首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work illustrates the practicality of investigating sinkholes integrating data gathered by ground penetrating radar (GPR), electrical resistivity imaging (ERI) and trenching or direct logging of the subsidence‐affected sediments in combination with retrodeformation analysis. This mutidisciplinary approach has been tested in a large paleosinkhole developed during the deposition of a Quaternary terrace on salt‐bearing evaporites. The subsidence structure, exposed in an artificial excavation, is located next to Puilatos, a village that was abandoned in the 1970s due to severe subsidence damage. Detailed logging of the exposure revealed that the subsidence structure corresponds to an asymmetric sagging and collapse paleosinkhole with no clear evidence of recent activity. The sedimentological and structural relationships together with the retrodeformation analysis indicate that synsedimentary subsidence controlled channel location, the development of a palustrine environment and local changes in the channel pattern. GPR profiles were acquired using an array of systems with different antenna frequencies, including some recently developed shielded antennas with improved vertical resolution and penetration depth. Although radargrams imaged the faulted sagging structure and provided valuable data on fault throw, they did not satisfactorily image the complex architecture of the fluvial deposit. ERI showed lower resolution but higher penetration depth when compared to GPR, roughly capturing the subsidence structure and yielding information on the thickness of the high‐resistivity alluvium and the nature of the underlying low‐resistivity karstic residue developed on top of the halite‐bearing evaporitic bedrock. Data comparison allows the assessment of the advantages and limitations of these complementary techniques, highly useful for site‐specific sinkhole risk management. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Hazardous sinkholes started to appear in alluvial fans and unconsolidated sediments along the western Dead Sea coast in 1990. Since then hundreds of sinkholes have appeared from north to south along the shoreline. The Electrical Resistivity Tomography (ERT) method was used to achieve a better understanding of the subsurface geoelectric structure at the sinkhole development sites, taking into account that electric parameters (such as resistivity or conductivity) are very sensitive to formation properties and their variations in time. Fifteen image lines were surveyed at the Ein Gedi area during a period of active sinkhole development (in 2001–2002) over an area of 300 × 550 m2. Resistivity cross-sections and maps were constructed from 2-D linear surveys. The process of sinkhole formation in the surveyed area is located in a strip 50–70 m wide and 300–500 m long, extending approximately in a north–south direction. The sinkholes are arranged along a tortuous line within this strip. On resistivity maps and sections this U-shaped zone appears as an alternation of high resistivity anomalies of 350–1000 Ωm (at sinkhole group locations) with narrow background resistivity zones of 50–100 Ωm. The large size of resistivity anomalies (250 × 300 m2), which are considerably greater than those of the sinkholes, form one of the features of the sinkhole sites in the Ein Gedi area. The anomalies continue down to the water table or even deeper (maximum of 25–35 m depth). A low resistivity layer of 1–8 Ωm underlies them. The combined analysis of the image results and other geophysical data shows that high resistivity anomalies are associated with the decompaction of the soil mass at the sinkhole development sites and surrounding areas. Recent studies have shown that sinkholes in the Ein Gedi area are developing along the salt western edge located at a depth of 50 m. The subsurface high resistivity anomaly conforms to the sinkhole line (and salt boundary). They are presumably located above the great dissolution caverns at the salt edge. The heterogeneity of the resistivity structure within the high resistivity anomaly (seen in both lateral and vertical planes) confirms that a disintegration of internal formation structure takes place. Away from the sinkhole sites the subsurface resistivity distribution is homogeneous.  相似文献   

3.
A method for quantitatively assessing sinkhole susceptibility (spatial probability) and hazard (spatio‐temporal probability) has been developed and independently tested in a 50 km2 sector of the Ebro Valley evaporite karst. Three genetic types of sinkholes have been mapped in the floodplain and a terrace surface: 947 small cover‐collapse sinkholes (type 1, terrace), large collapse sinkholes (type 2, floodplain) and large subsidence depressions (type 3, floodplain). The type 1 sinkhole inventory includes two temporal populations: 447 sinkholes formed before 24 November 2005, and 500 between that date and 2 November 2006. Sinkhole susceptibility models have been elaborated analysing the statistical relationships between the sinkholes of the 2005 inventory and a set of potential conditioning factors. The independent evaluation (validation) of the susceptibility models by means of several strategies (random, sequentially excluded, and temporal) has allowed us to select the most significant variables for each sinkhole type and assess quantitatively the quality of models; which are reasonable for the three sinkhole types. Validation has also provided information on the contribution of specific variables and the effect of changing their accuracy to the prediction capability of models. Susceptibility models for type 3 sinkholes have been validated satisfactorily with the 2006 sinkhole inventory (temporal validation). The best susceptibility model has been transformed into a hazard map considering the frequency of sinkholes that occurred in each susceptibility class between 2005 and 2006, as well as their average size. The susceptibility and hazard models obtained could be used as an objective basis for the application of mitigation measures, either of preventive or corrective nature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Potential recharge through thick soils in mantled sinkholes was quantified using differential electrical resistivity tomography (ERT). Conversion of time series two-dimensional (2D) ERT profiles into 2D volumetric water content profiles using a numerically optimized form of Archie's law allowed us to monitor temporal changes in water content in soil profiles up to 9 m in depth. Combining Penman-Monteith daily potential evapotranspiration (PET) and daily precipitation data with potential recharge calculations for three sinkhole transects indicates that potential recharge occurred only during brief intervals over the study period and ranged from 19% to 31% of cumulative precipitation. Spatial analysis of ERT-derived water content showed that infiltration occurred both on sinkhole flanks and in sinkhole bottoms. Results also demonstrate that mantled sinkholes can act as regions of both rapid and slow recharge. Rapid recharge is likely the result of flow through macropores (such as root casts and thin gravel layers), while slow recharge is the result of unsaturated flow through fine-grained sediments. In addition to developing a new method for quantifying potential recharge at the field scale in unsaturated conditions, we show that mantled sinkholes are an important component of storage in a karst system.  相似文献   

5.
Three types of sinkhole have been mapped in a 50 km2 stretch of the Ebro River valley downstream of Zaragoza: large collapse sinkholes, large shallow subsidence depressions and small cover-collapse sinkholes. The sinkholes relate to the karstification of evaporitic bedrock that wedges out abruptly downstream, giving way to a shale substratum. Twenty-three collapse sinkholes, up to 50 m in diameter by 6 m deep, and commonly hosting saline ponds, have been identified in the floodplain. They have been attributed to the upward stoping of dissolutional cavities formed within the evaporitic bedrock by rising groundwater flows. Twenty-four large shallow subsidence depressions were mapped in the floodplain. These may reach 850 m in length and were formed by structurally controlled interstratal karstification of soluble beds (halite or glauberite? and gypsum) by rising groundwater flow and the progressive settlement of the overlying bedrock and overburden sediments. A total of 447 small cover-collapse, or dropout, sinkholes have been recognized in a perched alluvial level along the southern margin of the valley. These sinkholes result from the upward propagation of voids through the alluvial mantle caused by the downward migration of detrital sediments into dissolutional voids. The majority of these sinkholes, commonly 1·5–2 m in diameter, are induced by human activities. Over the karstic bedrock, there is a significant increase in sinkhole density downstream. This is interpreted as being a result of the evaporitic bedrock wedging out and the convergence of the groundwater flow lines in the karstic aquifer. The collapse sinkholes in this area, locally with a probability of occurrence higher than 140 sinkholes/km2/year, cause substantial damage to the linear infrastructures, buildings and agriculture, and they might eventually cause the loss of human lives. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The results of geophysical studies conducted with selected electrical and electromagnetic methods in the Kondratowa Valley in the Tatra Mountains (the Carpathian Mountains, Poland) are presented in the article. The surveys were performed with the following methods: electrical resistivity tomography (ERT), georadar (GPR) and conductivity meter (CM). The objective of the noninvasive geophysical measurements was to determine the thickness of the Quaternary postglacial sediments that fill the bottom of the valley and to designate the accumulation of boulders deposited on Quaternary sediments. The results of ERT surveys conducted along the axis of the valley allowed to determine the changeability of the thickness of the postglacial sediments and allowed to designate a few areas of occurrence of boulders. The ERT, GPR and CM surveys conducted across the valley allowed to designate with high accuracy the thickness of the accumulation of boulders sliding down the valley bottom from the couloirs surrounding the valley.  相似文献   

7.
Sinkholes in dolomitic areas are notoriously difficult geophysical targets, and selecting an appropriate geophysical solution is not straightforward. Electrical resistivity imaging, or tomography (RESTOM) is well suited to mapping sinkholes because of the ability of the technique for detecting resistive features and discriminating subtle resistivity variations. RESTOM surveys were conducted at two sinkhole sites near Pretoria, South Africa. The survey areas are located in the dolomites of the Lyttelton Formation, which forms part of the Malamani Subgroup and Chuniespoort Group of the Transvaal Supergroup. The survey results suggest that RESTOM is an ideal geophysical tool to aid in the detection and monitoring of sinkholes and other subsurface cavities.  相似文献   

8.
Geodynamic activity in the area of West Bohemia is typified by the occurrence of earthquake swarms, Quaternary volcanism and high flux of mantle-derived CO2. The highest swarm activity occurs beneath the eastern edge of the Cheb basin, which is delineated by the NW-SE trending morphologically pronounced Mariánské Lázn?? Fault (MLF) controlling the formation of the basin. The previous trenching survey across the MLF zone has identified several fault strands with possible Quaternary activity. In this paper we present the results of the geophysical survey focused to trace the faults signatures in geophysical sections and to build an image of near surface tectonics. The method of electric resistivity tomography (ERT) along two profiles parallel to the trench identified a strong resistivity contrast between the bodies of sandy gravels in the middle and conductive clayey sands to the west and weathered crystalline basement to the east. The 2-D ground penetration radar (GPR) sections show direct correlation of reflections with lithological boundaries identified in the trench. As expected, the GPR signal amplitudes increase with the resistivities found in the ERT sections. Two of the four faults identified in the trench are indicated in the resistivity and GPR sections. A 3-D GPR measurement has identified a spot of high amplitudes elongated parallel to the MLF trend, which coincides with the high resistivity body. To improve the signal-to-noise ratio of the time slices we stacked the GPR time slices within vertically homogeneous blocks. This provided a contrast image of the sand-gravel body including its boundaries in three dimensions. The detailed analysis of the 3-D GPR cube revealed additional fault that limits the highly reflective sands and appears to be offset by another younger fault. Our results suggest a complex fault pattern in the studied area, which deserves a further study.  相似文献   

9.
This paper highlights the efficiency and complementarity of a light package of geophysical techniques to study the structure of karst Unsaturated Zone (UZ) in typical Mediterranean environment where soil cover is thin or absent. Both selected techniques, 2D Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT), are widely used in environmental studies and their application is accessible for a lot of scientists/engineers. However, GPR or ERT alone is not able to provide an enhanced characterization of geological features in karst media. In the present study, GPR results supply a near surface high resolution imaging and thus can provide relevant geological information such as stratifications and fractures. Despite the quality of the results GPR's investigation depth remains limited to around 12 m. Apparent and inverted resistivity provided by ERT surveys shows strong lateral and vertical variations. These variations can inform about general geological structuring and feature orientation. ERT is able to prospect down to 40 m but it's a low resolution integrative technique. In the study area the investigated limestone is a commonly electrical resistive formation (more than 2000 Ω.m). However deeper than 5–7 m, the ERT profiles reveal several zones of moderate resistivity (around 900 Ω.m). In these zones a stratification change corresponding to slanted bedding is clearly identified by GPR results. The combination of both GPR and ERT results can allow a well-established geological interpretation. These moderate resistivity zones with slanted beddings can explain the presence of a perennial water flow point 35 m below the surface of the studied site within the underground gallery of the Low-Noise Underground Laboratory (LSBB).  相似文献   

10.
An integrated geophysical survey has been conducted at the Tarragona’s Cathedral (Catalonia, NE Spain) with the aim to confirm the potential occurrence of archaeological remains of the Roman Temple dedicated to the Emperor Augustus. Many hypotheses have been proposed about its possible location, the last ones regarding the inner part of the Cathedral, which is one of the most renowned temples of Spain (twelfth century) evolving from Romanesque to Gothic styles. A geophysical project including electrical resistivity tomography (ERT) and ground probing radar (GPR) was planned over 1 year considering the administrative and logistic difficulties of such a project inside a cathedral of religious veneration. Finally, both ERT and GPR have been conducted during a week of intensive overnight surveys that provided detailed information on subsurface existing structures. The ERT method has been applied using different techniques and arrays, ranging from standard Wenner–Schlumberger 2D sections to full 3D electrical imaging with the advanced Maximum Yield Grid array. Electrical resistivity data were recorded extensively, making available many thousands of apparent resistivity data to obtain a complete 3D image after a full inversion. In conclusion, some significant buried structures have been revealed providing conclusive information for archaeologists. GPR results provided additional information about shallowest structures. The geophysical results were clear enough to persuade religious authorities and archaeologists to conduct selected excavations in the most promising areas that confirmed the interpretation of geophysical data. In conclusion, the significant buried structures revealed by geophysical methods under the cathedral were confirmed by archaeological digging as the basement of the impressive Roman Temple that headed the Provincial Forum of Tarraco, seat of the Concilium of Hispania Citerior Province.  相似文献   

11.
Electric resistivity tomography (ERT), self-potential (SP), soil CO2 flux, and temperature are used to study the inner structure of La Fossa cone (Vulcano, Aeolian Islands). Nine profiles were performed across the cone with a measurement spacing of 20 m. The crater rims of La Fossa cone are underlined by sharp horizontal resistivity contrasts. SP, CO2 flux, and temperature anomalies underline these boundaries which we interpret as structural limits associated to preferential circulation of fluids. The Pietre Cotte crater and Gran Cratere crater enclose the main hydrothermal system, identified at the centre of the edifice on the base of low electrical resistivity values (<20 Ω m) and strong CO2 degassing, SP, and temperature anomalies. In the periphery, the hydrothermal activity is also visible along structural boundaries such as the Punte Nere, Forgia Vecchia, and Palizzi crater rims and at the base of the cone, on the southern side of the edifice, along a fault attributed to the NW main tectonic trend of the island. Inside the Punte Nere crater, the ERT sections show an electrical resistive body that we interpret as an intrusion or a dome. This magmatic body is reconstructed in 3D using the available ERT profiles. Its shape and position, with respect to the Pietre Cotte crater fault, allows replacing this structure in the chronology of the development of the volcano. It corresponds to a late phase of activity of the Punte Nere edifice. Considering the position of the SP, soil CO2 flux, and temperature maxima and the repartition of conductive zones related to hydrothermal circulation with respect to the main structural features, La Fossa cone could be considered as a relevant example of the strong influence of pre-existing structures on hydrothermal fluid circulation at the scale of a volcanic edifice.  相似文献   

12.
Hidden mineshafts located in urban areas are a significant problem across much of the industrialized world. Electrical resistivity tomography (ERT) is a technique that can detect and characterize hidden mine entries by exploiting resistivity contrasts between the shaft and surrounding materials, resulting from either compositional or structural differences. A case study is presented in which both surface and crosshole 3D ERT surveys are used to image a hidden backfilled mineshaft at a built environment site, situated on Carboniferous Lower Coal Measures strata in the UK.Backfilled shafts generally present the greatest challenge for detection using geophysical methods, as contrasts between the fill and bedrock are typically low compared to air or water-filled conditions. Nevertheless, the shaft in this case was identified by both the surface and crosshole 3D surveys. The shaft appeared as a strongly resistive anomaly relative to background materials, which we interpreted as resulting from the disturbed fabric of the fill materials rather than any significant compositional differences. The study highlighted the respective strengths and weaknesses of the surface and crosshole ERT methodologies for this type of problem. The surface survey, which covered a non-rectangular area to accommodate irregular boundaries and other physical obstructions, provided a relatively rapid means of investigating the study site. However, this method had a limited depth of investigation and was constrained in its coverage by the locations of buildings. By contrast, the 3D crosshole method was able to image the shaft to the level of the deepest borehole electrodes. Although crosshole ERT is too expensive to be used for large-scale mineshaft surveys, this study clearly demonstrates its suitability for targeted investigations where surface methods cannot be deployed, such as scanning beneath surface structures or in situations where it is essential for resolution to be maintained with depth.  相似文献   

13.
14.
Since the 1990s a large number of sinkholes have appeared in the Dead Sea (DS) coastal area. Sinkhole development was triggered by the lowering of the DS level. In the literature the relationship between the sinkholes and the DS level is explained by intrusion of relatively fresh water into the aquifer thereby dramatically accelerating the salt dissolution with creation of subsurface caverns, which in turn cause sinkholes. The main goal of our project was detection and localization of relatively fresh groundwater. During our study we used the transient electromagnetic method (TEM) to measure the electrical resistivity of the subsurface. As a test site we selected Nahal Hever South which is typical for the DS coast. Our results show that resistivity of the shallow subsurface reflects its vertical and lateral structure, e.g., its main hydrogeological elements explain the inter-relations between geology, hydrogeology, and sinkholes. The TEM method has allowed detailed differentiation of layers (clay, salt, etc.) in the subsurface based on their bulk resistivity. The 10 m-thick salt layer composed of idiomorphic crystals of halite deposited during the earlier Holocene period was extrapolated from borehole HS-2 through the study area. It was found that in Nahal Hever the typical value of the bulk resistivity of clay saturated with the DS brine varies between 0.2 and 0.3 Ωm, whereas saturated gravel and sandy sediments are characterized by resistivity between 0.4 and 0.6 Ωm. The high water salinity of the aquifer (enveloping the salt layer) expressed in terms of resistivity is also an important characterization of the sinkhole development mechanism. The electrical resistivity of the aquifer in the vicinity of the salt unit and its western border did not exceed 1 Ωm (in most cases aquifer resistivity was 0.2-0.6 Ωm) proving that, in accordance with existing criteria, the pores of the alluvial sediments are filled with highly mineralized DS brine. However, we suggest that the criterion of the aquifer resistivity responsible for the salt dissolution should be decreased from 1 Ωm to 0.6 Ωm corresponding to the chloride concentration of approximately 100 g/l (the chloride saturation condition reaches 224 g/l in the northern DS basin and 280 g/l in the southern one).Based on TEM results we can reliably conclude that in 2005, when most of sinkholes had appeared at the surface, salt was located within a very low resistivity environment inside sediments saturated with DS brine. Intrusion of relatively fresh groundwater into the aquifer through the 600 × 600 m2area affected by sinkholes has not been observed.  相似文献   

15.
The integrated use of electrical resistivity tomography (ERT) and ground penetrating radar (GPR) measurements, and in particular the joint analysis of 2D and 3D data, can represent a valid solution for target identification at complex archaeological sites. A good example, in this respect, is given by the case study of a Phoenician–Punic necropolis in the archaeological site of Nora, in southern Sardinia (Italy), where GPR and ERT measurements were collected before site excavation. In this specific case, the mix of soil and air in the buried chambers, as well as the orientation and the complex spatial distribution of these structures into the sandstone bedrock, generated a number of anomalies difficult to interpret only using 2D results. Only the integration of all GPR and ERT data in a 3D view, and the comparison with archaeological evidence after the excavation, allowed a solid interpretation of geophysical anomalies visible in the 2D sections. Overall, this case study demonstrates the efficiency of the combined use of GPR and ERT acquisitions and shows how, in general, only the joint analysis of 2D data and in a 3D view can help the interpretation of the real distribution of the buried archaeological remains at similar archaeological complex sites.  相似文献   

16.
Digital marine seismic reflection data acquired in 1973 in the Bay of Pozzuoli, and recently reprocessed, were used to study the volcanological evolution of the marine sector of Campi Flegrei Caldera during the last 37 ka. In order to gain more information, interpretation also involved estimation of the "pseudo-velocity" and the "pseudo-density" from the resistivity logs of two onshore deep exploration wells. The main results are: (1) discovery of ancient pre-18 ka and post-37 ka submarine and mainly effusive volcanic activity, along coeval emission centers located at the edges of Campi Flegrei Caldera; (2) confirmation that the caldera collapse in the marine sector of Campi Flegrei seems strongly controlled by regional NE–SW and NW–SE structural discontinuities; (3) the finding of at least two episodes of collapse in the bay; and (4) identification of a post-18 ka volcanic deflation phase that has caused about 150–200 m of subsidence in the central sector of the Bay of Pozzuoli in the last 18 ka.Editorial responsibilty: T. Druitt  相似文献   

17.
A high resolution geophysical survey was carried out on the Pont De Coq, a medieval stone arch bridge located in Normandy (France) in 2011 and 2012. Two complementary methods are used: Electrical Resistivity Tomography (ERT) and Ground PenetratingRadar (GPR). They allow to evaluate the structural state of the bridge and to characterize the subsurface around and beneath the bridge. An excellent correlation is obtained between the geophysical methods and the geological data obtained around the bridge. In order to improve the restitution of the geophysical data, an advanced photogrammetric method is performed, providing a high resolution 3D Digital Terrain Model (DTM) of the Pont de Coq. The advanced photogrammetry enhances the presentation of the GPR and ERT data. This approach is an easy-to-use, rapid and cost-effective tool for stakeholders. Finally, it is a promising and original method for improved interpretations of future geophysical surveys.  相似文献   

18.
Electrical resistivity mapping was conducted to delineate boundaries and architecture of the Eumsung Basin Cretaceous. Basin boundaries are effectively clarified in electrical dipole–dipole resistivity sections as high-resistivity contrast bands. High resistivities most likely originate from the basement of Jurassic granite and Precambrian gneiss, contrasting with the lower resistivities from infilled sedimentary rocks. The electrical properties of basin-margin boundaries are compatible with the results of vertical electrical soundings and very-low-frequency electromagnetic surveys. A statistical analysis of the resistivity sections is tested in terms of standard deviation and is found to be an effective scheme for the subsurface reconstruction of basin architecture as well as the surface demarcation of basin-margin faults and brittle fracture zones, characterized by much higher standard deviation. Pseudo three-dimensional architecture of the basin is delineated by integrating the composite resistivity structure information from two cross-basin E–W magnetotelluric lines and dipole–dipole resistivity lines. Based on statistical analysis, the maximum depth of the basin varies from about 1 km in the northern part to 3 km or more in the middle part. This strong variation supports the view that the basin experienced pull-apart opening with rapid subsidence of the central blocks and asymmetric cross-basinal extension.  相似文献   

19.
A groundwater recharge process of heterogeneous hard rock aquifer in the Moole Hole experimental watershed, south India, is being studied to understand the groundwater flow behaviour. Significant seasonal variations in groundwater level are observed in boreholes located at the outlet area indicating that the recharge process is probably taking place below intermittent streams. In order to localize groundwater recharge zones and to optimize implementation of boreholes, a geophysical survey was carried out during and after the 2004 monsoon across the outlet zone. Magnetic resonance soundings (MRS) have been performed to characterize the aquifer and measure groundwater level depletion. The results of MRS are consistent with the observation in boreholes, but it suffers from degraded lateral resolution. A better resolution of the regolith/bedrock interface is achieved using electrical resistivity tomography (ERT). ERT results are confirmed by resistivity logging in the boreholes. ERT surveys have been carried out twice—before and during the monsoon—across the stream area. The major feature of recharge is revealed below the stream with a decrease by 80% of the calculated resistivity. The time‐lapse ERT also shows unexpected variations at a depth of 20 m below the slopes that could have been interpreted as a consequence of a deep seasonal water flow. However, in this area time‐lapse ERT does not match with borehole data. Numerical modelling shows that in the presence of a shallow water infiltration, an inversion artefact may take place thus limiting the reliability of time‐lapse ERT. A combination of ERT with MRS provides valuable information on structure and aquifer properties respectively, giving a clue for a conceptual model of the recharge process: infiltration takes place in the conductive fractured‐fissured part of the bedrock underlying the stream and clayey material present on both sides slows down its lateral dissipation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
道路塌陷空洞一直是威胁交通安全运行的重要隐患,对道路塌陷空洞的探测方法进行研究具有重大的现实意义。研究工作通过实例探讨三维探地雷达(GPR)对道路塌陷区进行探测的方法技术及其应用效果。为查明道路塌陷空洞的空间分布特征,在塌陷区布设了共23条测线,1.0 m×0.5 m的三维测网并进行数据采集;通过对雷达数据进行处理,获得不同测线、不同方向的三维雷达剖面。结合地质情况对上述图件进行综合分析与解释,准确地查明塌陷空洞的位置、埋深及发育程度;经开挖验证,解译结果可靠。工程实践表明,三维探地雷达技术可以快速、高效地应用于道路塌陷探测中,其探测结果可为塌陷区后续施工以及安全防治提供参考。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号