首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mercury deposition histories have been scarcely documented in the southern hemisphere. A sediment core was collected from the ecologically important estuarine floodplain of the Berg River (South Africa). We establish the concentration of Hg in this 210Pb-dated sediment core at <50 ng g−1 HgT throughout the core, but with 1.3 ng g−1 methylmercury in surface sediments. The 210Pb dating of the core provides a first record of mercury deposition to the site and reveals the onset of enhanced mercury deposition in 1970. The ratio of methylmercury to total mercury is relatively high in these sediments when compared to other wetlands.  相似文献   

2.
The vertical distribution of Hg and Pb were determined in a sediment core collected from the Sagua estuary (North Cuba) that receives input from the Sagua river, one of the most polluted rivers discharging into the Cuban coastal environment. Depth profiles of metal concentrations were converted to time-based profiles using the 210Pb dating method and confirmed with the 137Cs fallout peak. The mean mass accumulation rate was estimated to be 0.17 ± 0.04 g cm−2 y−1 (mean sediment accumulation rate 0.52 ± 0.13 cm y−1) and the core bottom was estimated to date back about 130 years. The historical sedimentary record showed a strong enrichment of mercury concentrations in the past decades, caused by the incomplete treatment of industrial wastes from a chlor-alkali plant with mercury-cell technology in the Sagua river basin. Lead fluxes to sediments showed a gradual increase from the 1920s to present, which agrees with a population increase in Sagua la Grande City. Fluxes of both metals have increased the past 25 years, with values reaching a maximum of 0.5 and 3.9 μg cm−2 y−1 for Hg and Pb, respectively.  相似文献   

3.
Here we present the first species-specific study of boron isotopes in the epibenthic foraminifer species Cibicidoides wuellerstorfi. Coretop samples from a water depth profile from 1000 to 4500 m on the northern flank of the Walvis Ridge are 4.4‰ lower than the values expected, based on calculations of the δ11Bborate of ambient seawater. Similar values for this foraminifer species are presented from ODP site 668B at the Sierra Leone Rise, in the equatorial Atlantic. The consistency between data of the same species suggests the offsets are primary, rather than diagenetic. Glacial C. wuellerstorfi from ODP 668B and Walvis Ridge have boron isotope compositions only slightly different to interglacial samples, that is no larger than + 0.10 pH units, or + 23 µmol kg− 1 in [CO32−] above the reconstructed glacial lysocline, and − 0.07 pH units, or − 14 µmol kg− 1 in [CO32−] below. We use these results to suggest that glacial deep water pH in the Atlantic was similar to interglacial pH. The new data resolve the inconsistency between the previously reported high bottom water pH and the lack of significant carbonate preservation of the glacial deep ocean.  相似文献   

4.
The purpose of this study was to establish the distribution, speciation and bioavailability of mercury in mangrove sediments. A systemic survey of surficial sediments from 13 mangrove wetlands of China was carried out. Hg concentrations ranged from 2.3–903.6 ng g−1, with an average value of 189.4 ng g−1. Of the 13 areas surveyed, the Hg content in sediments was similar to background levels in 6 areas but was much higher in the other seven areas. Hg levels were affected by natural and anthropogenic factors, including terrestrial pollutants, geomorphic properties, and indirectly by economic status. Hg levels were positively correlated with organic matter, pH, and silt and clay fractions, but Hg was negatively correlated with sand fraction. In most mangrove wetlands, Hg existed primarily in the form of volatile Hg. Hg is easily bioaccumulated in mangrove wetlands and may be the natural source of Hg emissions to the atmosphere.  相似文献   

5.
Preliminary results of a seasonal study of the pelagic community at a station on the outer edge of the Cornwallis Estuary suggest that the seasonal variation in plankton community respiration (PCR) is related to organic inputs from nearby salt marshes. Annual phytoplankton production is low (<30 g C m−2 y−1) and exhibits a seasonal cycle very different from PCR. There is no indication that resuspension of benthic diatoms is an important energy input to the pelagic system. PCR, however, is quite high and exhibits a seasonal trend similar to the export of salt marsh detritus. Zooplankton densities (5–200 l−1) and biomass (<0.4 g m−3) appear to be much greater than could be supported by phytoplankton alone. The Cornwallis Estuary may be an estuarine system exhibiting a net export of organic matter to nearby offshore waters.  相似文献   

6.
Three sediment cores were sampled at Sepetiba Bay and four cores at Ribeira Bay, Rio de Janeiro State, Brazil. Sediment accumulation rates and chronologies were obtained from 210Pb activity-depth profiles. Sediment accumulation rates in Ribera Bay ranged from 1.2 mm y−1 in the inner bay to 2.6 mm y−1 close to its entrance. In Sepetiba Bay two sediment accumulation rates were observed: a lower rate of 0.35 cm y−1 before the 1960s and 0.76 cm y−1 since then. The cause of this change is due to the construction of the Santa Cecília impoundment (1955) that brings water from the Paraíba do Sul Basin into the Guandu River, which increased its flow from the original 20 m3 s−1 to 160 m3 s−1. Concentration of 44 elements was obtained by ICP-MS after total dissolution of samples from two selected cores. The relative differences between the concentrations of crustal elements, such as Al, Fe and Ti are only about 20% (p < 0.05). Cd and Zn are 15 and four times larger in Sepetiba Bay than in Ribeira Bay, respectively. Other major and minor elements show lower statistically significant differences. The enrichment factors and metal inventories show that Sepetiba Bay can be considered polluted with Bi, Cd, Cr, Cu, Sb and Zn. Particularly, Cd and Zn present concentrations three and four times higher than the Brazilian existing limits.  相似文献   

7.
After 1990, external loads of Central European rivers with inorganic nutrients (nitrogen and phosphorus) and organic material were reduced because of changed environmental laws. However, in the eutrophic lowland River Warnow, North-Eastern Germany, nitrate concentrations remained high with 35–185 μmol l−1 without a significant decrease since 1992. In contrast, phosphate concentrations, varying between 0.3 and 5.2 μmol l−1 during the growth season 2002, decreased significantly over the years. However, its concentrations still exceeded 1 μmol l−1 regularly in the growth seasons. This load led to a substantial accumulation of organic matter additional to high terrestrial inputs. Despite the high organic load, the remineralising bacteria were mainly inactive in River Warnow. Therefore, the composition of the dissolved organic material, especially its bioavailability, were investigated during the growth season 2002 and discussed with other potential controlling factors. River Warnow carried a high load of dissolved organic carbon (14 mg l−1), especially of humic substances (5.5 mg C l−1). Bacterial abundance (12×106 ml−1) as well as production (1.7 μg C l−1 h−1) depended on temperature. During late spring and summer at constantly higher temperatures, bacterial production correlated positively to readily utilisable substrates and to humic compounds. Thus, the bacterial community in River Warnow may be well adapted or contain enough species using the available amino acids and carbohydrates as well as humic matter compounds. However, calculated from protozoan biomass, grazing may control bacterial biomass and perhaps community composition profoundly, what lead to the low percentages of active bacteria.  相似文献   

8.
Pressure–volume–temperature relations have been measured to 32 GPa and 2073 K for natural magnesite (Mg0.975Fe0.015Mn0.006Ca0.004CO3) using synchrotron X-ray diffraction with a multianvil apparatus at the SPring-8 facility. A least-squares fit of the room-temperature compression data to a third-order Birch–Murnaghan equation of state (EOS) yielded K0 = 97.1 ± 0.5 GPa and K′ = 5.44 ± 0.07, with fixed V0 = 279.55 ± 0.02 Å3. Further analysis of the high-temperature compression data yielded the temperature derivative of the bulk modulus (∂KT/∂T)P = −0.013 ± 0.001 GPa/K and zero-pressure thermal expansion α = a0 + a1T with a0 = 4.03 (7) × 10−5 K−1 and a1 = 0.49 (10) × 10−8 K−2. The Anderson–Grüneisen parameter is estimated to be δT = 3.3. The analysis of axial compressibility and thermal expansivity indicates that the c-axis is over three times more compressible (KTc = 47 ± 1 GPa) than the a-axis (KTc = 157 ± 1 GPa), whereas the thermal expansion of the c-axis (a0 = 6.8 (2) × 10−5 K−1 and a1 = 2.2 (4) × 10−8 K−2) is greater than that of the a-axis (a0 = 2.7 (4) × 10−5 K−1 and a1 = −0.2 (2) × 10−8 K−2). The present thermal EOS enables us to accurately calculate the density of magnesite to the deep mantle conditions. Decarbonation of a subducting oceanic crust containing 2 wt.% magnesite would result in a 0.6% density reduction at 30 GPa and 1273 K. Using the new EOS parameters we performed thermodynamic calculations for magnesite decarbonation reactions at pressures to 20 GPa. We also estimated stability of magnesite-bearing assemblages in the lower mantle.  相似文献   

9.
The effects of prolonged exposure to reduced oxygen levels (3.0 and 1.5 mg O2 l−1) on marine scavenging gastropods Nassarius festivus were studied for 8 weeks. The percentages of individuals engaged in feeding and amount of food consumed were reduced as oxygen level decreased; absorption efficiency, however, did not vary significantly with oxygen level. Oxygen consumption rates and specific oxygen consumption rates were lower at reduced oxygen levels. Reproduction occurred at all oxygen levels with less egg capsules being produced at lower oxygen levels. Egg size and number of eggs per capsule, however, were not significantly affected by oxygen level. The increase in shell length was 12%, 6% and 5% at 6.0 mg O2 l−1 (normoxia), 3.0 mg O2 l−1 and 1.5 mg O2 l−1, respectively. At the end of the experiment, the amount of energy allocated to growth and reproduction decreased at reduced oxygen levels with values obtained at 3.0 mg O2 l−1 and 1.5 mg O2 l−1 being 48% and 70% lower than those at 6.0 mg O2 l−1. At all oxygen levels, most of the accumulated energy was allocated to shell growth and reproduction, and the amount allocated to somatic growth was relatively insignificant. The reduction in energy allocated to reproduction was greater than that to shell growth as the oxygen level was reduced, indicating a strategic energy allocation of marine scavengers under stressful conditions to enhance survival.  相似文献   

10.
The flow of carbon and nitrogen in sediments of the far northern and northern sections of the Great Barrier Reef continental shelf was examined. Most of the organic carbon (81–94%) and total nitrogen (74–92%) depositing to the seabed was mineralized, with burial of carbon (6–19%) and nitrogen (8–20%) being proportionally less on this tropical shelf compared with other non-deltaic shelves. Differences in carbon and nitrogen mineralization among stations related best to water depth and proximity to river basins, with rates of mineralization based on net ∑CO2 production ranging from 17 to 39 ( mean=23) mmol C m−2 d−1. The overall ratio of O2:CO2 flux was 1.3, close to the Redfield ratio, implying that most organic matter mineralized was algal. Sulfate reduction was estimated to account for ≈30% (range: 6–62%), and denitrification for ≈5% (range: 2–13%), of total C mineralization; there was no measurable CH4 production. Discrepancies between ∑CO2 production across the sediment–water interface and sediment incubations suggest that as much as 5 mmol m−2 d−1 (≈25% of ∑CO2 flux) was involved in carbonate mineral formation. Most microbial activity was in the upper 20 cm of sediment. Rates of net NH4+ production ranged from 1.6 to 2.7 mmol N m−2 d−1, with highly variable N2 fixation rates contributing little to total N input. Ammonification and nitrification rates were sufficient to support rapid rates of denitrification (range: 0.1–12.4 mmol N m−2 d−1). On average, nearly 50% of total N input to the shelf sediment was denitrified. The average rates of sedimentation, mineralization, and burial of C and N were greater in the northern section of the shelf than in the far northern section, presumably due to higher rainfall and river discharge, as plankton production was similar between regions. The relative proportion of plankton primary production remineralized at the seafloor was in the range of 30–50% which is at the high end of the range found on other shelves. The highly reactive nature of these sediments is attributed to the deposition of high-quality organic material as well as to the shallowness of the shelf, warm temperatures year-round, and a variety of physical disturbances (cyclones, trawling) fostering physicochemical conditions favorable for maintaining rapid rates of microbial metabolism. The rapid and highly efficient recycling of nutrients on the inner and middle shelf may help to explain why the coral reefs on the outer shelf have remained unscathed from increased sediment delivery since European settlement.  相似文献   

11.
Accumulation rates of marine and terrigenous organic carbon in the continental margin sediments off southwestern Taiwan were estimated from the measured concentrations and isotopic compositions of total organic carbon (TOC) and previously reported sedimentation rates. Surficial sediments were collected from the study area spanning from the narrow shelf near the Kaoping River mouth to the deep slope with depths reaching almost 3000 m. The average sediment loading of Kaoping River is 17 Mt/yr, which yields high sediment accumulation rates ranging from 0.08 to 1.44 g cm−2 yr−1 in the continental margin. About half of the discharged sediments were deposited on the margin within 120 km of the river mouth. Carbon isotopic compositions of terrestrial and marine end-members of organic matter were determined, respectively, based on suspended particulate matter (SPM) collected from three major rivers in the southwestern Taiwan and from an offshore station. All samples were analyzed for the TOC content and its isotopic composition (δ13Corg). The SPM samples were also analyzed for the total nitrogen (TN) content. TOC content in marine sediments ranges from 0.45% to 1.35% with the highest values on the upper slope near the Kaoping River mouth. The TOC/TN ratio of the SPM samples from the offshore station is 6.8±0.6, almost identical to the Redfield ratio, indicating their predominantly marine origin; their δ13Corg values are also typically marine with a mean of −21.5±0.3‰. The riverine SPM samples exhibit typical terrestrial δ13Corg values around −25‰. The δ13Corg values of surficial sediments range from −24.8‰ to −21.2‰, showing a distribution pattern influenced by inputs from the Kaoping River. The relative contributions from marine and terrestrial sources to sedimentary organic carbon were determined by the isotope mixing model with end-member compositions derived from the riverine and marine SPM. High fluvial sediment inputs lead to efficient trapping of organic carbon over a wide range of water depth in this continental margin. The marine organic accumulation rate ranges from 1.6 to 70 g C m−2 yr−1 with an area weighted mean of 4.2 g C m−2 yr−1, which is on a par with the mean terrestrial contribution and accounts for 2.3% of mean primary production. The depth-dependent accumulation rate of marine organic carbon can be simulated with a function involving primary productivity and mineral accumulation rate, which may be applicable to other continental margins with high sedimentation rates. Away from the nearshore area, the content of terrigenous organic carbon in surficial sediments decreases with distance from the river mouth, indicating its degradation in marine environments.  相似文献   

12.
Tropical mobile mud belts represent a major class of biogeochemical and diagenetic systems characterized by extensive and frequent physical reworking of fine-grained, organic-rich deposits underlying oxygenated waters. Large regions of the Gulf of Papua, Papua New Guinea deltaic complex are dominated by such conditions. A reworked mud belt lies within the inner shelf between 10 and 20 m depth on a sedimentary clinoform derived from coalescing deltas. Deposits across the topset are typically suboxic, nonsulfidic over the upper 0.5–1 m, and have low to moderate maximum pore water concentrations of dissolved Fe(II) and Mn(II) (100–200, but up to 800 μM). Sediments are reactive, with surficial ΣCO2 production 0.1–0.3 mM d−1 and benthic O2 fluxes 23±15 mmol m−2 d−1 (upper 20 cm). The highest rates occur within inner topset deposits (10–20 m) and near the high accumulation rollover region of the topset–foreset beds (40–50 m). Lower rates are found inshore along intertidal channels—mangrove fringe and within scoured or exposed consolidated deposits of the middle topset region. Remineralization rate patterns are independent of relative dominance by terrestrial or marine carbon in sediments. Dissolved O2 usually penetrates 2–5 mm into surface sediments when macrofaunal burrows are absent. More than 75% of the highly reactive sedimentary Fe(III) pool (350–400 μmol g−1) is typically diagenetically reduced in the upper 0.5 m. Pore water can be measureably depleted at depths >0.5 m, but dissolved H2S generally remains below detection over the upper 1–2 m. As in other deltaic topset regions, concentration gradients often indicate that compared to many marine deposits of similar sediment accumulation rates, relatively refractory Corg is supplied to the SO4 reducing zone. Sedimentary C/S ratios are 4–6 within the suboxic topset regions but decrease to <3 in offshore foreset beds where sulfidic diagenesis dominates. Only 15–20% of the diagenetically reduced Fe(II) is pyritic and a maximum of 10–25% is carbonate, implying that most Fe(II) is associated with authigenic or lithogenic silicates or oxides. The dominance of suboxic, nonsulfidic diagenetic processes reflect coupling between delivery of oxide-rich terrestrial debris, remobilization and reoxidation of deposits, and repetitive entrainment/remineralization of both labile and refractory organics. Distinct sedimentary indicators of reactive, suboxic mobile mud belts within tropical climatic zones are: abundant total highly reactive Fe (ΣFeR )>300 μmol g−1; most reactive Fe is diagenetically reduced (ΣFe(II)/ΣFeR0.7–0.8); the proportion of diagenetically reduced Fe present as pyrite is low (Py–Fe(II)<0.2); C/S 4–8; and Corg/particle surface area <0.4 (mg C m−2). These depositional environments must be most common in tropical climates during high sea stand.  相似文献   

13.
14.
The consequences of a coastal upwelling event on physical and chemical patterns were studied in the central Gulf of Finland. Weekly mapping of hydrographical and -chemical fields were carried out across the Gulf between Tallinn and Helsinki in July–August 2006. In each survey, vertical profiles of temperature and salinity were recorded at 27 stations and water samples for chemical analyses (PO43−, NO2+NO3) were collected at 14 stations along the transect. An ordinary distribution of hydrophysical and -chemical variables with the seasonal thermocline at the depths of 10–20 m was observed in the beginning of the measurements in July. Nutrient concentrations in the upper mixed layer were below the detection limit and nutriclines were located just below or in the lower part of the thermocline. In the first half of August, a very intense upwelling event occurred near the southern coast of the Gulf when waters with low temperature and high salinity from the intermediate layer surfaced. High nutrient concentrations were measured in the upwelled water – 0.4 μmol l−1 of phosphates and 0.6 μmol l−1 of nitrates+nitrites. We estimated the amount of nutrients transported into the surface layer as 238–290 tons of phosphorus (P)-PO43− and 175–255 tons of N-NOx for a 12 m thick, 20 km wide and 100 km long coastal stretch. Taking into account a characteristic along-shore extension of the upwelling of 200 km, the phosphate-phosphorus amount is approximately equal to the average total monthly riverine load of phosphorus to the Gulf of Finland. It is shown that TS-characteristics of water masses and vertical distribution of nutrients along the study transect experienced drastic changes caused by the upwelling event in the entire studied water column. TS-analysis of profiles obtained before and during the upwelling event suggests that while welled up, the cold intermediate layer water was mixed with the water from the upper mixed layer with a share of 85% and 15%. We suggest that the coastal upwelling events contribute remarkably to the vertical mixing of waters in the Gulf of Finland. Intrusions of nutrient-rich waters along the inclined isopycnal surfaces in the vicinity of upwelling front were revealed. The upwelling event widened the separation of phosphocline and nitracline which in turn prevented surfacing of nitrate+nitrite-nitrogen during the next upwelling event observed a week after the upwelling relaxation. A suggestion is made that such widening of nutricline separation caused by similar upwelling events in early summer could create favourable conditions for late summer cyanobacterial blooms.  相似文献   

15.
We quantified the seasonal changes in the zooplankton abundances collected from the Huetzalin Lake (Mexico City, Mexico) for two years (February 2003–January 2004 and then March 2005–February 2006). Selected physicochemical variables (Secchi depth, temperature, pH, conductivity, dissolved oxygen, phosphorus, nitrogen, carbon and chlorophyll a concentration) were also measured at the time of zooplankton collection. The data on zooplankton abundances and the physicochemical variables were subjected to multiple correlation analysis and we also derived Shannon–Wiener species diversity index. Secchi depth ranged from 9 to 65 cm. Generally the lake was alkaline (pH 7–12). The conductivity ranged from 500–1000 mS cm−1, while the mean water temperature was 20.5 °C. Dissolved oxygen levels were generally >3 mg L−1 and were higher in the winter than warmer months. Nitrates (90–95 μg L−1) and phosphates (.2–.5 mg L−1) indicated that the water was eutrophic. Chlorophyll a levels ranged from 143 to 696 μg L−1 during the study period. The zooplankton community was dominated by rotifers (46 species), followed by cladocerans (9 species) and there were only two copepod species. The dominant rotifer species were Brachionus angularis, Brachionus calyciflorus, Brachionus havanaensis, Brachionus quadridentatus, Lecane bulla and Polyarthra vulgaris. Rare rotifer species in Lake Huetzalin were Lecane ohioensis, Dicranophorus forcipatus, Lecane pyriformis, Lindia torulosa, Pleurotrocha petromyzon and Brachionus durgae. Highest densities (occasional peaks of 400 ind L−1) of B. quadridentatus occurred between April and December, while B. havanaensis reached peak densities, during June to October. B. calyciflorus reached densities higher than 1240 ind L−1 during May–September. Cladoceran and copepod densities in Lake Huetzalin were much lower than that of the rotifers. This study confirmed the earlier findings that Xochimilco system of canals is dominated by rotifers and the crustacean zooplankton have much lower abundances possibly due to predation from fish.  相似文献   

16.
A month-long investigation of phytoplankton biomass and primary production (PP) was carried out during a harmful algal bloom (HAB) in Daya Bay, China, in 2003. During the bloom, the phytoplankton community was dominated by Scrippsiella trochoidea and Chattonella marina. The phytoplankton biomass (Chl a) and PP reached peak levels of 519.21 mg m−3 and 734.0 mgC m−3 h−1, respectively. Micro-phytoplankton was the key contributor to Chl a and PP in a cage-culture area and in the adjacent HAB-affected waters, with percentages of up to 82.91% and 84.94%, respectively. The HAB had complicated relationships with hydrological and meteorological factors in Daya Bay. However, the water around the cage-culture area always showed statistically greater phytoplankton biomass and nutrient loadings than in adjacent waters, suggesting that this was the “trigger area” of the bloom. The spatial and temporal distribution of diverse HABs in Daya Bay, their ecological characteristics, and their environmental impacts are also discussed in this paper.  相似文献   

17.
The carbon isotopic composition of diagenetic dolomite and calcite in some sediments of the Gulf of Mexico varies between “normal-marine” (δ13C ca. 0‰) and −14.6‰ which suggests that biogenic CO2 contributed to the carbonate formation. The δ13O values of dolomite and coexisting calcite are very similar but variable down-core.Dolomite and calcite precipitated early from pore water where SO42− was not reduced. However, during (and after?) SO42− reduction dolomite and calcite still formed and there are at least two generations of carbonate minerals present.  相似文献   

18.
A vacuum microbalance technique has been used to determine the specific surface areas and porosities of suspended solids and sediments from two turbid estuaries. In the Tamar Estuary, the suspended solids had specific surface areas in the range 8–20 m2 g−1 whereas the sediments were in the range 5–15 m2 g−1. Sediments from the iron-rich system of Restronguet Creek were in the range 5–26 m2 g−1. The specific surface areas and porosities of the particles were influenced by the carbon and non-detrital iron contents. The results are relevant to sorption behaviour of dissolved trace constituents in the presence of natural particles.  相似文献   

19.
We report small but significant variations in the 58Ni/61Ni-normalised 60Ni/61Ni and 62Ni/61Ni ratios (expressed as ε60Ni and ε62Ni) of bulk iron and chondritic meteorites. Carbonaceous chondrites have variable, positive ε62Ni (0.05 to 0.25), whereas ordinary chondrites have negative ε62Ni (− 0.04 to − 0.09). The Ni isotope compositions of iron meteorites overlap with those of chondrites, and define an array with negative slope in the ε60Ni versus ε62Ni diagram. The Ni isotope compositions of the volatile-depleted Group IVB irons are similar to those of the refractory CO, CV carbonaceous chondrites, whereas the other common magmatic iron groups have Ni isotope compositions similar to ordinary chondrites. Only enstatite chondrites have identical Ni isotope compositions to Earth and so appear to represent the most appropriate terrestrial building material. Differences in ε62Ni reflect distinct nucleosynthetic components in precursor solids that have been variably mixed, but some of the ε60Ni variability could reflect a radiogenic component from the decay of 60Fe. Comparison of the ε60Ni of iron and chondritic meteorites with the same ε62Ni allows us to place upper limits on the 60Fe/56Fe of planetesimals during core segregation. We estimate that carbonaceous chondrites had initial 60Fe/56Fe < 1 × 10− 7. Our data place less good constraints on initial 60Fe/56Fe ratios of ordinary chondrites but our results are not incompatible with values as high as 3 × 10− 7 as determined by in-situ measurements. We suggest that the Ni isotope variations and apparently heterogeneous initial 60Fe/56Fe results from physical sorting within the protosolar nebula of different phases (silicate, metal and sulphide) that carry different isotopic signatures.  相似文献   

20.
Natural riparian forest wetlands are known to be effective in their ability to remove nitrate by denitrification and sediments with attached phosphorus via sedimentation. On the other hand, litter input and decomposition is a process of crucial importance in cycling of nitrogen and phosphorus in a forest ecosystem.In this study we investigated the amount of nitrogen and phosphorus entering the alder fen ecosystem through leaf litter and its decomposition and the removal capacity of nitrogen and phosphorus by measuring denitrification and sedimentation in the alder fen.We found an average input of leaf litter during fall 1998 of 226 g m−2 yr−1 DW with nutrient concentration of 0.17% P and 1.6% N. This means a yearly input of 0.4 g m−2 yr−1 P and 3.6 g m−2 yr−1 N. The decomposition of leaf litter using litter bags with small and large mesh size resulted in bags with macroinvertebrates (large mesh size) and without macroinvertebrates (small mesh size). After 57 days the litter bags with macroinvertebrates had a decomposition rate of 79%.Denitrification was measured in May and June of 1997 using the acetylene inhibition technique on intact soil cores and slurry-experiments. The average annual denitrification rate was 0.2 g m−2 yr−1 N using data from the core experiments. The denitrification rate was higher after addition of nitrate, indicating that denitrification in the riparian alder fen is mainly controlled by nitrate supply.The sedimentation rate in the investigated alder fen ranged from 0.47 kg m−2 yr−1 DW to 4.46 kg m−2 yr−1 DW in 1998 depending on the study site and method we used. Sedimentation rates were lower in newly designed plate traps than in cylinder traps. The alder fen also showed lower rates than the adjacent creek Briese. Average phosphorus removal rate was 0.33 g m−2 yr−1 P.Input sources for the surface water of the alder fen are sediment mineralization and decomposition of leaf litter; output sources are sedimentation and denitrification. This study showed that a nutrient input of 24.58 kg ha−1 yr−1 N, 8.8 kg ha−1 yr−1 P and 419 kg ha−1 yr−1 DOC into the surface water of the alder fen is possible. Alder fens cannot improve water quality of an adjacent river system. This is only true for a nearly pristine alder fen with the hydrology of 10 months flooded conditions and 2 months non-flooding conditions a year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号