首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geochemical study of groundwaters and core sediments from the Old Brahmaputra plain of Bangladesh was conducted to investigate the distribution of arsenic and related trace elements. Groundwaters from tube wells are characterized by pH of 6.4–7.4, dissolved oxygen (DO) of 0.8–1.8 mg/l, Ca contents of 5–50 mg/l, and Fe contents of 0.2–12.9 mg/l. Arsenic concentrations ranged from 8 to 251 μg/l, with an average value of 63 μg/l. A strong positive correlation exists between As and Fe (r 2 = 0.802; p = 0.001) concentrations in groundwater. The stratigraphic sequences in the cores consist of yellowish silty clays at top, passing downward into grayish to yellowish clays and sands. The uppermost 3 m and lower parts (from 13 to 31 m) of the core sediments are oxidized (average oxidation reduction potential (ORP) +170 and +220 mV, respectively), and the ORP values gradually become negative from 3 to 13 m depths (−35 to −180 mV), indicating that anoxic conditions prevail in the shallow aquifers of the Brahmaputra plain. Age determinations suggest that clay horizons at ~10 m depth were deposited at around 2,000 and 5,000 years BP (14C ages) during the transgressive phase of sea-level change. Elevated concentrations of As, Pb, Zn, Cu, Ni, Cr, and V are present in the silts and clays, probably due to adsorption onto clay particles. Significant concentrations of As occur in black peat and peaty sediments at depths between 9 and 13 m. A strong positive correlation between As and Fe was found in the sediments, indicating As may be adsorbed onto Fe oxides in aquifer sediments.  相似文献   

2.
A detailed mineralogical study is presented of the matrix of mudrocks sampled from spot coring at three key locations along the San Andreas Fault Observatory at depth (SAFOD) drill hole. The characteristics of authigenic illite–smectite (I–S) and chlorite–smectite (C–S) mixed-layer mineral clays indicate a deep diagenetic origin. A randomly ordered I–S mineral with ca. 20–25% smectite layers is one of the dominant authigenic clay species across the San Andreas Fault zone (sampled at 3,066 and 3,436 m measured depths/MD), whereas an authigenic illite with ca. 2–5% smectite layers is the dominant phase beneath the fault (sampled at 3,992 m MD). The most smectite-rich mixed-layered assemblage with the highest water content occurs in the actively deforming creep zone at ca. 3,300–3,353 m (true vertical depth of ca. 2.7 km), with I–S (70:30) and C–S (50:50). The matrix of all mudrock samples show extensive quartz and feldspar (both plagioclase and K-feldspar) dissolution associated with the crystallization of pore-filling clay minerals. However, the effect of rock deformation in the matrix appears only minor, with weak flattening fabrics defined largely by kinked and fractured mica grains. Adopting available kinetic models for the crystallization of I–S in burial sedimentary environments and the current borehole depths and thermal structure, the conditions and timing of I–S growth can be evaluated. Assuming a typical K+ concentration of 100–200 ppm for sedimentary brines, a present-day geothermal gradient of 35°C/km and a borehole temperature of ca. 112°C for the sampled depths, most of the I–S minerals can be predicted to have formed over the last 4–11 Ma and are probably still in equilibrium with circulating fluids. The exception to this simple burial pattern is the occurrence of the mixed layered phases with higher smectite content than predicted by the burial model. These minerals, which characterize the actively creeping section of the fault and local thin film clay coating on polished brittle slip surfaces, can be explained by the influence of either cooler fluids circulating along this segment of the fault or the flow of K+-depleted brines.  相似文献   

3.
The San Pedro River (SPR) is located in northern Sonora (Mexico) and southeastern Arizona (USA). SPR is a transboundary river that develops along the Sonora (Mexico) and Arizona (USA) border, and is considered the main source of water for a variety of users (human settlements, agriculture, livestock, and industry). The SPR originates in the historic Cananea mining area, which hosts some of the most important copper mineralizations in Mexico. Acid mine drainage derived from mine tailings is currently reaching a tributary of the SPR near Cananea City, resulting in the contamination of the SPR with heavy metals and sulfates in water and sediments. This study documents the accumulation and distribution of heavy metals in surface water along a segment of the SPR from 1993 to 2005. Total concentrations of Cd, Cu, Fe, Mn, Pb, and Zn in surface waters are above maximum permissible levels in sampling sites near mine tailing deposits. Nevertheless, a significant decrease in the Fe and SO4 2− in surface water (SO4 2−: 7,180–460.39 mg/L; Fe: 1,600–9.51 mg/L) as well as a gradual decrease in the heavy and transition metal content were observed during the period from 1994 to 2005. Approximately 2.3 km downstream of the mine tailings, the heavy metal content of the water drops quickly following an increase in pH values due to the discharging of wastewater into the river. The attenuation of the heavy metal content in surface waters is related to stream sediment precipitation (accompanied by metal coprecipitation and sorption) and water dilution. Determining the heavy metal concentration led to the conclusion that the Cananea mining area and the San Pedro River are ecosystems that are impacted by the mining industry and by untreated wastewater discharges arising from the city of Cananea (Sonora, Mexico).  相似文献   

4.
Grainsize, mineralogy and current-meter data from the Northern Rockall Trough are presented in order to characterise the sandy contourite that forms the sedimentary environment of the Darwin cold-water coral mounds, and to investigate the impact of this environment on the mound build-up. Large clusters of small cold-water coral mounds, 75 m across and 5 m high, have been found southwest of the Wyville Thomson Ridge, at 900–1,100 m water depth. Their present-day sedimentary environment consists of a subtly sorted sandy contourite, elongated NE–SW, roughly parallel to the contours. Critical erosional and depositional current speeds were calculated, and trends in both the quartz/feldspar and foraminifera fractions of the sands show a bi-directional fining from bedload/erosion-dominated sands in the NE to suspension/deposition-dominated sediments in the SW and towards the S (downslope). This is caused by a gradual reduction in governing current speed, linked to a reduction in slope gradient, and by the increasing distance from the current core in the downslope direction. No specific characteristics were found distinguishing the mound sediments from the surrounding sands: they fit in the overall spatial pattern. Some mound cores show hints of a fining-upward trend. Overall the mound build-up process is interpreted as a result of sediment baffling.  相似文献   

5.
Sediment and porewater samples (1997–1999) were collected in the Northern Reach of the San Francisco Bay and Sacramento–San Joaquin Delta for determinations of sedimentary selenium and its chemical speciation. Total sedimentary selenium increased with depth, with approximately 50% of the sedimentary selenium as elemental selenium and 35% as organic selenide. Porewater total dissolved selenium increased with depth in the estuary and Delta, and fluxes out of the sediments were calculated at 0.01 and 0.06 nmol cm−2 year−1 for the estuary and Delta, respectively. Present-day sediment–water exchange of dissolved selenium and internal transformations cannot explain the observed increase in total sedimentary selenium with depth. However, mass balance calculations demonstrate that the increase in total selenium with depth may be linked to higher dissolved selenium concentrations in the water column in the 1980s, suggesting that the sediments could be used as historical recorders of selenium in the estuary.  相似文献   

6.
Electrical imaging of the groundwater aquifer at Banting,Selangor, Malaysia   总被引:1,自引:0,他引:1  
A geophysical study was carried out in the Banting area of Malaysia to delineate groundwater aquifer and marine clay layer of the alluvial Quaternary deposits of Beruas and Gula Formations. The Beruas Formation is formed by peat and clayey materials as well as silt and sands, whereas the Gula Formation consists of clay, silt, sand and gravels. Both Formations were deposited on top of the Carboniferous shale of the Kenny Hill Formation. A 2-D geoelectrical resistivity technique was used. Resistivity measurement was carried out using an ABEM SAS 4000 Terrameter. The 2-D resistivity data of subsurface material for each survey line was calculated through inverse modelling and then compared with borehole data. The resistivity images of all the subsurface material below the survey lines show similar pattern of continuous structure of layering or layers with some lenses with resistivity ranging from 0.1 to 50 Ωm. The upper layer shows resistivity values ranging from 0.1 to 10 Ωm, representing a clay horizon with a thickness up to 45 m. The second layer with depth varies from 45 to 70 m below surface and has resistivity values ranging from 10 to 30 Ωm. Borehole data indicate coarse sand with some gravels for this layer, which is also the groundwater aquifer in the study area. The lowermost layer at a depth of 70 m below ground level shows resistivity values ranging from 30–50 Ωm and can be correlated with metasedimentary rocks consisting of shale and metaquartzite.  相似文献   

7.
The existence of gas-hydrates in marine sediments increases the seismic velocity, whereas even a small amount of underlying free-gas reduces the velocity considerably. The change in velocities against the background (without gas-hydrates and free-gas) velocity can be used for identification and assessment of gas-hydrates. Traveltime inversion of identifiable reflections from large offset multi channel seismic (MCS) experiment is an effective method to derive the 2-D velocity structure in an area. We apply this method along a seismic line in the Kerala-Konkan (KK) offshore basin for delineating the gas-hydrates and free-gas bearing sediments across a bottom simulating reflector (BSR). The result reveals a four layer 2-D shallow velocity model with the topmost sedimentary layer having velocity of 1,680–1,740 m/s and thickness of 140–190 m. The velocity of the second layer of uniform thickness (110 m) varies from 1,890 to 1,950 m/s. The third layer, exhibiting higher velocity of 2,100–2,180 m/s, is interpreted as the gas-hydrates bearing sediment, the thickness of which is estimated as 100 to 150 m. The underlying sedimentary layer shows a reduction in seismic velocity between 1,620 to 1,720 m/s. This low-velocity layer with 160–200 m thickness may be due to the presence of free-gas below the gas-hydrates layer.  相似文献   

8.
Accurate knowledge of pore pressure is fundamental to any safe and economic well construction. Here, we present results that are indicative of over pressure zones (OPZ) for five wells drilled under the Krishna–Godavari offshore basin (KGOB) at the Eastern Continental Margin of India (ECMI). OPZ in areas of crustal flexuring can act as potential geohazard while drilling. These wells locate at water depths of 515–1,265 m, where their penetrated-vertical-depth reaches up to 3,960 m in clastic sediments. pore pressure gradient (PPG) and fracture pressure gradient (FPG) are estimated from acoustic log for all five wells, while the Normal Compaction Trend (NCT) and pore pressure are calculated from Miller’s sonic equation. Top of OPZ is indicated by values that are higher than the NCT; departure from NCT is observed at depth intervals of 1,320–2,180 m, 1,700–3,960 m, 1,600–1,880 m, 1,420–2,609 m and 2,080–2,200 m for the respective Wells 1 through 5. The pressure data from Modular Dynamic Tester (MDT) agree well with the pore pressure values obtained from the logs. The Overburden Gradient (OBG), PPG and FPG values increase rather slowly with total depth in deeper-water of KGOB when compared to the wells located in shallow water depth. Consequently, the operating safety margin between PPG and FPG decreases as the water depth increases, and this clearly leads to an increase in the number of casing strings to reach the target depth. Certain basic conclusions on the potentiality of natural hazard for drilling operations are drawn on the basis of these results, but evidently, further studies are warranted to present a more composite picture of OPZ under KGOB.  相似文献   

9.
The given work focused on solving the problem of environmental geochemistry related to investigation of element speciation, their mobility, and migration in polluted areas. The purpose was to describe quantitatively migration, distribution, and redistribution of heavy metals by the example of the old tailings (Talmovaya sands) of the Lead Zinc Concentration Plant (Salair, Kemerovo region, Russia) and technogenic bottom sediments of the Malaya Talmovaya river. Contents of elements in the sulfide tailings range in the following limits: Zn: 1,100–27,000 ppm, Cd: 1.3–240 ppm, Pb: 0.01–0.81 ppm, Cu: 220–960 ppm, As: 15–970 ppm, Fe: 19,000–76,000 ppm, and Ba: 80,000–1,00,000 ppm. Element concentrations in the river sediment are proportional to the element contents in the sulfide tailings. Element speciations in the sulfide tailings and technogenic bottom sediments were investigated by the modified sequential extraction procedure. Chemical forms of heavy metals in pore water and surface water were calculated by WATEQ4F software. Principles of heavy metal migration in the sulfide tailings and technogenic bottom deposits were established. The obtained results about element species in the sulfide tailings and sediment explain the main principles of element migration and redeposition. In the mine waste and technogenic bottom deposits, there is vertical substance transformation with formation of geochemical barriers.  相似文献   

10.
Nine vertical electrical soundings of Schlumberger configuration were measured with AB/2 = 1–500 m. Manual and computerized interpretation were done to detect the subsurface stratigraphy of the study area. The results show that the subsurface section consists of alternated units of limestone, clay, marly limestone and dolomitic limestone and the thickness of clay unit ranged from 10 to 40 m. Nine dipole–dipole sections have also been constructed to give a clearer picture of the subsurface at the study area. The length of each dipole–dipole section is 235 m, with a electrode spacing ranging between 5 and 25 m. The Res2Dinv software was used for processing and interpretation of field data. The dipole–dipole sections at the upper plateau display high resistivity values at most parts of the plateau. Twelve shallow seismic refraction profiles are measured at selected locations for the dipole sections to define the interface between the fractured limestone and the upper surface of the clay layer. Each profile consists of 24 geophones with a geophone spacing of 2–3 m. Interpretation of seismic data indicates that the surface layer of the upper plateau consists of fractured limestone with a velocity range of 1.16–1.56 km/s and another layer of compacted clay with a velocity range of 1.38–1.88 km/s. Furthermore, the surface layer of the middle plateau consists of marl and marly limestone with a velocity about 2.1 km/s and its underlying layer consists of massive limestone with a velocity of 4.94 km/s.  相似文献   

11.
The survey has been carried out in the area of 0.23 km2 of the former military underground fuel base. The oil derivative products were observed in excavations and the laboratory tests confirmed the occurrence of hydrocarbons (>C12) in soils. The purpose of the survey was to determine the spatial extent of the contamination. The studied area is covered by postglacial sediments: sands, gravels and till. The first water table was observed at a depth of 10–12 m. The detailed electromagnetic measurements with Geonics EM31-MK2 conductivity meter were performed in the whole area of the former fuel base. Obtained results were elaborated statistically and the map of apparent electrical conductivity to a depth of 6 m was created. Many local low conductivity anomalies were observed. The measurements with Geonics EM34-3XL were performed along one A–A′ profile and 1D electromagnetic modelling along with this profile was calculated to obtain the electrical conductivity cross-section to a depth of 30 m. Two-dimensional electrical resistivity imaging measurements were carried out along the same profile and the resistivity cross-section to a depth of 20 m was performed. Both conducivity and resistivity cross-sections show anomalous zones. The zones correlate with oil contaminated zones very well.  相似文献   

12.
The bulk of sedimentary material is supplied to Lake Ladoga in the form of suspension in river water. Rivers annually deliver 1.2 Mt of sedimentary material. A significant portion of clastic material in the sedimentation basin is also related to shore and bottom abrasion. Average sedimentation rate in the lake is 0.4 mm/yr for the last 10 ka. The wide grain size spectrum of lacustrine sediments is caused by textural inhomogeneity of Quaternary rocks, which are the main source of sedimentary material. Variably-grained relict sands at the depth of 12–20 m originated during a relatively low lake level. Silt, sand, and clay at 30–75 m are formed as a result of integration of the relict and newly supplied material. The sediment composition is principally defined by Cambrian–Ordovician rocks in the southern part of the lake, morainal and postglacial deposits in the eastern part, and crystalline basement rocks and their derivatives in the northern and western parts. Textural, mineral, and petrographic transformations of the surficial sediments take place under the influence of waves, induced currents, and gyres. Waves and induced currents mainly produce mature sediments, whereas gyres lead to the integration of materials supplied from different sources and the formation of petrographicaly mixed deposits. Based on the comprehensive analysis of sedimentological information, conditions of sedimentation and main features of lithodynamics are characterized. The results obtained may serve as a basis for the creation of a conceptual model of sedimentogenesis in Lake Ladoga.  相似文献   

13.
Mercury concentrations (HgT) in fine-grained fraction (<63 μm) of core sediments of the Hugli–Matla–Bidyadhari estuarine complex, India were analyzed. Results revealed a wide range of spatial variations (<4–93 ng g−1 dry weight) with a definite enhancement level at the lower stretch of the estuarine complex infested with mangrove plants, which might act as a sink to HgT. An elevated concentration of Hg was encountered in surface/subsurface layer of the core in majority of the cases resulting from physical, biogenic and postdepositional diagenetic processes that remobilized and resuspended the metal from deeper sediments. A strong positive correlation was observed between the Hg and clay fraction content of the sediments, while the correlations of Hg with Al, Fe and Mn were poor. Based on the index of geoaccumulation (I geo) and effects range-low (ER-L) value, it is considered that the sediments are less polluted and thus there is less chance of ecotoxicological risk to organisms living in sediments.  相似文献   

14.
As groundwater becomes an increasingly important water resource worldwide, it is essential to understand how local geology affects groundwater quality, flowpaths and residence times. This study utilized multiple tracers to improve conceptual and numerical models of groundwater flow in the Middle San Pedro Basin in southeastern Arizona (USA) by determining recharge areas, compartmentalization of water sources, flowpaths and residence times. Ninety-five groundwater and surface-water samples were analyzed for major ion chemistry (water type and Ca/Sr ratios) and stable (18O, 2H, 13C) and radiogenic (3H, 14C) isotopes, and resulting data were used in conjunction with hydrogeologic information (e.g. hydraulic head and hydrostratigraphy). Results show that recent recharge (<60 years) has occurred within mountain systems along the basin margins and in shallow floodplain aquifers adjacent to the San Pedro River. Groundwater in the lower basin fill aquifer (semi confined) was recharged at high elevation in the fractured bedrock and has been extensively modified by water-rock reactions (increasing F and Sr, decreasing 14C) over long timescales (up to 35,000 years BP). Distinct solute and isotope geochemistries between the lower and upper basin fill aquifers show the importance of a clay confining unit on groundwater flow in the basin, which minimizes vertical groundwater movement.  相似文献   

15.
Surface sediments (fraction <63 μm) from the source to the mouth of the Rječina, short (18.3 km) karst allogenic river in Croatia, which is an important source of drinking water, were studied to investigate their mineral (by XRD) and chemical (by ICP-MS) composition to check possible anthropogenic influence at the lower course due to paper industry and mills, and in the prodelta area from untreated municipal sewage and the large harbor of Rijeka town. In all analyzed sediment samples and in the sandstone source, rock quartz is a major mineral, while feldspar and mica group minerals are less abundant. Chlorite is a minor or trace mineral in all samples. Calcite and dolomite are abundant in the river prodelta, reflecting changes in bedrock lithology from flysch to carbonates. In river sediments, Fe is the most abundantly analyzed element, while Ca is the most abundant in prodelta sediments. Concentrations of Al, Mn, Ni, Cr, Co, La and Nd decrease downstream, while Mg, S, Na, B, Pb, Zn, As, Sn, U, Mo, Hg and Ag have relatively higher concentration in prodelta sediments. The results are compared with sediments of other rivers in the area: Raša, Rižana and Dragonja, as well as with those of the Rosandra Creek (Italy). Sediments in the Raša River showed similar behavior as those in the Rječina, as the highest concentration of metals was found in the restricted upper part of the estuary, characterized by rapid deposition of clay particles and terrestrial sedimentary organic matter. The comparison also showed that the most contaminated were the sediments from the Rižana, followed by those from the Rječina and Rosandra Creek, which had similar results. Among the studied elements, As was present in all sediment samples at concentrations >6 ppm that might have the lowest toxic effects. At the lower Rječina and in prodelta sediments, Pb was also present at slightly elevated concentrations (>31 ppm) that could cause such effects. Concentrations of Zn in the prodelta correspond to those occurring in moderately polluted sediments (90–200 ppm). In the prodelta sediments, Hg is slightly below toxicity threshold (1 ppm), while Ag is present at toxicity threshold (0.5 ppm) or close to it. Rječina River could act as a good illustrative example for behavior of toxic metals in allogenic karstic rivers, in which accumulation of anthropogenically introduced pollutants usually occurs in their estuaries, as a result of transport and deposition of fine particles.  相似文献   

16.
Fine-grained floodplain sediments of the catastrophic 2002 flood deposited along the lower reaches of the Berounka and Vltava Rivers, Czech Republic, were not highly contaminated with heavy metals and other toxic elements. This is due to the dominantly mineral character of the sediments (Ctot in the range 3.97–5.01%, relatively low content of clay minerals), and due to the very high degree of contamination dilution by eroded pre-industrial non-contaminated floodplain sediments. Despite this high degree of dilution, the influence of the small Litavka River, draining the historical Pb–Zn–Ag Příbram ore region, is well visible. The Litavka River is one of important sources of Pb and Zn contamination in the whole Berounka–Vltava–Labe river system. The 2002 flood sediments deposited in the floodplain of the Berounka and Vltava Rivers show poor vertical chemical zoning, except for some components enriched in the uppermost layer by precipitation from evaporated pore-water contained in the mud, i.e. secondary carbonate. The content of Ccarb of the sediments (0.05–0.15%) is partly represented by this secondary carbonate, which is later leached by rainwater, and partly by fragments of river mollusk shells. A majority of the heavy metals contained in sediments can be readily leached by diluted acids, and to a much smaller degree by rainwater.  相似文献   

17.
The Plio-Quaternary conglomeratic sets within the marine environment of the Viranşehir coast (W Mersin, S Turkey) are responsible for the evolution of sandy and gravely beaches due to their control on various factors such as sea floor irregularity, wave energy, and organic activity. The conglomeratic sets close to the shoreline (50–150 cm) act as wave breakers, creating hard substratum and high energy, well-oxygenated environment for organisms like Patella sp., Phoronida worms and Brachidontes pharaonis (Fischer P. 1870). The boring activities of these organisms have disintegrated the sandy matrix of these sets. Finer-grained matrix sediments have been transported to the interset and open sea, while cobble–pebbles have been carried landwards and have created imbricated gravely beach deposits without matrix. Sandy beach is evolving where the conglomeratic sets away from the shoreline (5.0–10.0 m). In this example, sets form a bar; causing fivefold division as backshore, berm, surf zone, bar and offshore from land to sea. Poorly sorted, cobbles-pebbles cobbles and pebbles are found associated with the high-energy environments of bars, whilst well-sorted sands are observed in low energetic environments on shore. The sets and recent shell fragments are the main sources of coastal sediments in Viranşehir. However, the amount of shell fragments decrease towards the active river mouth. This is due to sediment and fresh water influx from the river causing deteriorated temperature, salinity and light penetration of the marine environment resulting in less organic diversity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Sediment instabilities are common on the prodeltas of the seismically active continental margins of Western Greece. Sediment failures on the low-angle (0.5°–2°) prodelta slopes manifest themselves as successions of peripheral rotational block slumps restricted to the foresets of the late highstand systems tract (HST). The individual slump blocks are about 80–150 m long and are bounded by growth faults acting as curved slip planes that extend to a mean depth of 10–15 m below seafloor. Shear planes develop in the lower part of muddy and/or gas charged HST foresets. Deeper basal transparent muddy layers of the early HST bottomset, together with the late Pleistocene transgressive systems tract sequences (TST), are mostly unaffected. On the steeper (2°–6°) fan delta slopes of the western Gulf of Corinth debris flows and avalanches with a significant retrogressive component dominate slope destabilisation. Sediment cores taken from landslide scarps and slide planes penetrated gas bubble releasing sediments thereby indicating that failure planes are in the late HST foresets/upper part of the early HST bottomsets gas charged zone. The foresets of the HST prodelta deposits display high water content (30–80%), low bulk density (1.4–1.9 g cm−3) and relatively low values of undrained shear strength (3–20 kPa). The water content of the HST distal muddy bottomsets is relatively higher (50–110%) and bulk density relatively lower (1.3–1.7 g cm−3) with low values of shear strength (2–10 kPa). The shear strength of the gas releasing sediment layer displays lower values (2–9 kPa) relative to the overlying, post failure, muddy sediments of the late 100–300 years. Slope stability was calculated using the normalised soil parameter (NSP) method under undrained conditions for normally consolidated prodelta sediments. This analysis indicates that instabilities could be induced by critical earthquake ground accelerations of 26.6–29.6% g for the HST foresets and 12.4–14.1% g for the basal transparent layer belonging to the early HST bottomsets. Consequently the early HST bottomsets has to be considered a potentially unstable layer since the regional peak ground accelerations (PGAs) for the next 50 years are expected to range from 19 to 30% g. Moreover, our results show that new glide planes in the prodeltaic sediment bodies of the seismically active continental margins of Western Greece will likely develop from the gas charged sediments of the lower part of the HST foresets to the upper part of early HST bottomsets.  相似文献   

19.
Accurate and reliable characterization of aquifer heterogeneity remains one of the foremost problems in hydrogeology. In this study, ground penetrating radar (GPR) and borehole geophysical logging are used to investigate scales of heterogeneity present locally (<500 m laterally) within an outwash deposit comprised of inter-bedded and cross-bedded sands and gravels of glaciofluvial origin. At a small scale (<15 m laterally), gamma log data in adjacent boreholes show evidence of fining upward sequences, occasional coarsening upward sequences, and abrupt changes in grain sizes, which appear to be laterally continuous at scales of 10 m. At the site scale (<500 m laterally), GPR profiles show a strong reflection interpreted as the water table. Reflectors in the unsaturated zone are more clearly defined than those beneath the water table due to signal attenuation within the saturated sediments. Undulating to discontinuous reflectors at scales of 10–15 m are interpreted to result from interbedded and cross-bedded sands and gravels. A few laterally continuous horizontal to sub-horizontal reflectors, which extend at least up to 360 m, are interpreted as unconformities, based on evidence of gravel bars, truncation of underlying units, as well as scour and fill features in a nearby gravel pit exposure. Overall, the integration of these two geophysical methods provided evidence of unit correlation at the two scales of investigation.  相似文献   

20.
The Oramiriukwa River is within the sandy coastal plain strata of the Benin formation (Miocene–Recent). The base flow is very high ranging from 79.13–98.56%, which is caused by the excellent hydraulic interconnection between the river and the adjacent unconfined aquifer. Recharge rates are high, estimated to range from 1.8×1012–2.5×1012 m3/year. Coastal sands are medium-to-coarse grained, moderately-to-poorly sorted, angular to subangular, with lenses of clay and clayey fine-grained sands. The coastal sands and clay lenses form aquifer and aquitard systems, which are unconfined to semi-confined. Groundwater recharge potential is high. Runoff from precipitation is low. Groundwater and surface water are fairly acidic; pH ranges from 5.5–6.1 (groundwater) and 5.8–6.5 (surface water), and hardness is generally low. Chemical analysis and percentage sodium show that groundwater and surface water are somewhat potable after some pH modification of the surface water. The waters are good for agricultural use, especially for irrigation and poultry water supply. However, pollution from landfill leachate is serious. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号