the Kuroshio-Oyashio transition (hereafter Transition) region was relatively small. A total of 77 diatom species were identified, with the bloom-forming diatoms mainly consisting of Thalassiosira, Chaetoceros, and Fragilariopsis species. It has become evident that the carotenoid fucoxanthin can serve as a strong indicator of the diatom carbon biomass during the spring diatom bloom. Differences in the species richness of diatoms among stations generally enabled us to separate the Oyashio bloom stations from the Transition and the Oyashio pre-bloom stations. Relatively high values of the Shannon-Wiener index for the diatom species were also maintained during the Oyashio bloom, indicating that a wide variety of species then shared dominance. In the decline phase of the Oyashio bloom when surface nutrient concentrations decreased, senescent diatom cells increased, as inferred from the levels of chlorophyllide a. Although the cell density of heterotrophic bacteria changed little with the development of the diatom bloom, viral abundance increased toward the end of the bloom, suggesting an increased likelihood of mortality among organisms including diatoms resulting from viral infection. This is the first report on the microbial trophodynamics, including viruses, during the spring diatom bloom in the western subarctic Pacific.  相似文献   

4.
The Bolmon lagoon (South of France) is an oligo-mesohaline coastal lagoon that has undergone intense eutrophication in the past decades, resulting from a strong concentration of human activities in its drainage basin. Consequently, it exhibits some characteristics typical of an advanced trophic state; namely, the disappearance of submerged vegetation, the permanently intense phytoplankton growth and the recurrence of cyanoprokaryote blooms. As cyanoprokaryote dominance in south-temperate saline lagoons is little reported, we carried out this study in order to understand the seasonal variations in the phytoplankton composition and biomass, and to analyse the influence of environmental parameters such as salinity, nutrients and climate on the seasonal succession of species. In this lagoon, the phytoplankton was permanently dominated by cyanoprokaryotes, probably because of high availability of nutrients, low light penetration in the water column and frequent turbulent mixing induced by wind. The two most abundant species Planktothrix agardhii (in winter–spring) and Pseudanabaena limnetica (in summer) have low light requirements and are well adapted to a high mixing frequency, which defines the S1 functional group in Reynolds' typology for phytoplankton. Although widely studied in north-temperate lakes, blooms of these typically freshwater species are almost unreported in the Mediterranean area, especially in brackish ecosystems that are not their normal habitat. In the Bolmon lagoon, all their requirements for nutrients, light and mixing are satisfied and they seem to cope with a moderate presence of salt but P. agardhii was less competitive than P. limnetica at highest salinities, the latter being probably more halophytic. Contrary to the observations in lakes located at higher latitudes, the Mediterranean climate seems to induce a typical seasonal pattern of succession characterised by the dominance of P. agardhii (winter) – Chroococcales (spring) – Pseudanabaenaceae (summer) – P. agardhii (autumn, winter). The warm temperatures seemed to have a major influence on the phytoplankton succession, being responsible for the survival of Planktothrix during winter and its rapid and intense development in early spring. Intense mixing and high irradiance in summer promoted the development of Pseudanabaenaceae, as reported in another south-temperate lagoon, the Albufera of Valencia (Spain). The ecological success of Oscillatoriales observed in the Bolmon lagoon is a perfect example of a shift to the “turbid stable state” as proposed for freshwater shallow lakes only. Our work demonstrated that hypereutrophic Mediterranean lagoons can function very similarly to shallow lakes at higher latitudes; but the warmer climate and higher irradiances are probably responsible for differences in the seasonal pattern of species dominance.  相似文献   

5.
The phytoplankton distribution off western Australia in the period from April to October is unique in that high biomass is generally associated with anticyclonic eddies and not with cyclonic eddies. As the western Australian region is oligotrophic this anomalous feature must be related to differing nutrient supply pathways to the surface mixed layer of cyclonic and anticyclonic eddies. A suite of modelled abiotic tracers suggests that cyclonic eddies are predominantly supplied by diapycnal processes that remain relatively weak until June–July, when they rapidly increase because of deepening surface mixed layers, which start to tap into the nutrient-replete waters below the euphotic zone. To the contrary, we find that anticyclonic eddies are predominantly supplied by injection of shelf waters, which carry elevated levels of inorganic nutrients and biomass. These injections start with the formation of the eddies in April–May, continue well into the austral winter and reach as far as several hundred kilometers offshore. The diapycnal supply of nutrients is suppressed in anticyclonic eddies since the injection of warm, low-salinity shelf waters delays the erosion of the density gradient at the base of the mixed layer. Our results are consistent with the observed seasonal cycles of chlorophyll a and observation of particulate organic matter export out of the surface mixed layer of an anticyclonic eddy in the region.  相似文献   

6.
文章分析了2013年南海南部4个季节航次的叶绿素a (Chl a)调查数据, 结果显示: 150m以浅水柱Chl a质量浓度均值分别为早春0.14mg•m-3、初夏0.12mg•m-3、初秋0.18mg•m-3、初冬0.16mg•m-3。早春和初夏偏低的原因与早春风速小, 初夏水温高, 不利于水体的垂直混合, 限制了深层海水中丰富的营养盐向上层水体补充有关。4个季节中海水次表层Chl a质量浓度最大值层(SCML)均出现在50m和75m, 这两个水层的Chl a质量浓度差异小, 季节变化不大, 平均值变化范围分别为0.24~0.26mg•m-3和0.22~0.26mg•m-3。受混合层深度和温跃层上界深度的共同影响, 50m水层Chl a质量浓度主要受制于深层富营养盐海水的向上补充, 75m水层Chl a质量浓度受水温的影响明显。  相似文献   

7.
Primary production (PP), calcification (CAL), bacterial production (BP) and dark community respiration (DCR) were measured along with a set of various biogeochemical variables, in early June 2006, at several stations at the shelf break of the northern Bay of Biscay. The cruise was carried out after the main spring diatom bloom that, based on the analysis of a time-series of remotely sensed chlorophyll-a (Chl-a), peaked in mid-April. Remotely sensed sea surface temperature (SST) indicated the occurrence of enhanced vertical mixing (due to internal tides) at the continental slope, while adjacent waters on the continental shelf were stratified, as confirmed by vertical profiles of temperature acquired during the cruise. The surface layer of the stratified water masses (on the continental shelf) was depleted of inorganic nutrients. Dissolved silicate (DSi) levels probably did not allow significant diatom development. We hypothesize that mixing at the continental slope allowed the injection of inorganic nutrients that triggered the blooming of mixed phytoplanktonic communities dominated by coccolithophores (Emiliania huxleyi) that were favoured with regards to diatoms due to the low DSi levels. Based on this conceptual frame, we used an indicator of vertical stratification to classify the different sampled stations, and to reconstruct the possible evolution of the bloom from the onset at the continental slope (triggered by vertical mixing) through its development as the water mass was advected on-shelf and stratified. We also established a carbon mass balance at each station by integrating in the photic layer PP, CAL and DCR. This allowed computation at each station of the contribution of PP, CAL and DCR to CO2 fluxes in the photic layer, and how they changed from one station to another along the sequence of bloom development (as traced by the stratification indicator). This also showed a shift from net autotrophy to net heterotrophy as the water mass aged (stratified), and suggested the importance of extracellular production of carbon to sustain the bacterial demand in the photic and aphotic layers.  相似文献   

8.
Evidence of change in the winter mixed layer in the Northeast Pacific Ocean   总被引:1,自引:0,他引:1  
Sea-surface temperatures in the Northeast Pacific Ocean show a warming trend, and salinities show a declining trend, in data collected over the last 60 years. These changes combine to reduce the density of the surface layer over a large area of the Northeast Pacific. The declining surface density changes the energetic requirements for the formation of a surface mixed layer, and observations at Ocean Station Papa indicate that mid-winter mixed layer depths are showing a marked decline. The reduction in the depth of penetration of the winter-time mixed layer should reduce the nutrients entrained into the upper ocean each winter. Observations suggest that near surface nutrient levels are declining at Papa but remain well above levels that might inhibit productivity. However, at present the productivity of large phytoplankton appears to be limited by iron supply which is thought to be mainly from the atmosphere. A shallower mixed layer depth could increase the concentration of iron in this layer. The increase in iron would increase the utilization of nitrate, mainly by diatoms, and new production and the f ratio would increase.  相似文献   

9.
A field survey was undertaken to reveal the structure of the tidal front in Iyo-nada. An obvious tidal front was found between the mixed region around Hayasui Straits and the stratified region in Iyo-Nada. Its structure was typical in the eastern part and was influenced by the river discharge in the western part. An intense chlorophylla maximum was found in the subsurface layer of the eastern typical front. Analysis using TS diagram suggested that, around the eastern front, there was an intrusion from the mixed water to the middle layer of the stratified water. This intrusion was supposed to be an important process supplying nutrients from the mixed water to the subsurface of the frontal region and causing the intense chlorophylla maximum.  相似文献   

10.
The distribution of dissolved (D) and acid-dissolvable (AD) Fe, Ni, Cu and Pb in the upper water column (0–300 m depth) was determined in the Australian sector of the Southern Ocean (140°E meridian) during three cruises conducted between November 2001 and March 2002. For Ni and Cu, there was no significant difference in concentration between dissolved and acid-dissolvable species. DNi and DCu showed significant (P = 0.01) positive correlations with silicate, phosphate and nitrate, reflecting their strong nutrient-type behaviour. For Fe and Pb, the acid-dissolvable concentration mostly exceeded the dissolved concentration, reflecting the importance of labile particulate species for these elements. DPb decreased between January and February in the Polar Frontal Zone and in Antarctic continental shelf water. ADPb maxima occurred in the Antarctic Zone, resulting in a maximum AD/D ratio of 7. The mean DFe concentration in the surface mixed layer was 0.3 nM in the sub-Antarctic zone, 0.4 nM in the Polar Frontal Zone, 0.5 nM in the Antarctic Zone and increased southward beyond the Antarctic Divergence and towards the continent. DFe did not show a clear temporal change in its horizontal distribution, which was in contrast to the other nutrients and trace metals. ADFe substantially increased in Antarctic continental shelf water where the AD/D ratio reached 11. The following conclusions can be drawn from these data. (1) Ni and Cu exist exclusively as dissolved species and their distributions are mainly controlled by their biogeochemical cycling, similar to those of the major nutrients. (2) Pb is dominated by particulate species. The distribution of DPb is temporally and spatially variable due to a sporadic source and strong scavenging. (3) DFe is rather a minor fraction of total Fe in Antarctic continental shelf water where shelf sediments and Antarctic sea-ice appear to be strong sources for Fe. There is substantial temporal variation in the supply of Fe to the upper water column. DFe in the mixed layer of the open Southern Ocean is maintained at low concentrations throughout summer due to uptake by phytoplankton and scavenging.  相似文献   

11.
We used 16 years of multiplatform-derived biophysical data to reveal the footprint of the Pacific Decadal Oscillation (PDO) on the phytoplankton biomass of the northwestern Pacific Ocean in terms of chlorophyll a concentration (Chl), and to discern the probable factors causing the observed footprint. There were meridional differences in the response of phytoplankton to changes of environmental conditions associated with deepening of the mixed layer during the positive phase of the PDO. In general, deepening of the mixed layer increased phytoplankton biomass at low latitudes (increase of Chl due to increase of nutrient supply), but lowered phytoplankton at high latitudes (decrease of Chl due to reduction of average irradiance and temperature in the mixed layer). The areas where Chl increased or decreased changed meridionally and seasonally in accord with regulation of nutrient and light/temperature limitation by changes of mixed layer depth. The observed PDO footprint on Chl in the northwestern Pacific is likely superimposed on the high-frequency component of the PDO excited by El Niño/Southern Oscillation interannual variability. On a decadal time scale, however, Chl in the northwestern Pacific were more strongly associated with the recently discovered North Pacific Gyre Oscillation.  相似文献   

12.
长江口外潮汐混合和低盐度羽流形成的泥沙锋和羽状锋对浮游植物与环境因子的空间分布具有重要控制作用。本研究依据 2019 年夏季长江口及邻近海域典型断面叶绿素 a (Chl-a) 浓度和环境因子的调查结果,以锋面为边界,探讨了不同区域 Chl-a 浓度与环境因子的分布特征及相互关系,以期深入了解锋面的生态效应。结果表明,在泥沙锋以内的近岸区域,水体垂直混合均匀;受长江径流输入和泥沙锋“屏障”作用影响,总悬浮物 (TSM) 和营养盐浓度最高,其中TSM为 220.0± 275.3 mg/L,溶解无机氮 (DIN)、溶解无机磷 (DIP) 和溶解硅酸盐 (DSi) 分别可以达到 94.7±21.2 umol/L、 0.85±0.33umol/L 和 95.3±22.6 umol/L;高浓度 TSM 引起显著的光限制效应,导致 Chl-a 浓度较低 (1.7 ±0.5 ug/L)。在羽状锋以外的区域,出现垂直层化现象;表层海水的 TSM 和营养盐显著降低,其中 TSM 为 5.1 mg/L,DIN、DIP 和 DSi 分别为1.0 umol/L、0.03 umol/L 和 2.4 umol/L;Chl-a浓度受到营养盐供应不足的影响,浓度仅为 0.2ug/L。高浓度的 Chl-a (7.5±4.1±g/L) 主要出现在泥沙锋和羽状锋之间的过渡区域,该区域营养盐得到长江径流与上升流的补充;同时,由于大量 TSM在泥沙锋快速沉降,缓解了水体的光限制效应,有利于浮游植物的生长和积累。研究结果验证了泥沙锋和羽状锋对 TSM 与营养盐的重要控制作用,这对于理解长江口及邻近海域藻类灾害高发区的成因具有科学参考价值。  相似文献   

13.
Phytoplankton community and its distribution were investigated in the south part of the Polar Front in the eastern Barents Sea in October 2014. Analysis of the spatial differences in the phytoplankton structure was performed in connection with changes of the temperature, salinity and biogenic regime. At the end of the growing season in the phytoplankton community was dominated by destruction processes and the concentration of nutrients in the upper mixed layer was higher than the limiting level. Coccolithophores (Emiliania huxleyi and Discosphaera cf. tubifer) dominanted over investigated area. The maximum values of abundance and biomass of coccolithophores reached 90.4 mln.cell/m3 and 30.8 mgC/m3, drawing up 82% of the total number and 93% of the total biomass of phytoplankton. Influence of transformed the waters of Atlantic origin was observed in the western part of the investigated area. The number of species in the phytoplankton community here was 1.5–2 times lower than in the eastern part of the occupied mostly by Barents Sea water. In the eastern part of the presence of large dinoflagellates Neoceratium spp. (Ceratium spp.) and Dinophysis spp., lower values of chlorophyll a concentration, a higher proportion of pheophytin in the amount of pigment chlorophyll + pheophytin, the high content of ammonia in the upper mixed layer showed that in this area the phytoplankton was at a later seasonal succession stage than the western part.  相似文献   

14.
A new mixed layer multi-nutrient ecosystem model, incorporating diatoms, non-diatoms and zooplankton, is described that models the role of iron in marine biogeochemical cycles. The internal cell biochemistry of the phytoplankton is modelled using the mechanistic model of Flynn [2001. A mechanistic model for describing dynamic multi-nutrient, light, temperature interactions in phytoplankton. Journal of Plankton Research 23, 977–997] in which the internal cell concentrations of chlorophyll, nitrogen, silica, and iron are all dynamic variables that respond to external nutrient concentrations and light levels. Iron stress in phytoplankton feeds back into chlorophyll synthesis and changes in photosynthetic unit (PSU) size, thereby reducing their growth rate. Because diatom silicon metabolism is inextricably linked with cell division, diatom population density (cell m−3) is modelled as well as C biomass. An optimisation technique was used to fit the model to three time-series datasets at Biotrans (47°N, 20°W) and Kerfix (50°40′S, 68°25′E) and the observations for the Southern Ocean Iron-Release Experiment (SOIREE) iron-enrichment experiment (61°S, 140°E). The model gives realistic simulations of the annual cycles of nutrients, phytoplankton, and primary production at Biotrans and Kerfix and can also accurately simulate an iron fertilisation experiment. Specifically, the model predicts the high values of diatom Si:N and Si:C ratios observed in areas where iron is a limiting factor on algal growth. In addition, the model results at Kerfix confirm previous suggestions that underwater light levels have a more limiting effect on phytoplankton growth than iron supply. The model is also used to calculate C budgets and C and Si export from the mixed layer. The implications of these results for developing biogeochemical models incorporating the role of iron are discussed.  相似文献   

15.
In order to determine why the sedimentation to supply ratio of nutrients in Tokyo Bay is markedly small, the nitrogen budget was investigated for 1979, when a systematic and continuous observation of flow and salinity was carried out. The data were analyzed by use of a simple advective-diffusive box model and dissolved oxygen balance in the lower layer was also examined. The calculated values of two-layer flow, settling, primary production, mineralization, denitrification, and dissolved oxygen consumption were comparable to those observed.The factors making the sedimentation to supply ratio makedly small were summarized as: 1) a strong and stable two-layer flow generated by a large freshwater supply, 2) further intensification of this two-layer flow by the northern winter monsoon, 3) coincidence of the discharge region with the supply region of nutrients caused by the transverse inclination of the interface, probably due to the earth's rotation. 4) effective discharge of nutrients from the bay due to a strong tidal flow and a possible cyclonic tidal residual circulation in the inner bay mouth, 5) incomplete consumption of nutrient salts by phytoplankton in the upper layer even in the most productive season, and 6) possible denitrification in the anaerobic bottom water in summer and in the bottom sediment itself throughout the year in the inner bay.  相似文献   

16.
南黄海浮游植物季节性变化的数值模拟与影响因子分析   总被引:26,自引:1,他引:25  
用三维物理-生物耦合模式研究南黄海浮游植物(以叶绿素a为指标)的季节变化.对于物理模式采用Princeton ocean model(POM),对于生物模式考虑溶解无机营养盐(氮、磷、硅)、浮游植物、食草性浮游动物和碎屑.给定已知的初始场和外加边界强迫,模拟了观测到叶绿素a的主要时、空分布特征,如浮游植物的春、秋季水华和夏季次表层叶绿素a极大值现象等.研究表明,浮游植物春季水华最先发生于黄海中央海域,主要原因是该海域透明度较高,流速较小.春季水华开始于垂直对流减弱和层化开始形成之前(约3月底至4月上旬),显著地依赖水层的稳定性.水体层化以后(约5~9月)叶绿素a浓度高值区分布在南黄海的南部和锋区.夏季的南黄海中央海域,由于上混合层营养盐几乎耗尽,限制了浮游植物的生长,在紧贴温跃层下部的真光层,具有丰富的营养盐和合适的光照,次表层叶绿素a极大值得以形成.秋季(约9~11月份,略迟于海表面开始降温的时间,随地点不同而异)随垂直混合的增强,有利于营养盐向上输运,浮游植物出现一次较小的峰值.  相似文献   

17.
海洋浮游植物群落结构的改变与营养盐结构有关,不同形态氮可能会影响优势种生长从而改变浮游植物群落结构。本文针对莱州湾硅藻向甲藻潜在的种群演替问题,通过船基围隔生态系现场氮加富培养实验,研究NO3-N、NH4-N、陆源有机氮(DONts)和藻源有机氮(DONss)对海洋浮游植物群落结构的影响。结果表明,在NO3-N、NH4-N和DONts加富培养条件下,舟形藻(Navicula spp.,优势度60.4%)、丹麦细柱藻(Leptocylindrus danicusm,56.6%)和密连角毛藻(Chaetoceros densus,57.4%)等硅藻是优势种,在DONss加富培养条件下,春膝沟藻(Gonyaulax verior,60.2%)等甲藻为优势种,说明硅藻主要吸收无机态营养盐成为优势种,而甲藻能够吸收DON成为优势藻。动力学过程分析发现,春膝沟藻(G.verior)等甲藻可以直接吸收利用DONss,而DONts可能是通过矿化转化为无机氮,再被密连角毛藻(C.densus)等硅藻吸收与利用。本文研究成果,有助于对硅藻向甲藻演替的营养盐动力学控制机制的认识。  相似文献   

18.
根据2002年11月在亚大湾大鹏澳进行的连续30d(每日采样一次)观测资料,运用主成分分析和多元回归分析相结合方法,分析大鹏澳非养殖区中各浮游植物优势种之间的关系及影响其生长与演替的主要理化因子.建立秋季浮游植物优势种演替模型,并与春季的大鹏澳现场调查建立的浮游植物优势种演替模型进行比较,分析生境变化(降雨)对浮游植物优势种演替过程的影响。结果表明,春,秋季浮游植物优势种发生不同的演替过程。春季浮游植物对资源的竞争较为激烈,大量降雨引起海水中营养盐浓度升高,促进并维持中肋骨条藻(Skeletonema costatum)高密度生长,待营养盐被大量消耗后,中肋骨条藻数量下降,减轻了对柔弱菱形藻(Nitzschia delicatissima)的生长压力而使其成为优势种;而秋季水温较低,浮游植物细胞数量较春季大为减少,中肋骨条藻和柔弱菱形藻对资源的竞争较为缓和,使外界环境变化成为影响优势种变化的主要原因;降雨期间虽然营养盐增加,但环境变化使浮游植物的生长受到限制,雨后柔弱菱形藻数量不能恢复,水体中高营养盐浓度促使中肋骨条藻出现生长峰值。  相似文献   

19.
The short-term dynamics (time scale of a few days) of phytoplankton communities in coastal ecosystems, particularly those of toxic species, are often neglected. Such phenomena can be important, especially since these very species can endanger the sustainability of shellfish farming. In this study, we investigated the short-term changes in phytoplankton community structure (species succession) in two coastal zones in parallel with physical and chemical conditions. Mixing events with allochtonous waters could thus be distinguished from local processes associated with population growth when it was associated with a change in light or nutrient limitation. Mixing events and water advection influenced fluctuations in total phytoplankton biomass and concentration of dominant species, while local processes influenced delayed changes in community structure. The estuarine species Asterionellopsis glacialis increased in concentration when the water mass mixed with the nearest estuarine water masses. The biological response, measured as photosynthetic capacity, occurred after a time-lag of a few hours, while the changes in community structure occurred after a time-lag of a few days. Finally, the coastal water mass was constantly mixed with both the nearest estuarine and marine water masses, leading in turn to delayed changes in phytoplankton community structure. These changes in species composition and dominance were observed on a time scale of a few days, which means that some toxic species may be missed with a bi-weekly sampling strategy.  相似文献   

20.
The relationship between island-induced cyclonic eddies and chlorophyll a (chl-a) was investigated using field data and satellite images in the eastern channel of the Tsushima Straits. The maximum chl-a concentration around the leeward eddy of the Tsushima Islands was two or three times greater than that of outside the eddy. Two different mechanisms of chl-a enhancement associated with island-induced cyclonic eddies were found in the post-bloom periods. In summer, when nutrients were depleted in the surface layer, eddy pumping increased the nutrient supply in the euphotic zone, resulting in enhanced chl-a around the shallow thermocline near the eddy core. In late autumn, when the mixed layer deepened over the euphotic zone, the mixed layer depth became shallow due to the doming effect of the cyclonic eddy, therefore, the improved irradiance condition led to an increase in the chl-a concentration in the surface mixed layer. Nighttime satellite visible images showed a number of fishing vessels in the lee region of the Tsushima Islands, implying that the enhanced phytoplankton biomass may have resulted in good feeding conditions for fishes and squids in the Tsushima Straits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号