首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the redshift-space distortions in the optically selected Durham/UKST Galaxy Redshift Survey using the two-point galaxy correlation function perpendicular and parallel to the observer's line of sight, ξ(σ, π). On small, non-linear scales we observe an elongation of the constant ξ(σ, π) contours in the line-of-sight direction. This is a result of the galaxy velocity dispersion and is the common 'Finger of God' effect seen in redshift surveys. Our result for the one-dimensional pairwise rms velocity dispersion is 〈 w 21/2=416±36 km s−1, which is consistent with those from recent redshift surveys and canonical values, but inconsistent with SCDM or LCDM models. On larger, linear scales we observe a compression of the ξ(σ, π) contours in the line-of-sight direction. This is caused by the infall of galaxies into overdense regions, and the Durham/UKST data favours a value of (Ω0.6/ b )∼0.5, where Ω is the mean mass density of the Universe and b is the linear bias factor that relates the galaxy and mass distributions. Comparison with other optical estimates yields consistent results, with the conclusion that the data do not favour an unbiased critical-density universe.  相似文献   

2.
We use non-linear scaling relations (NSRs) to investigate the effects arising from the existence of negative correlations on the evolution of gravitational clustering in an expanding universe. It turns out that such anticorrelated regions have important dynamical effects on all scales. In particular, the mere existence of negative values for the linear two-point correlation function ξ¯ L over some range of scales starting from l = L 0 implies that the non-linear correlation function is bounded from above at all scales x < L 0 . This also results in the relation ξ¯   ∝  x −3 , at these scales, at late times, independent of the original form of the correlation function. Current observations do not rule out the existence of negative ξ¯ for 200  h −1 Mpc≲ ξ¯ ≲1000  h −1 Mpc; the present work may thus have relevance for the real Universe. The only assumption made in the analysis is the existence of NSR; the results are independent of the form of the NSR as well as of the stable clustering hypothesis.  相似文献   

3.
4.
This is the second paper of a series where we study the clustering of luminous red galaxies (LRG) in the recent spectroscopic Sloan Digital Sky Survey (SDSS) data release, DR6, which has 75 000 LRG covering over  1 Gpc3  h −3  for  0.15 < z < 0.47  . Here, we focus on modelling redshift-space distortions in  ξ(σ, π)  , the two-point correlation in separate line-of-sight and perpendicular directions, at small scales and in the line-of-sight. We show that a simple Kaiser model for the anisotropic two-point correlation function in redshift space, convolved with a distribution of random peculiar velocities with an exponential form, can describe well the correlation of LRG on all scales. We show that to describe with accuracy the so-called 'fingers-of-God' (FOG) elongations in the radial direction, it is necessary to model the scale dependence of both bias b and the pairwise rms peculiar velocity σ12 with the distance. We show how both quantities can be inferred from the  ξ(σ, π)  data. From   r ≃ 10 Mpc  h −1  to   r ≃ 1 Mpc  h −1  , both the bias and σ12 are shown to increase by a factor of 2: from   b = 2  to 4 and from  σ12= 400  to  800 km s−1  . The latter is in good agreement, within a 5 per cent accuracy in the recovered velocities, with direct velocity measurements in dark matter simulations with  Ωm= 0.25  and  σ8= 0.85  .  相似文献   

5.
We present a simple and intuitive approximation for solving the perturbation theory (PT) of small cosmic fluctuations. We consider only the spherically symmetric or monopole contribution to the PT integrals, which yields the exact result for tree-graphs (i.e. at leading order). We find that the non-linear evolution in Lagrangian space is then given by a simple local transformation over the initial conditions, although it is not local in Euler space. This transformation is found to be described by the spherical collapse (SC) dynamics, as it is the exact solution in the shearless (and therefore local) approximation in Lagrangian space. Taking advantage of this property, it is straightforward to derive the one-point cumulants, ξJ, for both the unsmoothed and smoothed density fields to arbitrary order in the perturbative regime. To leading-order this reproduces, and provides us with a simple explanation for, the exact results obtained by Bernardeau. We then show that the SC model leads to accurate estimates for the next corrective terms when compared with the results derived in the exact perturbation theory making use of the loop calculations. The agreement is within a few per cent for the hierarchical ratios S J  = ξ J J −12. We compare our analytic results with N -body simulations, which turn out to be in very good agreement up to scales where σ ≈ 1. A similar treatment is presented to estimate higher order corrections in the Zel'dovich approximation. These results represent a powerful and readily usable tool to produce analytical predictions that describe the gravitational clustering of large-scale structure in the weakly non-linear regime.  相似文献   

6.
We consider a situation where the density and peculiar velocities in real space are linear, and we calculate ξ s , the two-point correlation function in redshift space, incorporating all non-linear effects which arise as a consequence of the map from real to redshift space. Our result is non-perturbative and it includes the effects of possible multi-streaming in redshift space. We find that the deviations from the predictions of the linear redshift distortion analysis increase for the higher spherical harmonics of ξ s . While the deviations are insignificant for the monopole ξ 0, the hexadecapole ξ 4 exhibits large deviations from the linear predictions. For a COBE normalized     ,     cold dark matter (CDM) power spectrum, our results for ξ 4 deviate from the linear predictions by a factor of two on the scale of ∼10  h −1 Mpc. The deviations from the linear predictions depend separately on f (Ω) and b . This holds the possibility of removing the degeneracy that exists between these two parameters in the linear analysis of redshift surveys which yields only     .
We also show that the commonly used phenomenological model, where the non-linear redshift two-point correlation function is calculated by convolving the linear redshift correlation function with an isotropic pair velocity distribution function, is a limiting case of our result.  相似文献   

7.
We present a simple model for the shape of the distribution function of galaxy peculiar velocities. We show how both non-linear and linear theory terms combine to produce a distribution which has an approximately Gaussian core with exponential wings. The model is easily extended to study how the statistic depends on the type of particle used to trace the velocity field (dark matter particles, dark matter haloes, galaxies), and on the density of the environment in which the test particles are located. Comparisons with simulations suggest that our model is accurate. We also show that the evolution of the peculiar velocities depends on the local, rather than the global, density. Since clusters populate denser regions on average, using cluster velocities with the linear theory scaling may lead to an overestimate of the global value of Ω0. Conversely, using linear theory with the global value of Ω0 to scale cluster velocities from the initial to the present time results in an underestimate of their true velocities. In general, however, the directions of motions of haloes are rather well described by linear theory. Our results help to simplify models of redshift-space distortions considerably.  相似文献   

8.
9.
This paper presents a comparison of the predictions for the two- and three-point correlation functions of density fluctuations, ξ and ζ , in gravitational perturbation theory (PT) against large cold dark matter (CDM) simulations. This comparison is made possible for the first time on large weakly non-linear scales (>10  h −1 Mpc) thanks to the development of a new algorithm for estimating correlation functions for millions of points in only a few minutes. Previous studies in the literature comparing the PT predictions of the three-point statistics with simulations have focused mostly on Fourier space, angular space or smoothed fields. Results in configuration space, such as those presented here, were limited to small scales where leading-order PT gives a poor approximation. Here we also propose and apply a method for separating the first-order and subsequent contributions to PT by combining different output times from the evolved simulations. We find that in all cases there is a regime where simulations do reproduce the leading-order (tree-level) predictions of PT for the reduced three-point function   Q 3∼ ζ / ξ 2  . For steeply decreasing correlations (such as the standard CDM model) deviations from the tree-level results are important even at relatively large scales, ≃20 Mpc  h −1. On larger scales ξ goes to zero and the results are dominated by sampling errors. In more realistic models (such as the ΛCDM cosmology) deviations from the leading-order PT become important at smaller scales   r ≃10 Mpc  h -1  , although this depends on the particular three-point configuration. We characterize the range of validity of this agreement and show the behaviour of the next-order (one-loop) corrections.  相似文献   

10.
We study the peculiar velocity field inferred from the Mark III spirals using a new method of analysis. We estimate optimal values of Tully–Fisher scatter and zero-point offset, and we derive the three-dimensional rms peculiar velocity ( σ v ) of the galaxies in the samples analysed. We check our statistical analysis using mock catalogues derived from numerical simulations of cold dark matter (CDM) models considering measurement uncertainties and sampling variations. Our best determination for the observations is σ v =(660±50) km s−1. We use the linear theory relation between σ v , the density parameter Ω, and the galaxy correlation function ξ ( r ) to infer the quantity     , where b is the linear bias parameter of optical galaxies and the uncertainties correspond to bootstrap resampling and an estimated cosmic variance added in quadrature. Our findings are consistent with the results of cluster abundances and redshift-space distortion of the two-point correlation function. These statistical measurements suggest a low value of the density parameter Ω∼0.4 if optical galaxies are not strongly biased tracers of mass.  相似文献   

11.
12.
We study the interplay of clumping at small scales with the collapse and relaxation of perturbations at larger scales using N -body simulations. We quantify the effect of collapsed haloes on perturbations at larger scales using the two-point correlation function, moments of counts in cells and the mass function. The purpose of the study is twofold and the primary aim is to quantify the role played by collapsed low-mass haloes in the evolution of perturbations at large scales; this is in view of the strong effect seen when the large scale perturbation is highly symmetric. Another reason for this study is to ask whether features or a cut-off in the initial power spectrum can be detected using measures of clustering at scales that are already non-linear. The final aim is to understand the effect of ignoring perturbations at scales smaller than the resolution of N -body simulations. We find that these effects are ignorable if the scale of non-linearity is larger than the average interparticle separation in simulations. Features in the initial power spectrum can be detected easily if the scale of these features is in the linear regime; detecting such features becomes difficult as the relevant scales become non-linear. We find no effect of features in initial power spectra at small scales on the evolved power spectra at large scales. We may conclude that, in general, the effect on the evolution of perturbations at large scales of clumping on small scales is very small and may be ignored in most situations.  相似文献   

13.
14.
A total of 235 active galactic nuclei (AGN) from two different soft X-ray surveys [the ROSAT Deep Survey (DRS) and the ROSAT International X-ray Optical Survey (RIXOS)] with redshifts between 0 and 3.5 are used to study the clustering of X-ray selected AGN and its evolution. A 2σ significant detection of clustering of such objects is found on scales < 40–80 h −1 Mpc in the RIXOS sample, while no clustering is detected on any scales in the DRS sample. Assuming a single power-law model for the spatial correlation function (SCF), quantitative limits on the AGN clustering have been obtained: a comoving correlation length 1.5 ≲  r 0 ≲ 3.3  h −1 Mpc is implied for comoving evolution, while 1.9 ≲  r 0 ≲ 4.8 for stable clustering and 2.2 ≲  r 0 ≲ 5.5 for linear evolution. These values are consistent with the correlation lengths and evolutions obtained for galaxy samples, but imply smaller amplitude or faster evolution than recent ultraviolet and optically selected AGN samples. We also constrain the ratio of bias parameters between X-ray selected AGN and IRAS galaxies to be ≲ 1.7 on scales ≲ 10  h −1 Mpc, a somewhat smaller value than is inferred from local large-scale dynamical studies.  相似文献   

15.
16.
Of the many probes of reionization, the 21-cm line and the cosmic microwave background (CMB) are among the most effective. We examine how the cross-correlation of the 21-cm brightness and the CMB Doppler fluctuations on large angular scales can be used to study this epoch. We employ a new model of the growth of large-scale fluctuations of the ionized fraction as reionization proceeds. We take into account the peculiar velocity field of baryons and show that its effect on the cross-correlation can be interpreted as a mixing of Fourier modes. We find that the cross-correlation signal is strongly peaked towards the end of reionization and that the sign of the correlation should be positive because of the inhomogeneity inherent to reionization. The signal peaks at degree scales (ℓ∼ 100) and comes almost entirely from large physical scales ( k ∼ 10−2 Mpc). Since many of the foregrounds and noise that plague low-frequency radio observations will not correlate with CMB measurements, the cross-correlation might appear to provide a robust diagnostic of the cosmological origin of the 21-cm radiation around the epoch of reionization. Unfortunately, we show that these signals are actually only weakly correlated and that cosmic variance dominates the error budget of any attempted detection. We conclude that the detection of a cross-correlation peak at degree-size angular scales is unlikely even with ideal experiments.  相似文献   

17.
18.
19.
In Paper I of this series, we introduced the spherical collapse (SC) approximation in Lagrangian space as a way of estimating the cumulants ξ J of density fluctuations in cosmological perturbation theory (PT). Within this approximation, the dynamics is decoupled from the statistics of the initial conditions, so we are able to present here the cumulants for generic non-Gaussian initial conditions, which can be estimated to arbitrary order including the smoothing effects. The SC model turns out to recover the exact leading-order non-linear contributions up to terms involving non-local integrals of the J -point functions. We argue that for the hierarchical ratios S J , these non-local terms are subdominant and tend to compensate each other. The resulting predictions show a non-trivial time evolution that can be used to discriminate between models of structure formation. We compare these analytic results with non-Gaussian N -body simulations, which turn out to be in very good agreement up to scales where σ ≲ 1.  相似文献   

20.
galev (GALaxy EVolution) evolutionary synthesis models describe the evolution of stellar populations in general, of star clusters as well as of galaxies, both in terms of resolved stellar populations and of integrated light properties over cosmological time-scales of ≥13 Gyr from the onset of star formation shortly after the big bang until today.
For galaxies, galev includes a simultaneous treatment of the chemical evolution of the gas and the spectral evolution of the stellar content, allowing for what we call a chemically consistent treatment: we use input physics (stellar evolutionary tracks, stellar yields and model atmospheres) for a large range of metallicities and consistently account for the increasing initial abundances of successive stellar generations.
Here we present the latest version of the galev evolutionary synthesis models that are now interactively available at http://www.galev.org . We review the currently used input physics, and also give details on how this physics is implemented in practice. We explain how to use the interactive web interface to generate models for user-defined parameters and also give a range of applications that can be studied using galev , ranging from star clusters, undisturbed galaxies of various types E–Sd to starburst and dwarf galaxies, both in the local and the high-redshift Universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号