首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent research into flood modelling has primarily concentrated on the simulation of inundation flow without considering the influences of channel morphology. River channels are often represented by a simplified geometry that is implicitly assumed to remain unchanged during flood simulations. However, field evidence demonstrates that significant morphological changes can occur during floods to mobilize the boundary sediments. Despite this, the effect of channel morphology on model results has been largely unexplored. To address this issue, the impact of channel cross‐section geometry and channel long‐profile variability on flood dynamics is examined using an ensemble of a 1D–2D hydraulic model (LISFLOOD‐FP) of the ~1 : 2000 year recurrence interval floods in Cockermouth, UK, within an uncertainty framework. A series of simulated scenarios of channel erosional changes were constructed on the basis of a simple velocity‐based model of critical entrainment. A Monte‐Carlo simulation framework was used to quantify the effects of this channel morphology together with variations in the channel and floodplain roughness coefficients, grain size characteristics and critical shear stress on measures of flood inundation. The results showed that the bed elevation modifications generated by the simplistic equations reflected an approximation of the observed patterns of spatial erosion that enveloped observed erosion depths. The effect of uncertainty on channel long‐profile variability only affected the local flood dynamics and did not significantly affect the friction sensitivity and flood inundation mapping. The results imply that hydraulic models generally do not need to account for within event morphodynamic changes of the type and magnitude of event modelled, as these have a negligible impact that is smaller than other uncertainties, e.g. boundary conditions. Instead, morphodynamic change needs to happen over a series of events to become large enough to change the hydrodynamics of floods in supply limited gravel‐bed rivers such as the one used in this research. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
River channel sediment dynamics are important in integrated catchment management because changes in channel morphology resulting from sediment transfer have important implications for many river functions. However, application of existing approaches that account for catchment‐scale sediment dynamics has been limited, largely due to the difficulty in obtaining data necessary to support them. It is within this context that this study develops a new, reach‐based, stream power balance approach for predicting river channel adjustment. The new approach, named ST:REAM (sediment transport: reach equilibrium assessment method), is based upon calculations of unit bed area stream power (ω) derived from remotely sensed slope, width and discharge datasets. ST:REAM applies a zonation algorithm to values of ω that are spaced every 50 m along the catchment network in order to divide the branches of the network up into relatively homogenous reaches. ST:REAM then compares each reach's ω value with the ω of its upstream neighbour in order to predict whether or not the reach is likely to be either erosion dominated or deposition dominated. The paper describes the application of ST:REAM to the River Taff in South Wales, UK. This test study demonstrated that ST:REAM can be rapidly applied using remotely sensed data that are available across many river catchments and that ST:REAM correctly predicted the status of 87.5% of sites within the Taff catchment that field observations had defined as being either erosion or deposition dominated. However, there are currently a number of factors that limit the usefulness of ST:REAM, including inconsistent performance and the need for additional, resource intensive, data to be collected to both calibrate the model and aid interpretation of its results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Movies taken by witnesses of extreme flood events are increasingly available on video sharing websites. They potentially provide highly valuable information on flow velocities and hydraulic processes that can help improve the post‐flood determination of discharges in streams and flooded areas. We investigated the troubles and potential of applying the now mature large‐scale particle image velocimetry (LSPIV) technique to such flood movies that are recorded under non‐ideal conditions. Processing was performed using user‐friendly, free software only, such as Fudaa‐LSPIV. Typical issues related to the image processing and to the hydrological analysis are illustrated using a selected example of a pulsed flash‐flood flow filmed in a mountainous torrent. Simple corrections for lens distortion (fisheye) and limited incoherent camera movement (shake) were successfully applied, and the related errors were reduced to a few percents. Testing the different image resolution levels offered by YouTube showed that the difference in time‐averaged longitudinal velocity was less than 5% compared with full resolution. A limited number of GRPs, typically 10, is required, but they must be adequately distributed around the area of interest. The indirect determination of the water level is the main source of uncertainty in the results, usually much more than errors because of the longitudinal slope and waviness of the free‐surface of the flow. The image‐based method yielded direct discharge estimates of the base flow between pulses, of the pulse waves, and of the time‐averaged flow over a movie sequence including a series of five pulses. A comparison with traditional indirect determination methods showed that the critical‐depth method may produce significantly biassed results for such a fast, unsteady flow, while the slope‐area method seems to be more robust but would overestimate the time‐averaged flow rate if applied to the high‐water marks of a pulsed flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Improved knowledge of the effects of grass and shrub cover in overland flow can provide valuable information for soil and water conservation programs.Laboratory simulated rainfall studies were conducted to determine effects of grass and shrub on runoff and soil loss and to ascertain the relationship between the rate of soil loss and the unit stream power of runoff for a 20°slope subjected to rainfall intensities of 45,87,and 127 mm/h.The results indicated that the average runoff rates ranged from 4.2 to 73.1 mm/h for grass plots and from 9.3 to 58.2 mm/h for shrub plots.Runoff rates from shrub plots were less than those from grass plots for all but the 45 mm/h rainfall intensity regime. Average soil loss rates varied from 5.7 to 120.3 g/min.m~2 for grass plots and from 5.6 to 84.4 g/min.m~2 for shrub plots.Soil loss rates from shrub plots were generally lower than those from grass plots.Runoff and soil loss were strongly influenced by soil surface conditions due to the formation of erosion pits and rills.The rate of soil loss increased linearly with the unit stream power of runoff on both grass and shrub plots.Critical unit stream power values were 0.0127 m/s for grass plots and 0.0169 m/s for shrub plots.Shrub plots showed a greater stability to resist soil detachment and transport by surface flow than grass plots.  相似文献   

5.
Hyperconcentrated floods, with sediment concentrations higher than 200 kg/m3, occur frequently in the Yellow River and its tributaries on the Loess Plateau. This paper studies the fluvial hydraulics of hyperconcentrated floods by statistical analysis and comparison with low sediment concentration floods. The fluvial process induced by hyperconcentrated floods is extremely rapid. The river morphology may be altered more at a faster rate by one hyperconcentrated flood than by low sediment concentration floods over a decade. The vertical sediment concentration distribution in hyperconcentrated floods is homogeneous. The Darcy–Weisbach coefficient of hyperconcentrated floods varies with the Reynolds number in the same way as normal open channel flows but a representative viscosity is used to replace the viscosity, η. If the concentration is not extremely high and the Reynolds number is larger than 2000, the flow is turbulent and the Darcy–Weisbach coefficient for the hyperconcentrated floods is almost the same as low sediment concentration floods. Serious channel erosion, which is referred to as ‘ripping up the bottom’ in Chinese, occurs in narrow‐deep channels during hyperconcentrated floods. However, in wide‐shallow channels, hyperconcentrated floods may result in serious sedimentation. Moreover, a hyperconcentrated flood may cause the channel to become narrower and deeper, thus, reducing the flood stage by more than 1 m if the flood event lasts longer than one day. The fluvial process during hyperconcentrated floods also changes the propagation of flood waves. Successive waves may catch up with and overlap the first wave, thus, increasing the peak discharge of the flood wave during flood propagation along the river course. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
气候变暖下太湖极端洪水的归因探讨   总被引:2,自引:1,他引:1  
于革  郭娅  廖梦娜 《湖泊科学》2013,25(5):765-774
全球增温引起的降水变化是否引起极端洪水的增加,发生在不同气候背景的极端洪水事件可提供不同参照系;而不同驱动因子下气候、水文数值模拟为认识洪水发生和归因提供了有效途径.本文结合机理数值模拟和随机统计模拟两种途径,针对1990s和1880s的太湖流域特大洪水,通过GCM气候模拟驱动的流域水文模拟和不确定性的阈值模拟,分析19世纪末和20世纪末极端洪水的发生强度和频率的变化,从而论证极端洪水发生的风险系数.结果表明,1990s的极端洪水流量(0.1%的极端洪水流量(Q0.1%)为2929~3601 m3/s,0.5%的极端洪水流量(Q0.5%)为1842~1893 m3/s)比工业革命前大气温室气体状况下(Q0.1%为2069~3119 m3/s,Q0.5%为1436~1561 m3/s)显著增大.与19世纪末相比,由于太湖流域人类活动改变的流域下垫面在1999年特大洪水中引起最大增量占35%,本文模拟和分析的20世纪末气候下的洪水最大增量占60%.去除人类活动影响的下垫面变化,估计特大洪水风险的最大增量为25%,因此认为20世纪末气候变化引起的太湖极端洪水风险在增加;这将为认识与全球增温相关联的洪水灾害预测预警提供科学依据.  相似文献   

7.
K.S. Reinhardt  T. Furman 《水文研究》2008,22(18):3759-3771
This study examined the stream chemistry changes in Staunton River (a second‐order headwater stream with an average annual discharge 704 m3 ha?1 yr?1, Shenandoah National Park, Virginia) resulting from a catastrophic flood in June 1995. This flood, which followed after 800 mm of rain in a 4‐day period, caused large‐scale debris flows and complete scouring of riparian soils down to bedrock in the lower 2 km of the stream, and has been estimated to be a 1000‐year flood. The flood affected stream chemistry on both short‐ and long‐term time scales. The primary short‐term response was elevations in stream concentration of Ca2+, Mg2+, and K+ by 59%, 87%, and 49%, respectively, for 6 months immediately following the flood. The long‐term impact of decreased concentration of all base cations and SiO2 during summer months (8% average) lasted about 2 years. At the episodic time scale, Ca2+, Mg2+, and K+ flushed from soil sources during pre‐flood storms while Na+ and SiO2 diluted; these trends generally reversed during post‐flood storms for 2 years. Short‐term effects are attributed to the leaching of unconsolidated soil and upturned organic matter that clogged the streambed after the flood. The long‐term and superimposed episodic impacts may have resulted from the loss of riparian soils and vegetation in the flood. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Turbidity monitoring and rainfall and runoff simulation experiments were conducted at a newly constructed unsealed road stream crossing to determine the quantity and sources of sediment entering the stream. Continuous measurements of turbidity and estimation of total suspended solids (TSS) concentration upstream and downstream of the stream culvert were taken over a 5 month period. There was a statistically significant difference in turbidity and TSS downstream of the crossing during baseflow conditions, but the quality of the water column remained good during non‐rain periods. Rainfall events comprised around 20% of the observation period and led to decreases in water quality downstream of the crossing. Water quality could be considered as degraded for 10% of the observations. This was during a period when the rainfall was 65% of the long‐term average. Calculated suspended sediment loads were 0·78 t upstream and 2·77 t downstream, an increase of 3·5. It was estimated that at least 2–3 t of bedload material was also added to the stream during the crossing construction and from subsequent erosion. This material is a deposit on the cobble stream bed, and is most likely to degrade aquatic ecosystem values. Rainfall and runoff simulation revealed the principal sediment sources to be a fillslope that contributed coarse bedload material through rill erosion and unprotected toe scour, and the unmetalled road verge that provided fines. Although the quality of water column was good for the majority of the observations, the new Australian and New Zealand Water Quality Guidelines for Fresh and Marine Waters suggest this site exceeded ‘trigger levels’ that would warrant further investigation for both the water column and the bed deposits. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Repeated surveys of a short channelized reach of the North Nashwaaksis Stream near Fredericton, N.B. over the period 1971-1981 provide the basis for evaluating the type and magnitude of some physical and botanical changes in the study reach. In 1967 a 200 m reach of the stream was shortened by about 10 per cent by cutting a new channel through a pasture. The original channel was protected by a dense growth of shrubs along its banks. The average width of the top of the channel in the channelized reach widened from 11 m to 17 m in response to a major flood in 1973. Rough estimates indicate that as much as 78 per cent of the published suspended-sediment load associated with the flood could reasonably have been derived from the banks in this short channelized reach. During the 1973 flood, a mid-channel bar was formed in the portion of the channel which experienced the most widening. Subsequent to the flood, the mid-channel bar was first colonized by sedges, and then by alders. By 1981, the width of the low flow channel in the channelized reach was about the same as that for the unmodified upstream reaches. This case study provides useful information for those planning channelization projects on small to intermediate size streams in humid temperate areas.  相似文献   

10.
The impact of afforestation on stream bank erosion and channel form   总被引:1,自引:0,他引:1  
Modification of the land use of a small catchment through coniferous afforestation is shown to have influenced stream bank erosion and channel form. Field mapping and erosion pin measurements over a 19-month period provides evidence of more active bank erosion along forested channel reaches than along non-forested. Extrapolation of downstream increases in bankfull width, bankfull depth, and channel capacity with increasing basin area for the non-forested catchment has demonstrated that afforestation of the lower part of the catchment has had a marked effect on channel form. Channel widths within the forest are up to three times greater than that predicted from the regression. These changes in bankfull width have led to stream bed aggradation and the development of wide shallow channels within the forest, and channel capacities within the forest are over two times that predicted from the basin area. The relationship between channel sinuosity and valley gradient for non-forested reaches of the river also indicated decreased sinuosity resulting from afforestation. These changes in channel form result from active bank erosion within the forest with coarse material being deposited within the channel as point-bars and mid-channel bars. Active bank erosion is largely attributed to the suppression by the forest of a thick grass turf and its associated dense network of fine roots, and secondly to the river attempting to bypass log jams and debris dams in the stream channel.  相似文献   

11.
Estimating overland flow erosion capacity using unit stream power   总被引:2,自引:0,他引:2  
Soil erosion caused by water flow is a complex problem. Both empirical and physically based approaches were used for the estimation of surface erosion rates. Their applications are mainly limited to experimental areas or laboratory studies. The maximum sediment concentration overland flow can carry is not considered in most of the existing surface erosion models. The lack of erosion capacity limitation may cause over estimations of sediment concentration. A correlation analysis is used in this study to determine significant factors that impact surface erosion capacity. The result shows that the unit stream power is the most dominant factor for overland flow erosion which is consistent with experimental data. A bounded regression formula is used to reflect the limits that sediment concentration cannot be less than zero nor greater than a maximum value. The coefficients used in the model are calibrated using published laboratory data. The computed results agree with laboratory data very well. A one dimensional overland flow diffusive wave model is used in conjunction with the developed soil erosion equation to simulate field experimental results. This study concludes that the non-linear regression method using unit stream power as the dominant factor performs well for estimating overland flow erosion capacity.  相似文献   

12.
Variability of suspended sediment concentration (SSC) versus discharge relationships in streams is often high and illustrates variable particle origins or availability. Particle availability depends on both new sediment supply and deposited sediment stock. The aim of this study is to improve SSC–discharge relationship interpretation, in order to determine the origins of particles and to understand the temporal dynamics of particles for two small streams in agricultural catchments from northwestern France. SSC and discharge were continuously recorded at the outlets and data were examined at different time‐scales: yearly, monthly, with distinction between flood periods and non‐flooding periods, and individual flood events. Floods are classified in relation to SSC–discharge hysteresis, and this typology is completed by the analysis of SSC–discharge ranges during rising and falling flow. We show that particles are mainly coming from channel, banks, either by hydraulic erosion or by cattle trampling. Particle availability presents a seasonal dynamics with a maximum at the beginning of autumn when discharge is low, decreasing progressively during autumn to become a minimum in winter when discharge is the highest, and increasing again in spring. Bank degradation by cattle is the determining factor in the suspended sediment dynamics. Cattle bank‐trampling produces sediment, mostly from spring to autumn, that supplies the deposited sediment stock even outside floods. This hydrologically independent process hides SSC–discharge correlation classically linked to hydraulic erosion and transport. Differences in SSC–discharge relationships and suspended sediment budgets between streams are related to differences in transport capacity and bank degradation by cattle trampling and channelization. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Marco GEMMER 《湖泊科学》2003,15(Z1):173-183
本文回顾了欧洲洪水影响评价技术.突出的问题是怎样处理洪灾及如何使洪灾损失降到最低.很明显在长江流域开展洪水风险和潜在的损失评价非常有意义.而现有的欧洲洪水影响评价技术难以在长江流域直接运用.我们对其进行了若干修正,并引入了基于GIS/RS的综合水文水动力和最小损失评价模型,该模型己经较好地运用于长江流域洪水影响评价的研究项目.  相似文献   

14.
ABSTRACT

Classification of floods is often based on return periods of their peaks estimated from probability distributions and hence depends on assumptions. The choice of an appropriate distribution function and parameter estimation are often connected with high uncertainties. In addition, limited length of data series and the stochastic characteristic of the occurrence of extreme events add further uncertainty. Here, a distribution-free classification approach is proposed based on statistical moments. By using robust estimators the sampling effects are reduced and time series of different lengths can be analysed together. With a developed optimization procedure, locally and regionally consistent flood categories can be defined. In application, it is shown that the resulting flood categories can be used to assess the spatial extent of extreme floods and their coincidences. Moreover, groups of gauges, where simultaneous events belong to the same classes, are indicators for homogeneous groups of gauges in regionalization.  相似文献   

15.
Streambank erosion is a primary source of suspended sediments in many waterways of the US Atlantic Piedmont. This problem is exacerbated where banks are comprised of fine sediment produced by the intensive land use practices of early European settlers. A stream in this region, Richland Creek incises into banks comprised of three stratigraphic layers associated with historic land use: pre‐European settlement, early European agriculture and development, and water‐powered milldam operation. This study aims to identify the bank processes along a reach of Richland Creek that is eroding towards its pre‐disturbance elevation. The volume of material that has eroded along this stream since the milldam breached was calculated by differencing a reconstructed surface of the pond bed and an aerial lidar digital terrain model (DTM). Immediately downstream from the study reach, the channel is floored by bedrock and immediately upstream the rate of channel erosion approximately doubled along the longitudinal profile of Richland Creek, which indicate that the study reach spans the transition from a channel dominated by vertical incision in the upstream direction to horizontal widening in the downstream direction. The combined hydrometeorological conditions and dominant processes causing reach‐scale cut bank erosion were investigated with analyses of stream stage, precipitation, and streambank volumetric and surfaces change that was measured during nine terrestrial lidar surveys in 2010–2012. The spatial variability of erosion during a simulated precipitation event was examined in a field‐based experiment. Erosion was greatest where mill pond sediment columns detached along vertical desiccation and horizontal seepage cracks. This sediment accumulated on the bank toe throughout the study and was a source of readily‐entrained fine sediment contrary to the upper reaches where depositional accommodation space is more limited. Findings suggest that hotspots of sediment excavation progress upstream, indicating that restoration efforts should focus upon stabilizing banks at these locations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Streambed hydraulic conductivity is one of the main factors controlling variability in surface water‐groundwater interactions, but only few studies aim at quantifying its spatial and temporal variability in different stream morphologies. Streambed horizontal hydraulic conductivities (Kh) were therefore determined from in‐stream slug tests, vertical hydraulic conductivities (Kv) were calculated with in‐stream permeameter tests and hydraulic heads were measured to obtain vertical head gradients at eight transects, each comprising five test locations, in a groundwater‐dominated stream. Seasonal small‐scale measurements were taken in December 2011 and August 2012, both in a straight stream channel with homogeneous elevation and downstream of a channel meander with heterogeneous elevation. All streambed attributes showed large spatial variability. Kh values were the highest at the depositional inner bend of the stream, whereas high Kv values were observed at the erosional outer bend and near the middle of the channel. Calculated Kv values were related to the thickness of the organic streambed sediment layer and also showed higher temporal variability than Kh because of sedimentation and scouring processes affecting the upper layers of the streambed. Test locations at the channel bend showed a more heterogeneous distribution of streambed properties than test locations in the straight channel, whereas within the channel bend, higher spatial variability in streambed attributes was observed across the stream than along the stream channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Erosion rates surveyed using 230 erosion pins on 24 occasions over eight years (1994–2001) on forested stream banks, tributaries and forest ditches in the 0·89 km2 Nant Tanllwyth catchment, part of the Hafren Forest on Plynlimon, mid‐Wales, showed statistically significant increases of up to 40 mm a?1 in mean erosion rates during the two‐year period in which environmentally sensitive plot‐scale timber harvesting operations took place (1996–97). In the four years following timber harvesting mean erosion rates at all sites recovered to levels that were lower than before the harvesting operations began. This is attributed to increased light levels, following canopy removal, allowing vegetation to colonize exposed banks. There was a statistically significant relationship (p < 0·05) between mean erosion rate in 2000–01 (four years after harvesting) and percentage vegetation cover at erosion monitoring sites in the clearfelled (south tributaries) area though the same relationship did not hold for sites on the mainstream banks or for sites on the north (mature forest) ditch sites. The implications of natural vegetation colonization for management of such streams are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
It is increasingly recognized that effective river management requires a catchment scale approach. Sediment transport processes are relevant to a number of river functions but quantifying sediment fluxes at network scales is hampered by the difficulty of measuring the variables required for most sediment transport equations (e.g. shear stress, velocity, and flow depth). We develop new bedload and total load sediment transport equations based on specific stream power. These equations use data that are relatively easy to collect or estimate throughout stream networks using remote sensing and other available data: slope, discharge, channel width, and grain size. The new equations are parsimonious yet have similar accuracy to other, more established, alternatives. We further confirm previous findings that the dimensionless critical specific stream power for incipient particle motion is generally consistent across datasets, and that the uncertainty in this parameter has only a minor impact on calculated sediment transport rates. Finally, we test the new bedload transport equation by applying it in a simple channel incision model. Our model results are in close agreement to flume observations and can predict incision rates more accurately than a more complicated morphodynamic model. These new sediment transport equations are well suited for use at stream network scales, allowing quantification of this important process for river management applications. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Logjams that span the bankfull channel strongly influence hydraulics and downstream fluxes of diverse materials. Several studies quantify the longitudinal distribution of channel-spanning logjams, but fewer studies examine changes in longitudinal distribution in response to disturbances such as floods. We use 10 years of annual surveys of a population of channel-spanning logjams along mountain streams in the Southern Rocky Mountains. Surveys from 2010 to 2019 bracket substantial interannual variability in the snowmelt peak flow as well as a rainfall flood in 2013. We characterised the number of logjams per unit length of valley (logjam distribution density) within and between reaches designated based on longitudinally consistent channel and valley geometry. Our primary objectives are to evaluate the influences on logjam distribution density of (i) spatial variations in valley and channel geometry and (ii) temporal variations in peak annual flow. We hypothesized that logjam distribution densities are resilient to disturbance at both spatial scales. At the creek scale, logjam distribution density correlates significantly with increasing ratio of floodplain width to channel width and wood piece length to channel width. Wide, low gradient reaches with greater distribution density exhibit greater interannual variation in distribution density. These reaches lost jams during the 2013 flood but returned to pre-flood distribution density values by the end of the study. The pattern of greater logjam distribution density in unconfined reaches relative to confined and partially confined reaches is also consistent over the period of the study. We interpret these results as indicating the resilience of logjam distributions to disturbance. The persistence of greater numbers of logjams in wide, low gradient reaches suggests that river restoration employing engineered logjams and wood reintroduction can focus most effectively on these reaches.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号