首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the Erlenbach stream, a pre‐alpine steep channel in Switzerland, sediment transport has been monitored for more than 25 years. Near the confluence with the main valley river, stream flow is monitored and sediment is collected in a retention basin with a capacity of about 2000 m3. The basin is surveyed at regular intervals and after large flood events. In addition, sediment transport has been continuously monitored with piezoelectric bedload impact and geophone sensors since 1986. In 2008–2009, the measuring system in the Erlenbach stream was enhanced by installing an automatic system to obtain bedload samples. Movable metal baskets are mounted on a rail at the downstream wall of the large check dam above the retention basin, and they can be moved automatically into the flow to take bedload transport samples. The wire mesh of the baskets has a spacing of 10 mm to sample all sediment particles coarser than this size (which is about the limiting grain size detected by the geophones). The upgraded measuring system permits to obtain bedload samples over short sampling periods and to measure the grain size distribution of the transported material and its variation over time and with discharge. The analysis of calibration relationships for the geophone measuring system confirms findings from very similar measurements which were performed until 1999 with piezoelectric bedload impact sensors; there is a linear relationship between impulse counts and bedload mass passing over the sensors. Findings from flume experiments are used to discuss the most important factors which affect the calibration of the geophone signal. The bedload transport rates as measured by the moving baskets are among the highest measured in natural streams, with values of the order of several kilograms per meter per second. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In gravel‐bed rivers with well‐de?ned pool–bar morphology, the path length of transported bed particles must be, at least during ‘channel‐forming’ ?ows, equal to the length scale of the morphology. This is the basis for some methods for estimating bed material transport rates. However, previous data, especially from ?eld tests, are often strongly positively skewed with mean much shorter than the pool–bar spacing. One possible explanation is that positively skewed distributions occur only in channels lacking distinct pool–bar topography or only at lower discharges in pool–bar channels. A series of ?ume experiments using ?uorescent tracers was used to measure path length distributions in low‐sinuosity meandering channels to assess the relation with channel morphology and ?ow conditions. At channel‐forming ?ows, 55 to 75 per cent of the tracer grains were deposited on the ?rst point bar downstream of the point of tracer input, with 15 per cent passing beyond the ?rst bar. Path length distributions are symmetrical with mean equal to the pool–bar spacing and can be described with a Cauchy distribution. In some cases there was a secondary mode close to the point of tracer introduction; this bimodal distribution ?ts a combined gamma–Cauchy distribution. Only when discharge was reduced below the channel‐forming ?ow were frequency distributions unimodal and positively skewed with no relation to the pool–bar spacing. Thus, path length distributions become more symmetrical, and mean path length increases to coincide with pool–bar spacing, as ?ow approaches channel‐forming conditions. This is a substantial modi?cation of existing models of particle transfer in gravel‐bed rivers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Structured gravel river beds clearly exert a major influence on bed stability. Indexing structural stability by field measurements of bed strength neglects the processes operating to entrain and transport bed material in different parts of each structure. This study takes a morphological approach to interpreting the critical processes, using particle tracing to determine the movement of individual cluster particles over a range of flood event magnitudes and durations. The experiment was carried out on the River South Tyne, UK; it uses flow hydrographs measured nearby and also benefits from previous studies of historical development, channel morphology and sediment transport at the same site. More than 30 clusters were monitored over a seven‐month period during which clusters occupied 7–16 per cent of the bed. Threshold flows delimiting three apparently contrasting bed sediment process regimes for cluster particles are tentatively set at 100 m3 s?1 and 183 m3 s?1; durations of flow at these levels are critical for cluster development, rather than flow peak values. Wake particles are transported most easily. Flow straightening in the wandering channel planform reduces the stability of clusters, since mechanical strength is markedly reduced by this change of direction. The overall area covered by clusters between significant transport events varies little, implying a dynamic equilibrium condition. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
This study uses a unique 10‐year tracer dataset from a small gravel‐bed stream to examine bed mobility and sediment dispersion over long timescales and at a range of spatial scales. Seasonal tracer data that captured multiple mobilizing events was examined, while the effects of morphology on bed mobility and sediment dispersion were captured at three spatial scales: within morphological units (unit scale), between morphological units (reach scale) and between reaches with different channel morphologies (channel scale). This was achieved by analyzing both reach‐average mobility and travel distance data, as well as the development of ‘mobility maps’ that capture the spatial variability in tracer mobility within the channel. The tracer data suggest that sediment transport in East Creek remains near critical the majority of the time, with only rare large events resulting in high mobility rates and grain travel distances large enough to move sediment past dominant bedforms. While a variable capturing both the magnitude and frequency of flow events within a season yielded a better predictor to sediment mobility and dispersion than peak discharge alone, the distribution of events of different magnitude within the season played a large role in determining tracer mobility rates and travel distances. The effects of morphology differed depending on the analysis scale, demonstrating the importance of scale, and therefore study design, when examining the effect of morphology on sediment transport. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A comprehensive monitoring programme focusing on bedload transport behaviour was conducted at a large gravel‐bed river. Innovative monitoring strategies were developed during five years of preconstruction observations accompanying a restoration project. A bedload basket sampler was used to perform 55 cross‐sectional measurements, which cover the entire water discharge spectrum from a 200‐year flood event in 2013 to a rare low flow event. The monitoring activities provide essential knowledge regarding bedload transport processes in large rivers. We have identified the initiation of motion under low flow conditions and a decrease in the rate of bedload discharge with increasing water discharge around bankfull conditions. Bedload flux strongly increases again during high flood events when the entire inundation area is flooded. No bedload hysteresis was observed. The effective discharge for bedload transport was determined to be near mean flow conditions, which is therefore at a lower flow discharge than expected. A numerical sediment transport model was able to reproduce the measured sediment transport patterns. The unique dataset enables the characterisation of bedload transport patterns in a large and regulated gravel‐bed river, evaluation of modern river engineering measures on the Danube, and, as a pilot project has recently been under construction, is able to address ongoing river bed incision, unsatisfactory ecological conditions for the adjacent national park and insufficient water depths for inland navigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
While clay and silt matrices of gravel‐bed rivers have received attention from ecologists concerned variously with the deteriorating environments of benthic and hyporheic organisms, their impact on sediment entrainment and transport has been explored less. A recent increase of such a matrix in the bed of Nahal Eshtemoa, an ephemeral river of the northern Negev, has more than doubled the boundary shear stress needed to initiate bedload, from 7 N m‐2* = 0.027) during the flash floods of 1991–2001 to 15 N m‐2* = 0.059) during those of 2008–2009. The relation between bedload flux and boundary shear stress continues to be well‐defined, but it is displaced. The matrix now contains a significant amount of silt and clay size material. The reasons for the increased entrainment threshold of bedload are explored. Large‐scale laser scanning of the dry bed reveals a reduction in grain‐scale morphological roughness, while artificial in situ tests of matrix integrity indicate considerable cohesion. The implications for adopting bed material sampling strategies that account for matrix development are assessed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Artificially straight river channels tend to be unstable, and ultimately develop into river meanders through bank erosion and point‐bar deposition. In this paper account is taken of the effects of riparian and floodplain vegetation on bank strength, floodplain flow resistance, shear stress partitioning, and bedload transport. This is incorporated into an existing 2D hydrodynamic‐morphological model. By applying the new model to an initially straight and single‐threaded channel, the way that its planform and cross‐sectional geometry evolve for different hydraulic and floodplain vegetation conditions is demonstrated. The results show the formation and upstream migration of gravel bars, confluence scouring and the development of meandering and braiding channel patterns. In cases where the channel becomes unstable, the instability grows out of bar formation. The resulting braiding patterns are similar to analytical results. The formation of a transition configuration requires a strong influence from vegetation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The benefits of three simple modifications to the design of a Birkbeck bedload slot‐sampling system that has been continuously operating in Nahal Eshtemoa, Israel, since the early 1990s are demonstrated. The modifications include the deployment of a removable slot cover which delays the accumulation of sediment, so allowing sampling at late stages of a flood and, in conjunction with other samplers, extending the period of sampling during a flood wave; inclusion of a slot the size of which is adjustable so that that the probability of sampling the largest clast sizes in transit as bedload can be increased post‐installation, once knowledge is gained about the bedload grain‐size distribution; and a sampler side‐wall door that allows stratification and textural changes within the accumulated bedload to be identified, so promoting intelligent sampling of the deposit for grain‐size determination. Results from seven flash‐floods are presented and discussed, with recommendations for bedload monitoring, particularly in rivers where sediment flux is high and dynamic sediment records are inevitably short because of instrumental limitations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Since the early 1990s, US Forest Service researchers have made thousands of bedload measurements in steep, coarse‐grained channels in Colorado and Wyoming, USA. In this paper we use data from 19 of those sites to characterize patterns and rates of coarse sediment transport for a range of channel types and sizes, including step–pool, plane‐bed, pool–riffle, and near‐braided channels. This effort builds upon previous work where we applied a piecewise regression model to (1) relate flow to rates of bedload transport and (2) define phases of transport in coarse‐grained channels. Earlier, the model was tested using bedload data from eight sites on the Fraser Experimental Forest near Fraser, Colorado. The analysis showed good application to those data and to data from four supplementary channels to which the procedure was applied. The earlier results were, however, derived from data collected at sites that, for the most part, have quite similar geology and runoff regimes. In this paper we evaluate further the application of piecewise regression to data from channels with a wider range of geomorphic conditions. The results corroborate with those from the earlier work in that there is a relatively narrow range of discharges at which a substantial change in the nature of bedload transport occurs. The transition from primarily low rates of sand transport (phase I) to higher rates of sand and coarse gravel transport (phase II) occurs, on average, at about 80 per cent of the bankfull (1·5‐year return interval) discharge. A comparison of grain sizes moved during the two phases showed that coarse gravel is rarely trapped in the samplers during phase I transport. Moreover, the movement and capture of the D16 to D25 grain size of the bed surface seems to correspond with the onset of phase II transport, particularly in systems with largely static channel surfaces. However, while there were many similarities in observed patterns of bedload transport at the 19 studied sites, each had its own ‘bedload signal’ in that the rate and size of materials transported largely reflected the nature of flow and sediment particular to that system. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

10.
Sediment transport during flood events often reveals hysteretic patterns because flow discharge can peak before (counterclockwise hysteresis) or after (clockwise hysteresis) the peak of bedload. Hysteresis in sediment transport has been used in the literature to infer the degree of sediment availability. Counterclockwise and clockwise hysteresis have been in fact interpreted as limited and unlimited sediment supply conditions, respectively. Hysteresis has been mainly explored for the case of suspended sediment transport, but it was rarely reported for bedload transport in mountain streams. This work focuses on the temporal variability of bedload transport in an alpine catchment (Saldur basin, 18.6 km2, Italian Alps) where bedload transport was monitored by means of an acoustic pipe sensor which detects the acoustic vibrations induced by particles hitting a 0.5m‐long steel pipe. Runoff dynamics are dominated by snowmelt in late spring/early summer, mostly by glacier melt in late summer/early autumn, and by a combination of the snow and glacier melt in mid‐summer. The results indicate that hysteretic patterns during daily discharge fluctuations are predominantly clockwise during the snowmelt period, likely due to the ready availability of unpacked sediments within the channel or through bank erosion in the lower part of the basin. On the contrary, counterclockwise hysteresis tend to be more frequent during late glacier melting period, possibly due to the time lag needed for sediment provided by the glacial and peri‐glacial area to be transported to the monitoring section. However, intense rainfall events occurring during the glacier melt period generated predominantly clockwise hysteresis, thus indicating the activation of different sediment sources. These results indicate that runoff generation processes play a crucial role on sediment supply and temporal availability in mountain streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A 2D depth‐averaged model has been developed for simulating water flow, sediment transport and morphological changes in gravel‐bed rivers. The model was validated with a series of laboratory experiments and then applied to the Nove reach of the Brenta River (Northern Italy) to assess its bed material transport, interpret channel response to a series of intensive flood events (R.I. ≈ 10 years) and provide a possible evolutionary scenario for the medium term. The study reach is 1400 m long with a mean slope of 0.0039 m m?1. High‐resolution digital terrain models were produced combining LiDAR data with colour bathymetry techniques. Extensive field sedimentological surveys were also conducted for surface and subsurface material. Data were uploaded in the model and the passage of two consecutive high intensity floods was simulated. The model was run under several hypotheses of sediment supply: one considering substantial equilibrium between sediment input and transport capacity, and the others reducing the sediment supply. The sediment supply was then calibrated comparing channel morphological changes as observed in the field and calculated by the model. Annual bed material transport was assessed and compared with other techniques. Low‐frequency floods (R.I. ≈ 1.5 years) are expected to produce negligible changes in the channel while high floods may erode banks rather than further incising the channel bed. Location and distribution of erosion and deposition areas within the Nove reach were predicted with acceptable biases stemming from imperfections of the model and the specified initial, boundary and forcing conditions. A medium‐term evolutionary scenario simulation underlined the different response to and impact of a consecutive sequence of floods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In many large alluvial rivers, trees often recruit and survive along laterally accreted sediments on bars. This produces a gradient of tree ages and composition with distance from the active channel. However, in low‐order, gravel‐bed mountain streams, such as the stream investigated in this study, it is suggested that vertical accretion results in sediment deposition patterns on bars that are often highly patchy. Consequently, tree species and ages are also heterogeneously distributed, rather than having distinct linear or arcuate banding patterns with distance from the channel. In addition, overall age patterns of trees on these bars follow the distribution of floods, with numerous young trees and few older trees. Recruitment is fairly continuous on these bars and is not correlated with high water years, suggesting that even flows close to bankfull levels are capable of transporting fine sediment to the bars on which trees establish. This pattern of sediment deposition/erosion and the resulting tree recruitment and survival seem to be a result of valley confinement and the lack of lateral accretion in these smaller, mountainous channels. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The study of bedload transport processes is constrained by an inability to monitor the mass, volume and grain size distribution of sediment in transport at high temporal frequencies. Building upon a previously published design, we have integrated a high‐resolution (1392 × 1024 pixels) video camera with a light table to continuously capture images of 2–181 mm material exiting a flume. The images are continuously recorded at a rate of 15 to 20 frames per second and are post‐processed using LabView(?) software, yielding continuous grain‐size‐specific transport information on a per second basis. The video capture rate is sufficient to record multiple images of each grain leaving the flume so that particle velocities can be measured automatically. No manual image processing is required. After calibration the method is accurate and precise for sediment in the 2 mm through to 45 mm grain size classes compared with other means of measuring bedload. Based on a set of validation samples, no statistically significant difference existed between the D10, D16, D25, D50, D75, D84, D90 and D95 determined by sieving captured samples and the Di values determined with the system. On average the system overpredicted transport by 4 per cent (n = 206, SD = 42%). This error can be corrected easily by simply weighing the mass of sediment that leaves the flume. The technology is relatively inexpensive and provides high‐resolution data on coarse sediment transport out of a flume. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
We report on bedload transport observations using piezoelectric bedload impact sensors (PBIS), an indirect method of estimating the volume of bedload transport of coarse sediment. The PBIS device registers vibrations produced by bedload (particle diameter >~20 mm) and records the signal as a sum of the number of impulses per time. Sediment transport at the Erlenbach stream has been continuously monitored with a PBIS array starting in 1986. The sensor array spans the width of an entire cross‐section and is mounted flush with the surface of a check dam immediately upstream of a sediment retention basin. We compare PBIS data with long‐term sedimentation records obtained from repeated surveys of material stored in the sediment retention basin, with artificial sediment input under controlled conditions in the field, and also with laboratory experiments. The rate of bedload transport is proportional to the number of impacts on the sensor per unit time. The reliability of the calibration relationship increases with the length of the observation period, e.g. for higher numbers of impacts and larger bedload volumes. Sediment volumes for individual flood events estimated with the PBIS method are in agreement with volumes estimated using an independent empirical method based on the effective runoff volume of water, the peak water discharge, and the critical discharge for the onset of sediment transport. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Field data are essential in evaluating the adequacy of predictive equations for sediment transport. Each dataset based on the sediment transport rates and other relevant information gives an increased understanding and improved quantification of different factors influencing the sediment transport regime in the specific environment. Data collected for 33 sites on 31 mountain streams and rivers in Central Idaho have enabled the analysis of sediment transport characteristics in streams and rivers with different geological, topographic, morphological, hydrological, hydraulic, and sedimentological characteristics. All of these streams and rivers have armored, poorly sorted bed material with the median particle size of surface layer coarser than the subsurface layer. The fact that the largest particles in the bedload samples did not exceed the median particle size of the bed surface material indicates that the armor layer is stable for the observed flow discharges (generally bankfull or less, and in some cases two times higher than bankfull discharge). The bedload transport is size‐selective. The transport rates are generally low, since sediment supply is less than the ability of flow to move the sediment for one range of flow discharges, or, the hydraulic ability of the stream is insufficient for entrainment of the coarse bed material. Detailed analyses of bedload transport rates, bedload and bed material characteristics were performed for each site. The obtained results and conclusions are used to identify different influences on bedload transport rates in analyzed gravel‐bed rivers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Bankfull discharge is identified as an important parameter for studying river morphology, sediment motion, flood dynamics and their ecological impacts. In practice, the determination of this discharge and its hydrological characteristics is not easy, and a choice has to be made between several existing methods. To evaluate the impact of the choice of methods, five bankfull elevation definitions and four hydrological characterizations (determination of duration and frequency of exceedance applied to instantaneous or mean daily data) were compared on 16 gravel‐bed river reaches located in France (the catchment sizes vary from 10 km2 to 1700 km2). The consistency of bankfull discharge estimated at reach scale and the hydraulic significance of the five elevation definitions were examined. The morphological definitions (Bank Inflection, Top of Bank) were found more relevant than the definitions based on a geometric criterion. The duration of exceedance was preferred to recurrence intervals (partial duration series approach) because it is not limited by the independency of flood events, especially for low discharges like those associated with the Bank Inflection definition. On average, the impacts of the choice of methods were very important for the bankfull discharge magnitude (factor of 1·6 between Bank Inflection and Top of Bank) and duration of exceedance or frequency (respectively a factor 1·8 and 1·9 between mean daily and instantaneous discharge data). The choice of one combination of methods rather than another can significantly modify the conclusions of a comparative analysis in terms of bankfull discharge magnitude and its hydrological characteristics, so that one must be cautious when comparing results from different studies that use different methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A previously published mixing length (ML) model for evaluating the Darcy–Weisbach friction factor for a large‐scale roughness condition (depth to sediment height ratio ranging from 1 to 4) is brie?y reviewed and modi?ed (MML). Then the MML model and a modi?ed drag (MD) model are experimentally tested using laboratory measurements carried out for gravel‐bed channels and large‐scale roughness condition. This analysis showed that the MML gives accurate estimates of the Darcy–Weisbach coef?cient and for Froude number values greater than 0·5 the MML model coincides with the ML one. Testing of the MD model shows limited accuracy in estimating ?ow resistance. Finally, the MML and MD models are compared with the performance of a quasi‐theoretical (QT) model deduced applying the P‐theorem of the dimensional analysis and the incomplete self‐similarity condition for the depth/sediment ratio and the Froude number. Using the experimental gravel‐bed data to calibrate the QT model, a constant value of the exponent of the Froude number is determined while two relationships are proposed for estimating the scale factor and the exponent of the depth/sediment ratio. This indirect estimate procedure of the coef?cients (b0, b1 and b2) of the QT model can produce a negligible overestimation or underestimation of the friction factor. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Intensive field monitoring of a reach of upland gravel‐bed river illustrates the temporal and spatial variability of in‐channel sedimentation. Over the six‐year monitoring period, the mean bed level in the channel has risen by 0·17 m with a maximum bed level rise of 0·5 m noted at one location over a five month winter period. These rapid levels of aggradation have a profound impact on the number and duration of overbank flows with flood frequency increasing on average 2·6 times and overbank flow time increasing by 12·8 hours. This work raises the profile of coarse sediment transfer in the design and operation of river management, specifically engineering schemes. It emphasizes the need for the implementation of strategic monitoring programmes before engineering work occurs to identify zones where aggradation is likely to be problematic. Exploration of the sediment supply and transfer system can explain patterns of channel sedimentation. The complex spatial, seasonal and annual variability in sediment supply and transfer raise uncertainties into the system's response to potential changes in climate and land‐use. Thus, there is a demand for schemes that monitor coarse sediment transfer and channel response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Bank strength due to vegetation dominates the geometry of small stream channels, but has virtually no effect on the geometry of larger ones. The dependence of bank strength on channel scale affects the form of downstream hydraulic geometry relations and the meandering‐braiding threshold. It is also associated with a lateral migration threshold discharge, below which channels do not migrate appreciably across their floodplains. A rational regime model is used to explore these scale effects: it parameterizes vegetation‐related bank strength using a dimensionless effective cohesion, Cr*. The scale effects are explored primarily using an alluvial state space defined by the dimensionless formative discharge, Q*, and channel slope, S, which is analogous to the Q–S diagrams originally used to explore meandering‐braiding thresholds. The analyses show that the effect of vegetation on both downstream hydraulic geometry and the meandering‐braiding threshold is strongest for the smallest streams in a watershed, but that the effect disappears for Q* > 106. The analysis of the migration threshold suggests that the critical discharge ranges from about 5 m3/s to 50 m3/s, depending on the characteristic rooting depth for the vegetation. The analysis also suggests that, where fires frequently affect riparian forests, channels may alternate between laterally stable gravel plane‐bed channels and laterally active riffle‐pool channels. These channels likely do not exhibit the classic dynamic equilibrium associated with alluvial streams, but instead exhibit a cyclical morphologic evolution, oscillating between laterally stable and laterally unstable end‐members with a frequency determined by the forest fire recurrence interval. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号