首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured stream temperature continuously during the 2011 summer run‐off season (May through October) in nine watersheds of Southeast Alaska that provide spawning habitat for Pacific salmon. The nine watersheds have glacier coverage ranging from 0% to 63%. Our goal was to determine how air temperature and watershed land cover, particularly glacier coverage, influence stream temperature across the seasonal glacial meltwater hydrograph. Multiple linear regression models identified mean watershed elevation (related to glacier extent) and watershed lake coverage (%) as the strongest landscape controls on mean monthly stream temperature, with the weakest (May) and strongest (July) models explaining 86% and 97% of the temperature variability, respectively. Mean weekly stream temperature was significantly correlated with mean weekly air temperature in seven streams; however, the relationships were weak to non‐significant in the streams influenced by glacial run‐off. Streams with >30% glacier coverage showed decreasing stream temperatures with rising summer air temperatures, whereas those with <30% glacier coverage exhibited summertime warming. Glaciers also had a cooling effect on monthly mean stream temperature during the summer (July through September) equivalent to a decrease of 1.1 °C for each 10% increase in glacier coverage. The maximum weekly average temperature (an index of thermal suitability for salmon) in the six glacial streams was substantially below the lower threshold for optimum salmon growth. This finding suggests that although glaciers are important for moderating summer stream temperatures, future reductions in glacier run‐off may actually improve the thermal suitability of some glacially dominated streams in Southeast Alaska for salmon. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The particle size of the bed sediments in or on many natural streams, alluvial fans, laboratory flumes, irrigation canals and mine waste deltas varies exponentially with distance along the stream. A plot of the available worldwide exponential bed particle size diminution coefficient data against stream length is presented which shows that all the data lie within a single narrow band extending over virtually the whole range of stream lengths and bed sediment particle sizes found on Earth. This correlation applies to both natural and artificial flows with both sand and gravel beds, irrespective of either the solids concentration or whether normal or reverse sorting occurs. This strongly suggests that there are common mechanisms underlying the exponential diminution of bed particles in subaerial aqueous flows of all kinds. Thus existing models of sorting and abrasion applicable to some such flows may be applicable to others. A comparison of exponential laboratory abrasion and field diminution coefficients suggests that abrasion is unlikely to be significant in gravel and sand bed streams shorter than about 10 km to 100 km, and about 500 km, respectively. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
For sixteen years following the 1989 Exxon Valdez oil spill adult returns of pink salmon in Prince William Sound, Alaska were monitored to assess spill effects on survival. No evidence of spill effects was detected for either intertidal or whole-stream spawning fish. From 1989 through 2004 mean densities for oiled and reference streams tracked each other, illustrating similar responses of oiled and reference stream adult populations to naturally changing oceanographic and climactic conditions. Hatchery fish strayed into the study streams, but similar incursions occurred in oiled and reference streams, and their presence was compensated for to eliminate their influence on determining the success of the returning natural populations. These results, showing no detectable effects of oiling on pink salmon spawning populations, are supported by published field studies on pink salmon incubation success in oiled streams.  相似文献   

4.
Hyporheic restoration is of increasing interest given the role of hyporheic zones in supporting ecosystem services and functions. Given the prevalence of sediment pollution to waterways, an emerging restoration technique involves the removal of sediment from the interstices of gravel‐bed streams. Here, we document streambed sediment removal following a large, accidental release of fine sediment into a gravel‐bed river. We use this as a natural experiment to assess the impact of fine sediment removal on reach‐scale measures of transient storage and to document the responses of reaches with contrasting morphology (restored vs. unrestored) to changing discharge one‐field season. We conducted a series of conservative solute tracer experiments in each reach, interpreting both summary statistics for the recovered in‐stream solute tracer time series. Additionally, we applied the transient storage model to interpret the results via model parameters, including a Monte Carlo analysis to measure parameter identifiability and sensitivity in each experiment. Despite the restoration effort resulting in an open matrix gravel bed in the restored reach, we did not find the significant differences in most time series metrics describing reach‐scale transport and transient storage. We hypothesize that this is due to enhanced vertical exchange with the gravel bed in the restored reach replacing lateral exchange with macrophyte beds in the unrestored reach, developing a conceptual model to explain our findings. Consequently, we found that the impact of reach‐scale removal of fine sediment is not measureable using reach‐scale solute tracer studies. We offer recommendations for future studies seeking to measure the impacts of stream restoration at the reach scale.  相似文献   

5.
Climatically driven changes in streamflow and hillslope sediment supply could potentially alter stream surface grain size distribution patterns and thereby impact habitat for a number of threatened and endangered in‐stream fish species. Relatively little is known about hydrograph (shape, peak flow) influence or the relative importance of chronic and episodic hillslope inputs on channel conditions. To better understand these external drivers, we calculated sediment routing through a gravel‐bedded river network using a one‐dimensional (1D) bedload transport model. We calculated changes in grain sizes and estimated Chinook salmon habitat suitability caused by a dry year and an extreme flood hydrograph, and chronic (diffusive, overland flow) or pulse (landslide, debris flow) hillslope sediment supplies. To obtain accurate channel conditions, a relatively high reference Shields stress, representative of steep mountain streams, was needed. An extreme event flood without any hillslope sediment inputs caused widespread bed coarsening and a decrease in aquatic habitat. Chronic sediment input combined with this hydrograph eliminated any changes in grain size and habitat, although when combined with a dry year flow, caused systematic bed fining. The influence of a given hydrograph therefore highly depends on the hillslope sediment supply. Regardless of the flow hydrograph or sediment pulse timing, grain size distribution or location, pulse sediment inputs did not cause widespread grain size changes despite being 100 times the total chronic input volume. Widespread and continuous hillslope sediment inputs may influence channel grain sizes and aquatic habitat more than a single discrete sediment pulse. Depending on the magnitudes of flow hydrograph and sediment supply alterations, climate change may induce no differences in grain sizes or very dramatic changes with significant consequences for long‐term sustainability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Current global warming projections suggest a possible increase in wildfire and drought, augmenting the need to understand how drought following wildfire affects the recovery of stream channels in relation to sediment dynamics. We investigated post‐wildfire geomorphic responses caused by storms during a prolonged drought following the 2013 Springs Fire in southern California (USA), using multi‐temporal terrestrial laser scanning and detailed field measurements. After the fire, a dry‐season dry‐ravel sediment pulse contributed sand and small gravel to hillslope‐channel margins in Big Sycamore Creek and its tributaries. A small storm in WY 2014 generated sufficient flow to mobilize a portion of the sediment derived from the dry‐ravel pulse and deposited the fine sediment in the channel, totaling ~0.60 m3/m of volume per unit length of channel. The sediment deposit buried step‐pool habitat structure and reduced roughness by over 90%. These changes altered sediment transport characteristics of the bed material present before and after the storm; the ratio of available to critical shear stress (τoc) increased by five times. Storms during WY 2015 contributed additional fine sediment from tributaries and lower hillslopes and hyperconcentrated flow transported and deposited additional sediment in the channel. Together these sources delivered sediment on the order of six times that in 2014, further increasing τo/τc. These storms during multi‐year drought following wildfire transformed channel dynamics. The increased sediment transport capacity persisted during the drought period characterized by the longer residence time of relatively fine‐grained post‐fire channel sedimentation. This contrasts with wetter years, when post‐fire sediment is transported from the fluvial system during the same season as the post‐fire sediment pulse. Results of this short‐term study highlight the complex and substantial effects of multi‐year drought on geomorphic responses following wildfire. These responses influence pool habitat that is critical to longer‐term post‐wildfire riparian ecosystem recovery. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
We measured longitudinal spacing and wood volume of channel‐spanning logjams along 30 1‐km reaches of forest streams in the Colorado Front Range, USA. Study streams flow through old‐growth (> 200 year stand age) or younger subalpine conifer forest. Evaluating correlations between the volume and longitudinal spacing of logjams in relation to channel and forest characteristics, we find that old‐growth forest streams have greater in‐stream wood loads and more jams per kilometer than streams in younger forest. Old‐growth forests have a larger basal area close to the stream and correlate with larger piece diameters of in‐stream wood. Jam volume correlates inversely with the downstream spacing for ramp and bridge pieces that can act as key pieces in jams. Most importantly, old‐growth streams have shorter downstream spacing for ramp and bridge pieces (< 20 m). Our results suggest that management of in‐stream wood and associated stream characteristics can be focused most effectively at the reach scale, with an emphasis on preserving old‐growth riparian stands along lower gradient stream reaches or mimicking the effects of old growth by manipulating the spacing of ramp and bridge pieces. Our finding that average downstream spacing between jams declines as wood load increases suggests that the most effective way to create and retain jams is to ensure abundant sources of wood recruitment, with a particular emphasis on larger pieces that are less mobile because they have at least one anchor point outside the active channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The question: ‘how does a streambed change over a minor flood?’ does not have a clear answer due to lack of measurement methods during high flows. We investigate bedload transport and disentrainment during a 1.5‐year flood by linking field measurements using fiber optic distributed temperature sensing (DTS) cable with sediment transport theory and an existing explicit analytical solution to predict depth of sediment deposition from amplitude and phase changes of the diurnal near‐bed pore‐water temperature. The method facilitates the study of gravel transport by using near‐bed temperature time series to estimate rates of sediment deposition continuously over the duration of a high flow event coinciding with bar formation. The observations indicate that all gravel and cobble particles present were transported along the riffle at a relatively low Shields Number for the median particle size, and were re‐deposited on the lee side of the bar at rates that varied over time during a constant flow. Approximately 1–6% of the bed was predicted to be mobile during the 1.5‐year flood, indicating that large inactive regions of the bed, particularly between riffles, persist between years despite field observations of narrow zones of local transport and bar growth on the order ~3–5 times the median particle size. In contrast, during a seven‐year flood approximately 8–55% of the bed was predicted to become mobile, indicating that the continuous along‐stream mobility required to mobilize coarse gravel through long pools and downstream to the next riffle is infrequent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
The objective of this paper is to quantify, and enable the prediction of, sediment delivery and water pollution impacts from a spectrum of forest roads. Ten 100–200 m long sections of forest road were selected to incorporate a wide range of the key physical site factors that are likely to affect the rate of sediment generation. Each road section was permanently instrumented for 1 year to measure rainfall and runoff continuously. Suspended load, bedload, and traffic were integrated measurements over 2‐ to 3‐week site‐service intervals. Total annual sediment load (normalized for slope) varied about 25‐fold, from 216 mg m?2 per millimetre of rain for a high‐quality gravel surfaced road with minimal traffic to 5373 mg m?2 per millimetre of rain for an unsurfaced road on an erodible subsoil with moderate light‐vehicle traffic. For the seven gravel‐surfaced roads in this study, truck traffic (axles/week) explained 97% of the variation in annual sediment delivery (per unit of rainfall) from the road. Equations are proposed that allow annual sediment delivery rates to be estimated when net rainfall, road slope, road area, and truck traffic are known. Roads produce runoff rapidly and were found to deliver sediment for about the same duration as rainfall is falling, in this study varying between 5 and 10% of the time. The patterns of sediment delivery measured from the experimental roads (frequency, duration, and intensity) in this study are similar to levels that have been shown to alter the composition of in‐stream macroinvertebrate communities in small (e.g. <10 l s?1), clean, mountain streams. However, in larger well‐mixed streams (e.g. >500 l s?1), dilution is sufficient to prevent concentrations reaching critical levels that are likely to result in biological impacts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Surveys of wood along 30 forested headwater stream reaches in La Selva Biological Station in north‐eastern Costa Rica represent the first systematic data reported on wood loads in neotropical streams. For streams with drainage areas of 0·1–8·5 km2 and gradients of 0·2–8%, wood load ranged from 3 to 34·7 m3 wood/100 m channel and 41–612 m3 wood/ha channel. These values are within the range reported for temperate streams. The variables wood diameter/flow depth, stream power, the presence of backflooding, and channel width/depth are consistently selected as significant predictors by statistical models for wood load. These variables explain half to two‐thirds of the variability in wood load. These results, along with the spatial distribution of wood with respect to the thalweg, suggest that transport processes exert a greater influence on wood loads than recruitment processes. Wood appears to be more geomorphically effective in altering bed elevations in gravel‐bed reaches than in reaches with coarser or finer substrate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, the deposition of clay-sized fine particles (d50 = 0.006 mm) and its subsequent influence on the dune-induced hyporheic exchange are investigated. Fine sand (D50 = 0.28 mm), coarse sand (D50 = 1.7 mm), and gravel (D50 = 5.5 mm) grains were used to form homogenous model streambeds; one control - no clay input, and two treatments - increasing clay inputs for each grain type. The results indicate that the clogging profiles of clay-sized sediments may not be predicted accurately using the previously proposed metric based on the relative sizes of infiltrating and substrate sediments. Further, the depositional patterns vary with the initial concentration of clay particles in the surface water. The assessment of clogging profiles in coarse-grained model streambeds also reveals a preferential infiltration of the clay particles in the hyporheic downwelling regions. The results from the dye tracer test suggest that the accumulation of clay particles altered the exchange characteristics in the treatment flumes. For each grain size, the treatment flumes exhibit lower hyporheic flux and higher median residence times compared to their respective control flumes. The dye penetration depths were lower in treatment flumes with fine and coarse sand compared to their respective control flumes. Interestingly, higher penetration depths were observed in treatment flumes with gravel compared to their respective control flume potentially due to the generation of preferential flow paths in the partially clogged gravel beds. The clogging altered the hyporheic fluxes and residence times in the coarse-grained model beds to a greater degree in comparison to the fine sand beds. Overall, our findings indicate that the properties of both fine and substrate sediments influence the clogging patterns in streambeds, and the subsequent influence of fine sediment clogging on hyporheic exchange and associated processes may vary across stream ecosystems.  相似文献   

13.
This paper focuses on surface–subsurface water exchange in a steep coarse‐bedded stream with a step‐pool morphology. We use both flume experiments and numerical modelling to investigate the influence of stream discharge, channel slope and sediment hydraulic conductivity on hyporheic exchange. The model step‐pool reach, whose topography is scaled from a natural river, consists of three step‐pool units with 0.1‐m step heights, discharges ranging between base and over‐bankfull flows (scaled values of 0.3–4.5 l/s) and slopes of 4% and 8%. Results indicate that the deepest hyporheic flow occurs with the steeper slope and at moderate discharges and that downwelling fluxes at the base of steps are highest at the largest stream discharges. In contrast to findings in a pool‐riffle morphology, those in this study show that steep slopes cause deeper surface–subsurface exchanges than gentle slopes. Numerical simulation results show that the portion of the hyporheic zone influenced by surface water temperature increases with sediment hydraulic conductivity. These experiments and numerical simulations emphasize the importance of topography, sediment permeability and roughness elements along the channel surface in governing the locations and magnitude of downwelling fluxes and hyporheic exchange. Our results show that hyporheic zones in these steep streams are thicker than previously expected by extending the results from streams with pool‐riffle bed forms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This study investigates trends in bed surface and substrate grain sizes in relation to reach‐scale hydraulics using data from more than 100 gravel‐bed stream reaches in Colorado and Utah. Collocated measurements of surface and substrate sediment, bankfull channel geometry and channel slope are used to examine relations between reach‐average shear stress and bed sediment grain size. Slopes at the study sites range from 0·0003 to 0·07; bankfull depths range from 0·2 to 5 m and bankfull widths range from 2 to 200 m. The data show that there is much less variation in the median grain size of the substrate, D50s, than there is in the median grain size of the surface, D50; the ratio of D50 to D50s thus decreases from about four in headwater reaches with high shear stress to less than two in downstream reaches with low shear stress. Similar trends are observed in an independent data set obtained from measurements in gravel‐bed streams in Idaho. A conceptual quantitative model is developed on the basis of these observations to track differences in bed load transport through an idealized stream system. The results of the transport model suggest that downstream trends in total bed load flux may vary appreciably, depending on the assumed relation between surface and substrate grain sizes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
In many large alluvial rivers, trees often recruit and survive along laterally accreted sediments on bars. This produces a gradient of tree ages and composition with distance from the active channel. However, in low‐order, gravel‐bed mountain streams, such as the stream investigated in this study, it is suggested that vertical accretion results in sediment deposition patterns on bars that are often highly patchy. Consequently, tree species and ages are also heterogeneously distributed, rather than having distinct linear or arcuate banding patterns with distance from the channel. In addition, overall age patterns of trees on these bars follow the distribution of floods, with numerous young trees and few older trees. Recruitment is fairly continuous on these bars and is not correlated with high water years, suggesting that even flows close to bankfull levels are capable of transporting fine sediment to the bars on which trees establish. This pattern of sediment deposition/erosion and the resulting tree recruitment and survival seem to be a result of valley confinement and the lack of lateral accretion in these smaller, mountainous channels. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Proglacial stream development was studied in coastal British Columbia and Washington, focusing on reaches exposed by post‐Little Ice Age (LIA) glacier retreat, to address three principal questions: (i) Does the legacy of LIA glaciation influence the evolution of channel morphology? (ii) How long does it take for riparian forest to establish following glacier retreat? (iii) Can newly exposed proglacial streams provide suitable fish habitat? Channel morphologies were identified by field surveys of 69 reaches in 10 catchments. Riparian forest development and potential fish habitat were characterized in those reaches and an additional 22 catchments using GIS analysis. The landscape template imposed by the Quaternary glaciation appears to override most of the modern effects of the LIA in controlling channel‐reach morphology. Binary logistic regression analysis identified elevation and time since deglaciation as primary controls on the presence of riparian forest. At higher elevations, establishment of morphologically functional riparian forest could take several centuries, prolonged by channel instability associated with post‐LIA sediment inputs. Of the recently deglaciated streams included in this analysis, the majority (86%) of the total length was of suitable gradient for fish and could be accessed either by downstream populations or from adjacent lakes. Predicted maximum weekly average stream temperature (MWAT) indicated that the post‐LIA study streams were thermally suitable for cold‐water fish. A future scenario of glacier loss would cause a 14% decline in accessible cold‐water thermal habitat in post‐LIA streams. Decreased summer flows due to glacier retreat could further limit usable habitat by reducing stream depths and wetted perimeters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In August 2005 severe flood events occurred in the Alps. A sediment routing model for steep torrent channel networks called SETRAC has been applied to six well‐documented case study streams with substantial sediment transport in Austria and Switzerland. For these streams information on the sediment budget along the main channel is available. Flood hydrographs were reconstructed based on precipitation data and stream gauges in neighbouring catchments. Different scenarios are modelled and discussed regarding sediment availability and the effect of armouring and macro‐roughness on sediment transport calculations. The simulation results show the importance of considering increased flow resistance for small relative flow depth when modelling bedload transport during high‐intensity flood events in torrents and mountain rivers. Without any correction of increased flow resistance using a reduced energy slope, the predicted bedload volumes are about a factor of 10 higher on average than the observed values. Simulation results were also used for a back‐calculation of macro‐roughness effects from bedload transport data, and compared with an independent estimate of flow resistance partitioning based on flow resistance data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The plants and animals that inhabit river channels may act as zoogeomorphic agents affecting the nature and rates of sediment recruitment, transport and deposition. The impact of benthic‐feeding fish, which disturb bed material sediments during their search for food, has received very little attention, even though benthic feeding species are widespread in rivers and may collectively expend significant amounts of energy foraging across the bed. An ex situ experiment was conducted to investigate the impact of a benthic feeding fish (Barbel Barbus barbus) on particle displacements, bed sediment structures, gravel entrainment and transport fluxes. In a laboratory flume changes in bed surface topography were measured and grain displacements examined when an imbricated, water‐worked bed of 5.6 to 16 mm gravels was exposed to feeding juvenile Barbel (on average, 0.195 m in length). Grain entrainment rates and bedload fluxes were measured under a moderate transport regime for substrates that had been exposed to feeding fish and control substrates which had not. On average, approximately 37% of the substrate, by area, was modified by foraging fish during a four‐hour treatment period, resulting in increased microtopographic roughness and reduced particle imbrication. Structural changes by fish corresponded with an average increase in bedload flux of 60% under entrainment flows, whilst on average the total number of grains transported during the entrainment phase was 82% higher from substrates that had been disturbed by Barbel. Together, these results indicate that by increasing surface microtopography and undoing the naturally stable structures produced by water working, foraging can increase the mobility of gravel‐bed materials. An interesting implication of this result is that by increasing the quantity of available, transportable sediment and lowering entrainment thresholds, benthic feeding might affect bedload fluxes in gravel‐bed rivers. The evidence presented here is sufficient to suggest that further investigation of this possibility is warranted. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Changes in stream chemistry were studied for 4 years following large wildfires that burned in Glacier National Park during the summer of 2003. Burned and unburned drainages were monitored from December 2003 through August 2007 for streamflow, major constituents, nutrients, and suspended sediment following the fires. Stream‐water nitrate concentrations showed the greatest response to fire, increasing up to tenfold above those in the unburned drainage just prior to the first post‐fire snowmelt season. Concentrations in winter base flow remained elevated during the entire study period, whereas concentrations during the growing season returned to background levels after two snowmelt seasons. Annual export of total nitrogen from the burned drainage ranged from 1·53 to 3·23 kg ha?1 yr?1 compared with 1·01 to 1·39 kg ha?1 yr?1 from the unburned drainage and exceeded atmospheric inputs for the first two post‐fire water years. Fire appeared to have minimal long‐term effects on other nutrients, dissolved organic carbon, and major constituents with the exception of sulfate and chloride, which showed increased concentrations for 2 years following the fire. There was little evidence that fire affected suspended‐sediment concentrations in the burned drainage. Sediment yields in subalpine streams may be less affected by fire than in lower elevation streams because of the slow release rate of water during spring snowmelt. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

20.
Direct sediment inputs from forest roads at stream crossings are a major concern for water quality and aquatic habitat. Legacy road–stream crossing approaches, or the section of road leading to the stream, may have poor water and grade control upon reopening, thus increasing the potential for negative impacts to water quality. Rainfall simulation experiments were conducted on the entire running surface area associated with six reopened stream crossing approaches in the south‐western Virginia Piedmont physiographic region, USA. Event‐based surface run‐off and associated total suspended solid (TSS) concentrations were compared among a succession of gravel surfacing treatments that represented increasing intensities of best management practice (BMP) implementation. The three treatments were no gravel (10–19% cover), low gravel (34–60% cover), and high gravel (50–99% cover). Increased field hydraulic conductivity was associated with maximized surface cover and ranged from 7.2 to 41.6, 11.9 to 46.3, and 16.0 to 58.6 mm h−1 respectively for the no gravel, low gravel, and high gravel treatments. Median TSS concentration of surface run‐off for the no gravel treatment (2.84 g l−1) was greater than low gravel (1.10 g l−1) and high gravel (0.82 g l−1) by factors of 2.6 and 3.5 respectively. Stream crossing approaches with 90–99% surface cover had TSS concentrations below 1 g l−1. Reducing the length of road segments that drain directly to the stream can reduce the costs associated with gravel surfacing. This research demonstrates that judicious and low‐cost BMPs can ameliorate poor water control and soil erosion associated with reopening legacy roads. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号