首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suspended sediment dynamics during the period 1964–1985 are examined along the mainstem of Changjiang (Yangtze River). The period represents a basin condition prior to major changes in land management policy and dam building on the river's mainstem. The downstream sediment dynamics reflect basin geology and topography and channel morphology. Sediment exchange within the mainstem was calculated by the development of reach sediment balances that reveal complex temporal and spatial patterns. There is relatively little sediment exchange in the upper, bedrock‐controlled reaches, with systematic increases in the downstream alluvial reaches. Degrading, transfer, and aggrading reaches were identified. Relations between input and output in all reaches were significant but no relation was found between sediment exchange and input/output. Comparison between ‘short‐term’ (22 years) and ‘long‐term’ (52 years) records demonstrates the importance of the record length in studying the suspended sediment dynamics in a large fluvial system. The longer record yielded better correlation and different trends than the shorter record. Sediment transfer (output/input ratio) changes downstream: the dominance of the upstream contributing area in sustaining the appearance of net degradation through most of the river system highlights the importance of reach length on characterisation of suspended sediment dynamics in large fluvial systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Fluvial sediment delivery is the main form of sediment transfer from the land to the sea, but this process is currently undergoing significant variations due to the alteration of catchment and base level controls related to climate change and human activities, especially the widespread construction of dams. Using the lower Wei River as an example and an integrated approach, this study investigates the variation of fluvial sediment delivery, as well as the connectivity under the effects of both controls. Based on hydrological records and channel cross‐section surveys, sediment budgets were constructed for two periods (1960–1970, 1970–1990) after the dam was closed in 1960. In the period 1960–1969, due to the elevated base level (327.2 ± 1.62 m) caused by the dam, the aggradation rate was 0.451 × 108 t yr‐1 in the channel and 0.716 × 108 t yr‐1 on the floodplain, indicating that the positive lateral connectivity between these locations was enhanced. As a consequence, serious sediment storage resulted in a sediment delivery ratio (SDR) that was smaller than that occurring before 1960. In the period 1970–1990, sweeping soil and water conservation (SWC) measures were implemented, resulting in a reduction of the connectivity between the trunk and tributaries, and a decrease of ~31% in the mean sediment input. In addition, together with the base level fluctuation in the range of 327.47 ± 0.49 m, the annual variation in sediment storage was primarily dependent on the water–sediment regime affected by the SWC. The negative lateral connectivity was enhanced between the channel and floodplain via bank erosion. Consequently, the aggradation rate was reduced by 89% on the floodplain and by 96% in the channel. Sediment output continued to decrease primarily due to the SWC practices and climate changes in this period, whereas the SDR increased due to the enhanced longitudinal connectivity between the upstream and downstream. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Lowland permeable catchments in the UK are particularly prone to sedimentation problems, on account of the increased fine sediment loadings generated by recent land‐use change and their stable seasonal hydrological regimes, which are frequently depleted by groundwater abstraction. Fine‐grained sediment storage on the bed of the main channel systems of the Frome (437 km2) and Piddle (183 km2) catchments, Dorset, UK, has been examined at 29 sites using a sediment remobilization technique. Measurements encompassed the period February 2003–July 2004. At individual sites in the Frome, average values ranged between 410 and 2630 g m?2, with an overall mean of 918 g m?2. In the Piddle, the average values for individual sites varied between 260 and 4340 g m?2, with an overall mean of 1580 g m?2. Temporal variations in fine bed sediment storage at each site were appreciable, with the coefficients of variation ranging between 43 and 155% in the Frome and between 33 and 160% in the Piddle. Average reach‐scale specific bed sediment storage increased markedly downstream along each main stem from 2 to 29 t km?1 (Frome) and from 4 to 19 t km?1 (Piddle). Total fine sediment storage on the channel bed of the Frome varied between 479 t (5 t km?1) and 1694 t (17 t km?1), with a mean of 795 t (7 t km?1), compared with between 371 t (5 t km?1) and 1238 t (14 t km?1) with a mean of 730 t (9 t km?1) in the Piddle. During the study period, fine bed sediment storage was typically equivalent to 18% (Frome) and 57% (Piddle) of the mean annual suspended sediment flux at the study catchment outlets. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
We analyzed variation of channel–floodplain suspended sediment exchange along a 140 km reach of the lower Amazon River for two decades (1995–2014). Daily sediment fluxes were determined by combining measured and estimated surface sediment concentrations with river–floodplain water exchanges computed with a two‐dimensional hydraulic model. The average annual inflow to the floodplain was 4088 ± 2017 Gg yr?1 and the outflow was 2251 ± 471 Gg yr?1, respectively. Prediction of average sediment accretion rate was twice the estimate from a previous study of this same reach and more than an order of magnitude lower than an estimate from an earlier regional scale study. The amount of water routed through the floodplain, which is sensitive to levee topography and increases exponentially with river discharge, was the main factor controlling the variation in total annual sediment inflow. Besides floodplain routing, the total annual sediment export depended on the increase in sediment concentration in lakes during floodplain drainage. The recent increasing amplitude of the Amazon River annual flood over two decades has caused a substantial shift in water and sediment river–floodplain exchanges. In the second decade (2005–2014), as the frequency of extreme floods increased, annual sediment inflow increased by 81% and net storage increased by 317% in relation to the previous decade (1995–2004). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Before 1900, the Missouri–Mississippi River system transported an estimated 400 million metric tons per year of sediment from the interior of the United States to coastal Louisiana. During the last two decades (1987–2006), this transport has averaged 145 million metric tons per year. The cause for this substantial decrease in sediment has been attributed to the trapping characteristics of dams constructed on the muddy part of the Missouri River during the 1950s. However, reexamination of more than 60 years of water‐ and sediment‐discharge data indicates that the dams alone are not the sole cause. These dams trap about 100–150 million metric tons per year, which represent about half the decrease in sediment discharge near the mouth of the Mississippi. Changes in relations between water discharge and suspended‐sediment concentration suggest that the Missouri–Mississippi has been transformed from a transport‐limited to a supply‐limited system. Thus, other engineering activities such as meander cutoffs, river‐training structures, and bank revetments as well as soil erosion controls have trapped sediment, eliminated sediment sources, or protected sediment that was once available for transport episodically throughout the year. Removing major engineering structures such as dams probably would not restore sediment discharges to pre‐1900 state, mainly because of the numerous smaller engineering structures and other soil‐retention works throughout the Missouri–Mississippi system. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

6.
This paper analyses the factors that control rates and extent of soil erosion processes in the 199 ha May Zegzeg catchment near Hagere Selam in the Tigray Highlands (Northern Ethiopia). This catchment, characterized by high elevations (2100–2650 m a.s.l.) and a subhorizontal structural relief, is typical for the Northern Ethiopian Highlands. Soil loss rates due to various erosion processes, as well as sediment yield rates and rates of sediment deposition within the catchment (essentially induced by recent soil conservation activities), were measured using a range of geomorphological methods. The area‐weighted average rate of soil erosion by water in the catchment, measured over four years (1998–2001), is 14·8 t ha?1 y?1, which accounts for 98% of the change in potential energy of the landscape. Considering these soil loss rates by water, 28% is due to gully erosion. Other geomorphic processes, such as tillage erosion and rock fragment displacement by gravity and livestock trampling, are also important, either within certain land units, or for their impact on agricultural productivity. Estimated mean sediment deposition rate within the catchment equals 9·2 t ha?1 y?1. Calculated sediment yield (5·6 t ha?1 y?1) is similar to sediment yield measured in nearby catchments. Seventy‐four percent of total soil loss by sheet and rill erosion is trapped in exclosures and behind stone bunds. The anthropogenic factor is dominant in controlling present‐day erosion processes in the Northern Ethiopian Highlands. Human activities have led to an overall increase in erosion process intensities, but, through targeted interventions, rural society is now well on the way to control and reverse the degradation processes, as can be demonstrated through the sediment budget. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
For the southern branch of the Rhine–Meuse estuary, The Netherlands, a two-dimensional horizontal suspended sediment transport model was constructed in order to evaluate the complicated water quality management of the area. The data needed to calibrate the model were collected during a special field survey at high river runoff utilizing a number of techniques: (1) turbidity probes were used to obtain suspended sediment concentration profiles; (2) air-borne remote sensing video recordings were applied in order to obtain information concerning the spatial distribution of the suspended sediment concentration; (3) an acoustic probe (ISAC) was used to measure cohesive bed density profiles and (4) an in situ underwater video camera (VIS) was deployed to collect video recordings of the suspended sediment. These VIS data were finally processed to fall velocity and diameter distributions and were mainly used to improve insight into the relevant transport processes, indicating significant erosion of sand from the upstream Rhine branch. For quantitative calibration of the model, the data from the turbidity profiles were used. Sedimentation and erosion were modelled according to Krone and Partheniades. The model results showed a good overall fit to the measurements, with a mean absolute error of 18 per cent (standard fault = 1 per cent), corresponding to concentrations of about 0·020 (upstream) to 0·005 kg m−3 (downstream). The overall correlation between observed and simulated suspended sediment concentrations was 0·85. The remote sensing video recordings were used for a qualitative calibration of the model. The distribution pattern of the suspended sediment on these photos was reproduced quite well by the model. However, a more accurate calibration technique is needed to enable the use of aerial remote sensing as a quantitative calibration method. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Suspended sediment has been identified as a vector for nutrient and contaminant transport in the fluvial environment. A time‐integrated sampler (the Phillips sampler), which emerged over a decade ago as a cost‐effective tool for in situ suspended sediment collection, is increasingly being used to collect samples for the analysis of sediment properties such as particle size composition, and nutrient and contaminant concentrations. This study evaluates the sampler under both flume and field conditions for efficiency in the mass and grain size of the suspended sediment collected. The sampler was tested in a flume using both kaolinite and sediment samples (sieved to < 180 µm) collected from the Quesnel River, British Columbia, Canada. In the kaolinite trails, the sampler preferentially collected coarser grain sizes compared to the original sediment, probably due to finer sediment remaining in suspension and therefore passing through the sampler, and also possibly due to flocculation of the kaolinite upon introduction to the flume. Conversely, the sampler collected river sediment that was finer than the original sediment, probably due to some settling of coarser sediment observed at the bottom of the flume. Once allowance was made for these operational issues associated with the flume, maximum sediment mass efficiency for kaolinite and river sediment was 43% and 87%, respectively. Sediment collected by the time‐integrated sampler during field deployment and adjacent channel bed sediment were also compared. The sampler collected sediment with a representative grain size distribution. However, there were differences in the geochemical (arsenic and selenium) concentrations of channel bed sediment and sediment collected by the Phillips sampler which may be a function of differences in the behavior of geochemical elements associated with the two types of sediment. This work suggests that further research is needed to evaluate the role of the Phillips sampler in collecting sediment for contaminant and nutrient analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
As with most Italian rivers, the Reno River has a long history of human modification, related also to morphological changes of the lower Po River since Roman times, but in the last decades, significant land use changes in the headwaters, dam construction, torrent control works and extensive bed material mining have caused important channel morphology and sediment budget changes. In this paper, two main types of channel adjustment, riverbed incision and channel narrowing, are analysed. Riverbed degradation is discussed by comparing four different longitudinal profiles surveyed in 1928, 1951, 1970 and 1998 in the 120 km long reach upstream of the outlet. The analysis of channel narrowing is carried out by comparing a number of cross‐sections surveyed in different years across the same downstream reach. Field sediment transport measurements of seven major floods that occurred between 2003 and 2006 are compared with the bedload transport rates predicted by the most renowned equations. The current low bedload yield is discussed in terms of sediment supply limited conditions due to land use changes, erosion‐control works and extensive and out of control bed material mining that have affected the Reno during the last decades. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Glaciers are major agents of erosion that increase sediment load to the downstream fluvial system. The Castle Creek Glacier, British Columbia, Canada, has retreated ~1.0 km in the past 70 years. Suspended sediment concentration (SSC) and streamflow (Q) were monitored independently at five sites within its pro‐glacial zone over a 60 day period from July to September 2011, representing part of the ablation season. Meteorological data were collected from two automatic weather stations proximal to the glacier. The time‐series were divided into hydrologic days and the shape and magnitude of the SSC response to hydro‐meteorological conditions (‘cold and wet’, ‘hot and dry’, ‘warm and damp’, and ‘storm’) were categorized using principal component analysis (PCA) and cluster analysis (CA). Suspended sediment load (SSL) was computed and summarized for the categories. The distribution of monitoring sites and results of the multivariate statistical analyses describe the temporal and spatial variability of suspended sediment flux and the relative importance of glacial and para‐glacial sediment sources in the pro‐glacial zone. During the 2011 study period, ~ 60% of the total SSL was derived from the glacial stream and sediment deposits proximal to the terminus of the glacier; during ‘storm’ events, that contribution dropped to ~40% as the contribution from diffuse and point sources of sediment throughout the pro‐glacial zone and within the meltwater channels increased. While ‘storm’ events accounted for just 3% of the study period, SSL was ~600% higher than the average over the monitoring period, and ~20% of the total SSL was generated in that time. Determining how hydro‐meteorological conditions and sediment sources control sediment fluxes will assist attempts to predict how pro‐glacial zones respond to future climate changes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A sediment budget is constructed for the slope and narrow continental shelf off the Sepik River in order to estimate the relative importance of turbid plumes versus bottom gravity transport through a near-shore submarine canyon in the dispersal of sediment across this collision margin. 210Pb geochronology and inventories of Kasten cores are consistent with the northwestward dispersal of sediment from the river mouth via hypopycnal and possible isopycnal plumes. Sediment accumulation rates are 5 cm yr−1 on the upper slope just off of the Sepik mouth, decreasing gradually to 1 cm yr−1 toward the northwest, and decreasing abruptly offshore (<0.2 cm yr−1 at 1200 m water depth). A sediment budget indicates that only about 7–15% of the Sepik River sediment discharge accumulates on the adjacent open shelf and slope. The remainder presumably escapes offshore via gravity flows through a submarine canyon, the head of which extends into the river mouth. The divergent sediment pathways observed off the Sepik River (i.e., surface and subsurface plumes versus sediment gravity flows through a canyon) may be common along high-yield collision margins of the Indo–Pacific archipelago, and perhaps are analogous to most margins during Late Quaternary low sea-level conditions.  相似文献   

12.
Investigation of the variations in runoff, sediment load, and their dynamic relation is conducive to understanding hydrological regime changes and supporting channel regulation and fluvial management. This study is undertaken in the Xihanshui catchment, which is known for its high sediment-laden in the Jialing River of the Yangtze River basin, southern China, to evaluate the change characteristics of runoff, sediment load, and their relationship at multi-temporal scales from 1966 to 2016. The results showed that runoff changed significantly for more months, whereas the significant changes in monthly sediment load occurred from April to September. The contributions of runoff in summer and autumn and sediment load in summer to their annual value changes were greater. Annual runoff and sediment load in the Xihanshui catchment both exhibited significant decreasing trends (p < 0.05) with a significant mutation in 1993 (p < 0.05). The average annual runoff in the change period (1994–2016) decreased by 49.58% and annual sediment load displayed a substantial decline with a reduction of 77.77% in comparison with the reference period (1966–1993) due to climate change and intensive human activity. The power functions were satisfactory to describe annual and extreme monthly runoff–sediment relationships, whereas the monthly runoff–sediment relationship and extreme monthly sediment-runoff relationship were changeable. Spatially, annual runoff–sediment relationship alteration could be partly attributed to sediment load changes in the upstream area and runoff variations in the downstream region. Three quantitative methods revealed that the main driver for significant reductions of annual runoff and sediment load is the human activity dominated by soil and water conservation measures, while climate change only contributed 22.73%–38.99% (mean 32.07%) to the total runoff reduction and 3.39%–35.56% (mean 17.32%) to the total decrease in sediment load.  相似文献   

13.
A bank and floodplain sediment budget was created for three Piedmont streams tributary to the Chesapeake Bay. The watersheds of each stream varied in land use from urban (Difficult Run) to urbanizing (Little Conestoga Creek) to agricultural (Linganore Creek). The purpose of the study was to determine the relation between geomorphic parameters and sediment dynamics and to develop a floodplain trapping metric for comparing streams with variable characteristics. Net site sediment budgets were best explained by gradient at Difficult Run, floodplain width at Little Conestoga Creek, and the relation of channel cross‐sectional area to floodplain width at Linganore Creek. A correlation for all streams indicated that net site sediment budget was best explained by relative floodplain width (ratio of channel width to floodplain width). A new geomorphic metric, the floodplain trapping factor, was used to compare sediment budgets between streams with differing suspended sediment yields. Site sediment budgets were normalized by floodplain area and divided by the stream's sediment yield to provide a unitless measure of floodplain sediment trapping. A floodplain trapping factor represents the amount of upland sediment that a particular floodplain site can trap (e.g. a factor of 5 would indicate that a particular floodplain site traps the equivalent of 5 times that area in upland erosional source area). Using this factor we determined that Linganore Creek had the highest gross and net (floodplain deposition minus bank erosion) floodplain trapping factor (107 and 46, respectively) that Difficult Run the lowest gross floodplain trapping factor (29) and Little Conestoga Creek had the lowest net floodplain trapping factor (–14, indicating that study sites were net contributors to the suspended sediment load). The trapping factor is a robust metric for comparing three streams of varied watershed and geomorphic character, it promises to be a useful tool for future stream assessments. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

14.
This paper focuses on a topographic methodology to characterize the amount of sediment stored in channels and the use of historical photographs for aerial survey by stereophotogrammetry, as part of wider research on debris‐flow magnitude prediction. The topographic methodology uses equidistant four‐point cross‐sections along the long profile of the channel. Each cross‐section is representative of a 50‐m reach of the channel. To calculate the volume of each reach, the difference is calculated between a reference level and the topographic surface. The reference level is the lowest level where the debris flow can erode, and in the current method this level is estimated from fixed points along the long profile of the channel. The accuracy of the method has been estimated by comparing results of a detailed topographic survey, with a standard deviation corresponding to about 6 per cent of the total calculated sediment volume. This topographic methodology has been used on aerial photographs by photogrammetry. This tool was applied to photographs taken on 12 past dates. The scales of the archive photographs used range from 1:3000 to 1:30 000, but results are consistent and permit us to calculate sediment states of the channel for different past dates with an uncertainty of about 6 per cent of the total volume. The application of the technique to the Manival debris‐flow torrent has permitted us to propose some partial sediment budgets and erosion‐rate estimates. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
H. Marttila  B. Kløve 《水文研究》2014,28(17):4756-4765
Lowland catchments in Finland are intensively managed, promoting erosion and sedimentation that negatively affects aquatic environments. This study quantified fine‐grained bed sediment in the main channel and upstream headwaters of the River Sanginjoki (399.93 km2) catchment, Northern Finland, using remobilization sediment sampling during the ice‐free period (May 2010–December 2011). Average bed sediment storage in river was 1332 g m?2. Storage and seasonal variations were greater in small headwater areas (total bed sediment storage mean 1527 g m?2, range 122–6700 g m?2 at individual sites; storage of organic sediment: mean 414 g m?2, range 27–3159 g m?2) than in the main channel (total bed sediment storage: mean 1137 g m?2, range 61–4945 g m?2); storage of organic sediment: mean 329 g m?2, range 13–1938 g m?2). Average reach‐specific bed sediment storage increased from downstream to upstream tributaries. In main channel reaches, mean specific storage was 8.73 t km?1, and mean specific storage of organic sediment 2.45 t km?1, whereas in tributaries, it was 126.94 and 34.05 t km?1, respectively. Total fine‐grained bed sediment storage averaged 563 t in the main channel and 6831 t in the catchment. The proportion of mean organic matter at individual sites was 15–47% and organic carbon 4–455 g C m?2, with both being highest in small headwater tributaries. Main channel bed sediment storage comprised 52% of mean annual suspended sediment flux and stored organic carbon comprised 7% of mean annual total organic carbon load. This indicates the importance of small headwater brooks for temporary within‐catchment storage of bed sediment and organic carbon and the significance of fine‐grained sediment stored in channels for the suspended sediment budget of boreal lowland rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This paper investigates the impact of a 1000‐year flood in August 2002 on floodplains and valley morphology of an Austrian mixed alluvial bed rock river. Discharges with a recurrence interval between 500 and 2000 years caused distinctive overbank scouring and material deposition in the floodplains. After the 1000‐year flood, those morphologically affected areas were at random intervals documented over the whole longitudinal profile. In addition to overbank erosion in curved sections (cut‐offs), the river bed locally widened, floodplain stripping occurred and local overbank scours were documented along straight parts of the river. A hydrodynamic‐numerical model, combined with field measurements, was used to analyse the cause of these erosional landforms. Based on the modelled hydraulic conditions for a one‐year flood (30–78 ms–1) and the catastrophic 2002 event (700–800 ms–1), the numerical results allowed a cause‐effect study with 19 parameters. Deterministic and statistical analysis (ANOVA, discriminant analysis) showed that the morphodynamic effects of the 2002 flood were influenced by the variability of valley morphology of the Kamp River, which led partially to supercritical flow during flood constriction. These processes were in some cases also anthropogenically influenced. Lateral constriction and expansion of the valley geometry over short distances led to scouring and aggradation within the inundated areas during the event. These morphological features were therefore responsible for the elongated scour holes in the floodplains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The geomorphic effect of introducing a gravel augmentation totaling 520 m3 into a gravel‐bed stream during a dam‐controlled flood in May of 2015 was monitored with bedload transport measurements, an array of seismometers, and repeated topographic surveys. Half of the augmented gravel was injected into the flow with front‐end loaders on the rising limb of the flood and the other half was injected on the first day of the peak. Virtually all of the gravel transported past the injection point was deposited within about 7 to 10 channel widths of the injection point. Most of the injected gravel deposited along the left bank of the river whereas the right half of the channel bed was dominated by scour. The downstream third of the depositional area consisted of a small dune field that developed prior to the second gravel injection and subsequently migrated about one channel width downstream. A second depositional front was observed upstream from the gravel injection point, where a delta‐like wedge of bed material developed in the first hours of the flow release and changed little over the remainder of the release. These two depositional areas represent small‐scale bed‐material storage reservoirs with the potential to accumulate and periodically release packets of bed material. Interactions with such storage reservoirs are hypothesized to cause large bed‐material pulses to disperse by fragmenting into multiple smaller pulses. As a refinement to the conceptual model that views sediment pulse evolution in terms of dispersion and translation, the concept of pulse fragmentation has practical implications for gravel management. It implies that gravel augmentations can produce morphologic changes at locations that are separated from the augmentation point by arbitrarily long reaches, and it highlights the dependence of pulse propagation rates on the nature and distribution of the bed‐material storage reservoirs in the channel system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
River floodplains act as sinks for fine‐sediment and sediment‐associated contaminants. Increasing recognition of their environmental importance has necessitated a need for an improved understanding of the fate and residence times of overbank sediment deposits over a broad range of timescales. Most existing investigations have focused on medium‐term accretion rates, which represents net deposition from multiple flood events over several decades. In contrast, the fate of recently‐deposited sediment during subsequent overbank events has received only limited attention. This paper presents a novel tracing‐technique for documenting the remobilization of recent overbank sediment on river floodplains during subsequent inundation events, using the artificial radionuclides, caesium‐134 (134Cs) and cobalt‐60 (60Co). The investigation was conducted within floodplains of the Rivers Taw and Culm in Devon, UK. Small quantities of fine‐sediment (< 63 µm dia.), pre‐labelled with known activities of either 134Cs or 60Co, were deposited at 15 locations across each floodplain. Surface inventories, measured before and after three consecutive flood events, were used to estimate sediment loss (in g m–2). Significant reductions provided evidence of the remobilization of the labelled sediment by inundating floodwaters. Spatial variations in remobilization were related to localized topography. Sediment remobilized during the first two events for the River Taw floodplain were equivalent to 63 · 8% and 11 · 9%, respectively, of the original mass. Equivalent values for the River Culm floodplain were 49 · 6% and 12 · 5%, respectively, of the original mass. Sediment loss during the third event proved too small to be attributed to remobilization by overbank floodwaters. After the third event, a mean of 22 · 5% and 35 · 2% of the original mass remained on the Taw and Culm floodplains, respectively. These results provide evidence of the storage of the remaining sediment. The findings highlight the importance of remobilization of recently‐deposited sediment on river floodplains during subsequent overbank events and demonstrate the potential of the tracing‐technique. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
20.
The summer discharge pattern of the Skeldal River, which drains a 560 km2 partly glacierized catchment in north‐east Greenland, is dominated by diurnal oscillations reflecting variations in the melt rate of snow and ice in the basin. Superimposed on this diurnal pattern are numerous short‐lived discharge fluctuations of irregular periodicity and magnitude. The larger fluctuations are described and attributed to both rainfall events and periodic collapse of the glacier margin damming flow from beneath the Skelbrae glacier. Other minor fluctuations are less readily explained but are associated with changes in the channelized and distributed reservoirs and possibly temporary blockage of subglacial conduits caused by ice melt with subsequent damming. Fluctuations in suspended sediment concentration (SSC) are normally associated with discharge fluctuations, although examples of ‘transient flushes’ were observed where marked increases in SSC occurred in the absence of corresponding discharge variations. A strong relationship between the event discharge increase and event SSC increase for rainfall‐induced events was established, but no such relationship existed for non‐rainfall‐induced events. There is some evidence for an exhaustion effect in the SSC patterns both at the event time‐scale and as the month proceeds. A mean suspended sediment load of 1765 ± 0·26 t day?1 was estimated for the study period, which would be equivalent to a suspended sediment yield of 732 ± 4 t km?2 year?1. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号