首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimation of uniaxial compressive strength (UCS) by P-wave velocity (VP) is of great interest to geotechnical engineers in various design projects. The specimen diameter size is one of the main factors that influence rock parameters such as UCS and VP. In this study, the diameter size of specimens that effect UCS and VP is investigated. Moreover, the correlation between UCS and VP are examined via empirical analysis. For this purpose, 15 travertine samples were collected and core specimens with a diameters size of 38, 44, 54, 64 and 74 mm were prepared. Then, uniaxial compressive strength and P-wave velocity tests were conducted according to the procedure suggested by ISRM (1981). It is concluded that the diameter size of the specimen has a significant effect on UCS and VP. Moreover, it was found that the best correlation between relevant parameters obtained for the specimen diameter of 38 mm.  相似文献   

2.
Summary  Although the Hoek–Brown strength criterion has been widely used in rock mechanics and rock engineering, it does not take account of the influence of the intermediate principal stress. Much evidence, however, has been accumulating to indicate that the intermediate principal stress does influence the rock strength in many instances. Therefore, researchers have developed three-dimensional (3D) versions of the Hoek–Brown strength criterion. In this paper, three existing 3D versions of the Hoek–Brown strength criterion are reviewed and evaluated. The evaluation shows that all of the three 3D versions of the Hoek–Brown strength criterion have limitations. To address the limitations, a generalized 3D Hoek–Brown criterion is proposed by modifying the generalized Hoek–Brown strength criterion. The proposed 3D criterion not only inherits the advantages of the Hoek–Brown strength criterion but can take account of the influence of the intermediate principal stress. At a 2D stress state (triaxial or biaxial), the proposed 3D criterion will simply reduce to the form of the generalized Hoek–Brown strength criterion. To validate the proposed 3D strength criterion, polyaxial or true triaxial compression test data of intact rocks and jointed rock masses has been collected from the published literature. Predictions of the proposed generalized 3D Hoek–Brown strength criterion are in good agreement with the test data for a range of different rock types. The difference of the proposed generalized 3D Hoek–Brown strength criterion from and its advantages over the existing 3D versions of the Hoek–Brown strength criterion are also discussed. It should be noted that the proposed 3D criterion is empirical in nature because it is an extension of the 2D Hoek–Brown strength criterion, which is empirical. Because of the non-convexity of the yield surface for a biaxial stress state, the proposed 3D criterion may have problems with some stress paths. Correspondence: L. Zhang, Department of Civil Engineering and Engineering Mechanics, The University of Arizona, Tucson, Arizona 85721, USA  相似文献   

3.
Summary Soft rock pillars can be designed by several methods available in the mining literature. All of these methods include the effect of shape, or geometry, on the average strength of specimens and pillars. All of the pillar design methods include some measurement of the strength of specimens of the pillar rock. The most common rock specimen strength property measured is the unconfined compressive strength. However, the average strength of triaxially confined rock specimens is much greater than the unconfined specimen strength, which can be more important to pillar strength. The estimation of the strength of a pillar is complicated by the decrease in rock specimen strength with increase in specimen size.Editor's note: In common with North American engineering practise, the paper uses English units throughout, where feasible conversions are included in the text. Where not, the following factors may be used: 1 inch=25.4 mm; 1 ft=0.3048 m; 1 lbf/in.–2=6.895 kn/m–2; 1Tonf.=8.896 kN.  相似文献   

4.
To measure the shear strength and deformability of a sedimentary soft rock, a small down-hole in-situ triaxial testing method is developed. The apparatus consists of a triaxial cell and an axial loading device which enables testing at any depth. In this method, a columnar specimen of diameter 90 mm and 285 mm height can be sheared at the bottom of a drill hole. A series of tests were conducted at a 50 m deep experimental cavern. The test gallery is contained in mudstone with some inter-bedded thin sand layers. The tests were done in three different depths in a borehole by a multiple-step loading method. The new testing method was successful to measure stress–strain relation of rock mass. The test results demonstrated that the multiple-step loading method is acceptable in mudstone formation, if an appropriate criterion for load reversal is selected to recognize the instant of failure by stress–strain relation during loading. In addition, different results for mechanical properties of mudstone rock mass were observed in the specimens contained sand layers. It is also concluded that, the same loading method is not successful if a sand layer is located in the middle of the specimen due to large damage induced in early stages of loading.  相似文献   

5.
Literature regarding the pore pressure generation characteristics and in turn the cyclic resistance behaviour of silty sand deposits is confusing. In an attempt to clarify the effect of nonplastic fines on undrained cyclic pore pressure response of sand–silt mixtures, an experimental programme utilising around 289 stress-controlled cyclic triaxial tests on specimens of size 50 mm diameter and 100 mm height was carried out at a frequency of 0.1 Hz. Specimens were prepared to various measures of density through constant gross void ratio approach, constant relative density approach, constant sand skeleton void ratio approach, and constant interfine void ratio approach to study the effect of nonplastic fines on pore pressure response of sand–silt mixtures. The effect of relative density, confining pressure as well as the frequency and magnitude of cyclic loading was also studied. It was observed that the pore pressure response is greatly influenced by the limiting silt content and the relative density of a specimen corresponding to any approach. The influence of other parameters such as relative density, confining pressure and magnitude of cyclic loading was as usual but an increase in frequency of cyclic loading was seen to generate excess pore pressure at a higher rate indicating an impact load type of behaviour at higher frequency. Utilising the entire test results over a wide range of parameters a new pore pressure band for sand–silt mixtures in line with Lee and Albaisa (1974) has been proposed. Similarly another pore pressure band corresponding to 10th cycle of loading as suggested by Dobry (1985) and up to a shear strain of around 25% has been proposed. These two bands can readily be used by researchers and field engineers to readily assess the pore pressure response of sand–silt mixtures.  相似文献   

6.
Summary  A micromechanics-based model, able to quantify the effect of various parameters on the complete stress–strain relationship, is described. The closed-form explicit expression for the complete stress–strain relationship of a rock material containing an echelon cracks arrangement subjected to compressive loading is obtained. The complete stress–strain relationship including the stages of linear elasticity, non-linear hardening and strain softening is established. The results show that the complete stress–strain relationship and the strength of rock with echelon cracks depend on the crack interface friction coefficient, the sliding crack spacing, the perpendicular distance between the two adjacent rows, the fracture toughness of rock material and orientation of the cracks. The present model is used to evaluate the complete stress–strain relationship and strength for crack-weakened rock at the underground cavern complex of the Ertan Hydroelectric Project. The predicted strength is in agreement with that obtained by the Hoek–Brown criterion. The numerical results obtained with the complete stress–strain relationship seem to be in good agreement with the measured values. Author’s address: Xiao-Ping Zhou, School of Civil Engineering, Chongqing University, 443002 Chongqing, P.R. China  相似文献   

7.
Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) report laser-assisted fluorination (LF) and secondary ionization mass spectrometry (SIMS) 18O/16O datasets for olivine grains from the Canary Islands of Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro. As with prior studies of oxygen isotopes in Canary Island lavas (e.g. Thirlwall et al. Chem Geol 135:233–262, 1997; Day et al. Geology 37:555–558, 2009, Geochim Cosmochim Acta 74:6565–6589, 2010), these authors find variations in δ18Ool (~4.6–6.0 ‰) beyond that measured for mantle peridotite olivine (Mattey et al. Earth Planet Sci Lett 128:231–241, 1994) and interpret this variation to reflect contributions from pyroxenite-peridotite mantle sources. Furthermore, Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) speculate that δ18Ool values for La Palma olivine grains measured by LF (Day et al. Geology 37:555–558, 2009, Geochim Cosmochim Acta 74:6565–6589, 2010) may be biased to low values due to the presence of altered silicate, possibly serpentine. The range in δ18Ool values for Canary Island lavas are of importance for constraining their origin. Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) took a subset (39 SIMS analyses from 13 grains from a single El Hierro lava; EH4) of a more extensive dataset (321 SIMS analyses from 110 grains from 16 Canary Island lavas) to suggest that δ18Ool is weakly correlated (R 2 = 0.291) with the parameter used by Gurenko et al. (Earth Planet Sci Lett 277:514–524, 2009) to describe the estimated weight fraction of pyroxenite-derived melt (Xpx). With this relationship, end-member δ18O values for HIMU-peridotite (δ18O = 5.3 ± 0.3 ‰) and depleted pyroxenite (δ18O = 5.9 ± 0.3 ‰) were defined. Although the model proposed by Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) implicates similar pyroxenite-peridotite mantle sources to those proposed by Day et al. (Geology 37:555–558, 2009, Geochim Cosmochim Acta 74:6565–6589, 2010) and Day and Hilton (Earth Planet Sci Lett 305:226–234, 2011), there are significant differences in the predicted δ18O values of end member components in the two models. In particular, Day et al. (Geochim Cosmochim Acta 74:6565–6589, 2010) proposed a mantle source for La Palma lavas with low-δ18O (<5 ‰), rather than higher-δ18O (c.f. the HIMU-peridotite composition of Gurenko et al. in Contrib Mineral Petrol 162:349–363, 2011). Here we question the approach of using weakly correlated variations in δ18Ool and the Xpx parameter to define mantle source oxygen isotope compositions, and provide examples of why this approach appears flawed. We also provide reasons why the LF datasets previously published for Canary Island lavas remain robust and discuss why LF and SIMS data may provide complementary information on oxygen isotope variations in ocean island basalts (OIB), despite unresolved small-scale uncertainties associated with both techniques.  相似文献   

8.
Static lattice energy calculations (SLEC), based on empirical interatomic potentials, have been performed for a set of 800 different structures in a 2 × 2 × 4 supercell of C2/c diopside with compositions between diopside and jadeite, and with different states of order of the exchangeable Na/Ca and Mg/Al cations. Excess static energies of these structures have been cluster expanded in a basis set of 37 pair-interaction parameters. These parameters have been used to constrain Monte Carlo simulations of temperature-dependent properties in the range of 273–2,023 K and to calculate a temperature–composition phase diagram. The simulations predict the order–disorder transition in omphacite at 1,150 ± 20°C in good agreement with the experimental data of Carpenter (Mineral Petrol 78:433–440, 1981). The stronger ordering of Mg/Al within the M1 site than of Ca/Na in the M2 site is attributed to the shorter M1–M1 nearest-neighbor distance, and, consequently, the stronger ordering force. The comparison of the simulated relationship between the order parameters corresponding to M1 and M2 sites with the X-ray refinement data on natural omphacites (Boffa Ballaran et al. in Am Mineral 83:419–433, 1998) suggests that the cation ordering becomes kinetically ineffective at about 600°C.  相似文献   

9.
There are significant advantages in using indirect pedo-transfer functions, (PTFs) for the estimation of unsaturated soil properties. The pedo-transfer functions can be used for the estimation of the soil–water characteristic curve (SWCC) which in turn is used for the estimation of other unsaturated soil properties. The accuracy of the indirect pedo-transfer function method for the estimation of the SWCC depends on the PTF and the equation used to best-fit the particle-size distribution (PSD) data. The objectives of this study are to: (1) evaluate the performance of the Fredlund et al. (Can Geotech J 37:817–827, 2000) equation for best-fitting the particle-size distribution, (PSD) data, and, (2) compare the predictions made by two of the commonly used PTFs; namely, Arya and Paris (Soil Sci Soc Am J 45:1023–1030, 1981) and Fredlund et al. (Can Geotech J 39:1103–1117, 2002), for estimating the SWCC from the PSD. The authors used 258 measured PSDs and SWCC datasets from the Loess Plateau, China, for this study. The dataset consisted of 187 silt–loam soils, 41 loam soils, 11 silt–clay–loam soils, 10 sand–loam soils, 6 silt–clay soils, and 3 loam–sand soils. The SWCC and PSD datasets were measured using a Pressure Plate apparatus and the pipette method, respectively. The comparison between the estimated and measured particle-size distribution curves showed that the Fredlund et al. (Can Geotech J 37:817–827, 2000) equation closely prepresented the PSD for all soils in the Loess Plateau, with a lower root mean square error (RMSE) of 0.869%. The comparison between the estimated and measured water contents at the same suction showed that the Fredlund et al. (Can Geotech J 39:1103–1117, 2002) PTF performed somewhat better than the Arya and Paris (Soil Sci Soc Am J 45:1023–1030, 1981) function. The Fredlund et al. method had RMSE value of 0.039 cm3 cm−3 as opposed to 0.046 cm3 cm−3 for the Arya and Paris (Soil Sci Soc Am J 45:1023–1030, 1981) method. The Fredlund et al. (Can Geotech J 39:1103–1117, 2002) PTF produced the closest predictions for sand–loam, loam–sand, and loam soils, with a lower RMSE for gravimetric water content ranging from 0.006 to 0.036 cm3 cm−3. There were consistent over-estimations observed for silt–loam, silt–clay–loam, and slit–clay soils with RMSE values for gravimetric water content ranging from 0.037 to 0.043 cm3 cm−3. The measured and estimated air-entry values were closest when using the Fredlund et al. (Can Geotech J 39:1103–1117, 2002) PTF. The measured and estimated maximum slopes on the SWCC were closest when using the Arya and Paris (Soil Sci Soc Am J 45:1023–1030, 1981) PTF.  相似文献   

10.
基于灰色理论的脆性岩石抗压强度尺寸效应试验研究   总被引:6,自引:0,他引:6  
朱珍德  邢福东  王军  张爱军 《岩土力学》2004,25(8):1234-1238
采用相同直径不同高度的圆柱形白色大理岩及灰岩试样进行单轴压缩试验研究,验证了脆性岩石抗压强度在一定范围内随高径比的增大而减小的规律。依据岩石单轴压缩试验结果,基于灰色预测GM(1,1)模型建立了脆性岩石的单轴抗压强度与试件高径比之间的非线形关系式,该经验公式对脆性岩石具有统一的形式,同时通过式中参数a值反映了由于岩性、试验条件等不同而引起的强度差异。利用该关系式可以很方便地在相关岩土工程中为相似岩石估算其强度值提供参考、借鉴。  相似文献   

11.
Estimation of Block Sizes for Rock Masses with Non-persistent Joints   总被引:2,自引:3,他引:2  
Summary  Discontinuities or joints in the rock mass have various shapes and sizes. Along with the joint orientation and spacing, the joint persistence, or the relative size of the joint, is one of the most important factors in determining the block sizes of jointed rock masses. Although the importance of joint persistence on the overall rock mass strength has long been identified, the impact of persistence on rock strength is in most current rock mass classification systems underrepresented. If joints are assumed to be persistent, as is the case in most designs, the sizes of the rock blocks tend to be underestimated. This can lead to more removable blocks than actually exist in-situ. In addition, a poor understanding of the rock bridge strength may lead to lower rock mass strengths, and consequently, to excessive expenditure on rock support. In this study, we suggest and verify a method for the determination of the block sizes considering joint persistence. The idea emerges from a quantitative approach to apply the GSI system for rock mass classification, in which the accurate block size is required. There is a need to statistically analyze how the distribution of rock bridges according to the combination of joint orientation, spacing, and persistence will affect the actual size of each individual block. For this purpose, we generate various combinations of joints with different geometric conditions by the orthogonal arrays using the distinct element analysis tools of UDEC and 3DEC. Equivalent block sizes (areas in 2D and volumes in 3D) and their distributions are obtained from the numerical simulation. Correlation analysis is then performed to relate the block sizes predicted by the empirical equation to those obtained from the numerical model simulation. The results support the concept of equivalent block size proposed by Cai et al. (2004, Int. J. Rock Mech. Min. Sci., 41(1), 3–19).  相似文献   

12.
Importance of Tensile Strength on the Shear Behavior of Discontinuities   总被引:4,自引:4,他引:0  
In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton’s empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton’s strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.  相似文献   

13.
岩石抗压强度和变形参数是岩石工程设计的重要指标。由于岩石是典型的非均质材料,其强度和变形特性随样品尺 寸的变化而不同。本文采用PFC2D程序模拟了不同围压下不同尺寸岩样的压缩试验。结果表明(1) 岩样具有明显的尺寸效 应。同一围压下,尺寸越大,岩石强度、峰值应变和压缩模量越小,尺寸的变化对岩样的破坏模式影响较小;(2) 岩样具 有明显的围压效应。同一尺寸的岩样,随着围压的增大,岩石强度、峰值应变和压缩模量均增加,其中强度和峰值应变随 围压的增加呈线性增加。同时,随着围压的增大,岩石破裂模式由轴向劈裂破坏向剪切破坏变化;(3) 围压的存在会影响 岩样的尺寸效应。不同尺寸岩样的强度和峰值应变在相同围压区间内的增量基本相同,同时随着围压的增大,其强度和峰 值应变增加,进而使岩石强度和峰值应变的尺寸效应弱化;而不同尺寸岩样的压缩模量在相同围压区间内的增长率大致相 同,因而造成围压对压缩模量尺寸效应的影响较小  相似文献   

14.
Recrystallized grain size was measured from quartzite mylonite specimens collected from parts of Singhbhum shear zone in eastern India. The specimens were collected along five traverses (Mushabani, Pathargora, Surda, Rakha and Jadugoda) across the elongation of the shear zone. The sheared quartzites range from protomylonite through mylonite to ultramylonite. The microstructural studies of the specimens reflect that dynamic recrystallization was the main deformation process. Estimation of flow stresses were derived from these specimens using empirical equations relating to flow stress and recrystallized grain size. The calculated stresses range from 12–28 MPa (Mercieret al 1977), 23–49 MPa (Twiss 1977), 20–68 MPa (Christie and Ord 1980), considering all the traverses. The results show that these values can only be used semiquantitatively.  相似文献   

15.
In this study 50 seismic events, preceding and accompanying the eruptions occurring in 1981 and 1983, have been considered. Seismic moments, fault radii, stress drops and seismic energies have been calculated using Brune’s model (J Geophys Res 75:4997–5009, 1970; J Geophys Res 76:5002, 1971); site, anelastic attenuation along the propagation path, geometrical spreading and interaction with the free surface effects are taken into account. For each event we have also estimated the equivalent Wood–Anderson magnitude (MWAeq) (Scherbaum and Stoll in Bull Seism Soc Am 73:1321–1343, 1983); relations among all these source parameters have been determined. Furthermore, the hypothesis of self-similarity (Aki in J Geophys Res 72:1217–1231, 1967) is not verified for events with seismic moments <1012 N-m: in fact the relationship between log-stress drop and log-moment is linear up to a moment of 1012 N-m (events of 1981 eruption), while for higher moments (events of 1983 eruption) the slope of the regression line is not significantly different from zero. We suppose that such a behaviour is related to a heterogeneous medium with barriers on the faults. Finally, the main conclusion is that eruptions of 1981 and 1983 differ from one another both in eruptive and seismic aspects; analysis of seismic energies indicates an increase in Mt. Etna’s activity, confirmed by studies performed on the following lateral eruption of 1991–1993 (Patanè et al. in Bull Volcanol 47:941–952, 1995), occurring on the same structural trend.  相似文献   

16.
Summary A wide variety of specimen types and methods are employed in fracture toughness measurement of rocks, which result in scattered values for the same rock type. In order to provide some consistency to the values, the International Society for Rock Mechanics (ISRM) recommended three suggested methods using core based specimens, the Chevron Bend (CB) test, the Short Rod (SR) test and the Cracked Chevron Notch Brazilian Disc (CCNBD) test. This standardization helped obtain more consistent values but still a variation of 20–30% was observed in the values of fracture toughness obtained with the CB and SR methods. The values obtained with the CCNBD method were found to be consistently lower (30–50%) than those of the other two methods (CB and SR). Many reasons have been offered to explain this deviation. These include size of the specimen, anisotropy of rock, a dimensionless parameter in the fracture toughness calculation equation for the CCNBD test, etc. A comprehensive test program was initiated to identify the cause of these discrepancies between the CB and CCNBD methods. Three brittle rock types were selected for the study and more than 200 tests were conducted to measure the values of fracture toughness. A rigorous statistical analysis was carried out to determine the confidence level and find the significance of the test results. It was found that the CB and CCNBD methods were very comparable provided the correct equation for fracture toughness calculation was used for the CCNBD method and the size of the specimens was selected carefully. The error in the ISRM 1995 formula of fracture toughness for the CCNBD method could be the major factor responsible for the consistently lower values obtained with the method.  相似文献   

17.
The paper presents a closed-form solution for the convergence curve of a circular tunnel in an elasto-brittle-plastic rock mass with both the Hoek–Brown and generalized Hoek–Brown failure criteria, and a linear flow rule, i.e., the ratio between the minor and major plastic strain increments is constant. The improvement over the original solution of Brown et al. (J Geotech Eng ASCE 109(1):15–39, 1983) consists of taking into account the elastic strain variation in the plastic annulus, which was assumed to be fixed in the original solution by Brown et al. The improvement over Carranza-Torres’ solution (Int J Rock Mech Min Sci 41(Suppl 1):629–639, 2004) consists of providing a closed-form solution, rather than resorting to numerical integration of an ordinary differential equation. The presented solution, by rigorously following the theory of plasticity, takes into account that the elastic strain components change with radial and circumferential stress changes within the plastic annulus. For the original Hoek–Brown failure criterion, disregarding the elastic strain change leads to underestimate the convergence by up to 55%. For a rock mass failing according to the generalized Hoek–Brown failure criterion, using the original failure criterion leads to a high probability (97%) of underestimating the convergence by up to 100%. As a consequence, the onset or degree of squeezing may be underestimated, and the loading on the support/reinforcement calculated with the convergence/confinement method may be largely underestimated.  相似文献   

18.
Alfred E. Bergeat, originated from a family, who produced gold-glance in a factory (porcelain painting), studied mineralogy and geology at the University of Munich from 1886 to 1892. Due to the results of his habilitation work on the volcanism of island arcs, especially of the Stromboli volcanic island in the Tyrrhenian Sea, he became a recognized volcanologist and specialist in volcanic petrography. He further became an explorer of syngenetic, epigenetic and deuterogenic ore deposits at the mining academies (Bergakademien) of Freiberg (Saxony) and Clausthal (Harz mountains). He described these ore deposits in a two-volume manual (1904–1906) which was summarized again in 1913. After his early death in 1924, the two manuals “Die Vulkane” (1925) and “Vulkankunde” (1927) were posthumously published by his colleague and friend Karl Sapper (1866–1945).  相似文献   

19.
以金沙江寨子村昔格达组半成岩为研究对象,通过X射线衍射、电镜扫描,测定了矿物成分、天然与饱和状态矿物颗粒微观结构;通过三轴压缩试验,研究了昔格达组半成岩受水和围压影响的强度及变形变化规律,并探讨了微观机制;通过对昔格达组半成岩、土、软岩强度指标与含水率的关系进行统计,分析了昔格达组半成岩不同于土和软岩的强度特性,并给出了针对此类岩土体的工程分级建议。研究表明:(1)微观结构显示昔格达组半成岩有明显不同于土和岩石的弱胶结结构特征,在饱和后胶结结构易遭破坏;(2)昔格达组半成岩黏聚力、摩擦角均随含水率增加而减小,平均模量在高含水率下随围压增加而增大,围压一定时随含水率增加而减小;(3)昔格达组半成岩、土、软岩的黏聚力大小为软岩>昔格达组半成岩>土,黏聚力对含水率的敏感性为软岩>昔格达组半成岩>土,摩擦角对含水率的敏感性为土>昔格达组半成岩>软岩;(4)将Φ50 mm×100 mm标准试件的单轴抗压强度在0.2~3 MPa,黏聚力在30~200 kPa的岩土体归类为硬土?软岩,建议在工程实际应用中将其与岩石和土进行区分。  相似文献   

20.
This paper presents the results of laboratory experiments during the investigation of the stress–strain characteristics of Brisbane tuff disc specimens under diametral compressive cyclic loading. Two different cyclic loading methods were used: namely, sinusoidal cyclic loading and cyclic loading with increasing mean level. The first method applied the SN curve approach to the indirect tensile strength (ITS) of rock specimens for the first time in the literature, and the second method investigated the effect of increasing cyclic loading on the ITS of rock specimens. The ITS of Brisbane tuff disc specimens was measured using the Brazilian tensile strength test. The reduction in ITS was found to be 33% with sinusoidal loading tests, whereas increasing cyclic loading caused a maximum reduction of 37%. It is believed that the fracturing under cyclic loading starts at contact points between strong grains and weak matrices, and that contact points at grain boundaries are the regions of stress concentration (i.e., indenters). Transgranular cracks emanate from these regions and intergranular cracks sometimes pass through the contact points. Once cracking begins, there is a steady progression of damage and a general ‘loosening’ of the rock, which is a precursor to the formation of intergranular cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号