首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many numerical landform evolution models assume that soil erosion by flowing water is either purely detachment‐limited (i.e. erosion rate is related to the shear stress, power, or velocity of the flow) or purely transport‐limited (i.e. erosion/deposition rate is related to the divergence of shear stress, power, or velocity). This paper reviews available data on the relative importance of detachment‐limited versus transport‐limited erosion by flowing water on soil‐mantled hillslopes and low‐order valleys. Field measurements indicate that fluvial and slope‐wash modification of soil‐mantled landscapes is best represented by a combination of transport‐limited and detachment‐limited conditions with the relative importance of each approximately equal to the ratio of sand and rock fragments to silt and clay in the eroding soil. Available data also indicate that detachment/entrainment thresholds are highly variable in space and time in many landscapes, with local threshold values dependent on vegetation cover, rock‐fragment armoring, surface roughness, soil texture and cohesion. This heterogeneity is significant for determining the form of the fluvial/slope‐wash erosion or transport law because spatial and/or temporal variations in detachment/entrainment thresholds can effectively increase the nonlinearity of the relationship between sediment transport and stream power. Results from landform evolution modeling also suggest that, aside from the presence of distributary channel networks and autogenic cut‐and‐fill cycles in non‐steady‐state transport‐limited landscapes, it is difficult to infer the relative importance of transport‐limited versus detachment‐limited conditions using topography alone. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
We challenge the notion of steady‐state equilibrium in the context of progressive cliff retreat on micro‐tidal coasts. Ocean waves break at or close to the abrupt seaward edge of near‐horizontal shore platforms and then rapidly lose height due to turbulence and friction. Conceptual models assume that wave height decays exponentially with distance from the platform edge, and that the platform edge does not erode under stable sea‐level. These assumptions combine to a steady‐state view of Holocene cliff retreat. We argue that this model is not generally applicable. Recent data show that: (1) exponential decay in wave height is not the most appropriate conceptual model of wave decay; (2) by solely considering wave energy at gravity wave frequencies the steady‐state model neglects a possible formative role for infragravity waves. Here we draw attention to possible mechanisms through which infragravity waves may drive cliff retreat over much greater distances (and longer timescales) than imaginable under the established conceptual model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Over the past few decades, soil densification has been widely employed to reduce the liquefaction hazard or consequences on structures. The decision to mitigate and the design of densification specifications are typically based on procedures that assume free‐field conditions or experience. As a result, the influence of ground densification on the performance of structures and the key mechanisms of soil‐structure interaction remains poorly understood. This paper presents results of four centrifuge tests to evaluate the performance of 3‐ and 9‐story, potentially inelastic structures on liquefiable ground with and without densification. Densification was shown to generally reduce the net excess pore pressures and foundation permanent settlements (although not necessarily to acceptable levels), while amplifying the accelerations on the foundation. The influence of these demands on the performance of the foundation and superstructure depended on the structure's strength and dynamic properties, as well as ground motion characteristics. In addition, densification tended to amplify the moment demand at the beam and column connections, which increased permanent flexural deformations and P‐Δ effects (particularly on the heavier and weaker structure) that could have an adverse effect on foundation rotation. The experimental results presented aim to provide insight into the potential tradeoffs of ground densification, which may reduce foundation permanent settlement, but amplify shaking intensity that can result in larger foundation rotation, flexural drifts, and damage to the superstructure, if not considered in design. These considerations are important for developing performance‐based strategies to design mitigation techniques that improve performance of the soil‐foundation‐structure system in a holistic manner.  相似文献   

5.
The majority of the world's mangrove forests occur on mostly mineral sediments of fluvial origin. Two perspectives exist on the biogeomorphic development of these forests, i.e. that mangroves are opportunistic, with forest development primarily driven by physical processes, or alternatively that biophysical feedbacks strongly influence sedimentation and resulting geomorphology. On the Firth of Thames coast, New Zealand, we evaluate these two possible scenarios for sediment accumulation and forest development using high‐resolution sedimentary records and a detailed chronology of mangrove‐forest (Avicennia marina) development since the 1950s. Cores were collected along a shore‐normal transect of known elevation relative to mean sea level (MSL). Activities for lead‐210 (210Pb), caesium‐137 (137Cs) and beryllium‐7 (7Be), and sediment properties were analysed, with 210Pb sediment accumulation rates (SARs), compensated for deep subsidence (~8 mm yr?1) used as a proxy for elevation gain. At least four phases of forest development since the 1950s are recognized. An old‐growth forest developed by the late‐1970s with more recent seaward forest expansion thereafter. Excess 210Pb profiles from the old‐growth forest exhibit relatively low SARs near the top (7–12 mm yr?1) and bottom (10–22 mm yr?1) of cores, separated by an interval of higher SARs (33–100 mm yr?1). A general trend of increasing SAR over time characterizes the recent forest. Biogeomorphic evolution of the system is more complex than simple mudflat accretion/progradation and mangrove‐forest expansion. Surface‐elevation gain in the old‐growth forest displays an asymptotic trajectory, with a secondary depocentre developing on the seaward mudflat from the mid‐1970s. Two‐ to ten‐fold increases in 210Pb SARs are unambiguously large and occurred years to decades before seedling recruitment, demonstrating that mangroves do not measurably enhance sedimentation over annual to decadal timescales. This suggests that mangrove‐forest development is largely dependent on physical processes, with forests occupying mudflats once they reach a suitable elevation in the intertidal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Gullies are conceptualized in the literature as essentially fluvial forms with dimensional boundaries arbitrarily defined between rills and river channels. This notion is incompatible with the existing variability of form and process, as mass movements frequently exert a fundamental control on gully initiation and expansion, to the point of features outgrowing their original contributing area. The inability of a conceptual framework to incorporate existing observations inevitably constrains methodologies and research results. In this commentary, several examples of published results are contrasted with the prevailing assumption of an essentially fluvial nature, with the purpose of encouraging discussion on the need for a revised conceptual framework in gully erosion research. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
It is often assumed in probabilistic seismic hazard analysis that the magnitude distribution has an upper limit M max, which indicates a limitation on event size in specific seismogeneic conditions. Accurate estimation of M max from an earthquake catalog is a matter of utmost importance. We compare bias, dispersion and computational properties of four popular M max estimators, introduced by Kijko and others (e.g., Kijko and Sellevoll 1989, Kijko and Graham 1998, Kijko 2004) and we recommend the ones which can be the most fruitful in practical applications. We provide nomograms for evaluation of bias and standard deviation of the recommended estimators for combinations of sample sizes and distribution parameters. We suggest to use the bias nomograms to correct the M max estimates. The nomograms of standard deviation can be used to determine minimum sample size for a required accuracy of M max.  相似文献   

8.
9.
Upgrading of the electrical resistance variometer GEOMES-R6 of the Institute of Geophysics of the Poland Academy of Sciences, with enhancement of functional capabilities of the GEOMES assemblage for its application in laboratory measurements on rock samples, has been carried out. The assemblage operation principle, specifications, and theory of operation are given. Results of the assemblage test at measurements on marble sample and concrete model are presented. It is shown that the installation allows long-duration registration of variations of the value ρ k on high-ohmic samples.  相似文献   

10.
A growing body of field, theoretical and numerical modelling studies suggests that predicting river response to even major changes in input variables is difficult. Rivers are seen to adjust rapidly and variably through time and space as well as changing independently of major driving variables. Concepts such as Self‐Organized Criticality (SOC) are considered to better reflect the complex interactions and adjustments occurring in systems than traditional approaches of cause and effect. This study tests the hypothesis that riverbank mass failures which occurred both prior to, and during, an extreme flood event in southeast Queensland (SEQ) in 2011 are a manifestation of SOC. Each wet‐flow failure is somewhat analogous to the ‘avalanche’ described in the initial sand‐pile experiments of Bak et al. (Physical Review Letters, 1987, 59(4), 381–384) and, due to the use of multitemporal LiDAR, the time period of instability can be effectively constrained to that surrounding the flood event. The data is examined with respect to the key factors thought to be significant in evaluating the existence of SOC including; non‐linear temporal dynamics in the occurrence of disturbance events within the system; an inverse power‐law relation between the magnitude and frequency of the events; the existence of a critical state to which the system readjusts after a disturbance; the existence of a cascading processes mechanism by which the same process can initiate both low‐magnitude and high‐magnitude events. While there was a significant change in the frequency of mass failures pre‐ and post‐flood, suggesting non‐linear temporal dynamics in the occurrence of disturbance events, the data did not fit an inverse power‐law within acceptable probability and other models were found to fit the data better. Likewise, determining a single ‘critical’ state is problematic when a variety of feedbacks and multiple modes of adjustment are likely to have operated throughout this high magnitude event. Overall, the extent to which the data supports a self‐organized critical state is variable and highly dependent upon inferential arguments. Investigating the existence of SOC, however, provided results and insights that are useful to the management and future prediction of these features. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
When studying the evolution of landscape, it is difficult to discriminate the influence of anthropogenic from natural causes, or recognise changes caused by different sources of human action. This is especially challenging when the influence of certain sources is overprinted. For instance, although dam closure is the most common method of altering river courses, dam construction is often preceded by hydro‐technical works such as channel straightening, embankment construction or sediment mining. Both dam construction and the hydro‐technical works that precede dam closure can result in changes in the balance between sediment supply and transport capacity, and often, changes in river planform. The main objective of this study was to verify whether the works preceding dam closure are an important driver of river planform changes on the lower Drava River (Hungary). The case study is based on geological and geophysical surveys, as well as the analysis of historical maps covering an anabranching, 23 km long valley section. We show that channel straightening conducted prior to dam closure resulted in a transition from a meandering to sinuous planform with channel bars. Dam construction itself then caused enhanced incision, exposure of bar surfaces, vegetation encroachment and the formation of an anabranching planform. Based on this study, we developed models of alluvial island and channel planform evolution downstream of dams. Dam construction enhances channel incision, narrowing, and the reduction of flow caused by earlier hydro‐technical works. Many rivers downstream of dams experience episodes of anabranching or wandering, with a multi‐thread pattern replacing sinuous, braided and meandering courses. When incision continues, river patterns evolve from anabranching to sinuous via the attachment of alluvial islands to floodplains. However, the timing and sequence of these changes depend on hydrological and sediment supply regimes, geomorphic settings and anthropogenic actions accompanying dam construction. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
The problem of systematic overestimation (20–50%) of the retrieved ozone concentrations in the altitude range of 60–80 km in the TIMED–SABER satellite experiment in the daytime has been solved. The reason for overestimation is the neglect of the electronic vibrational kinetics of photolysis products of ozone and molecular oxygen O2(b1Σg +, ν) and O2(a1Δg, ν). The IR emission band of O2(a1Δg, ν = 0) at 1.27 μm can be correctly used in remote sensing in order to obtain the ozone altitude profile in the altitude range of 50–88 km only with the use of a complete model of electronic vibrational kinetics of O2 and O3 photolysis products (YM2011) in the Earth’s mesosphere and lower thermosphere. Alternative ozone tracers have been considered, and an optimum tracer in the altitude range of 50–100 km such as O2(b1Σg +, ν = 1) molecule emissions has been proposed.  相似文献   

13.
The permeability of river beds is an important control on hyporheic flow and the movement of fine sediment and solutes into and out of the bed. However, relatively little is known about the effect of bed permeability on overlying near‐bed flow dynamics, and thus on fluid advection at the sediment–water interface. This study provides the first quantification of this effect for water‐worked gravel beds. Laboratory experiments in a recirculating flume revealed that flows over permeable beds exhibit fundamental differences compared with flows over impermeable beds of the same topography. The turbulence over permeable beds is less intense, more organised and more efficient at momentum transfer because eddies are more coherent. Furthermore, turbulent kinetic energy is lower, meaning that less energy is extracted from the mean flow by this turbulence. Consequently, the double‐averaged velocity is higher and the bulk flow resistance is lower over permeable beds, and there is a difference in how momentum is conveyed from the overlying flow to the bed surface. The main implications of these results are three‐fold. First, local pressure gradients, and therefore rates of material transport, across the sediment–water interface are likely to differ between impermeable and permeable beds. Second, near‐bed and hyporheic flows are unlikely to be adequately predicted by numerical models that represent the bed as an impermeable boundary. Third, more sophisticated flow resistance models are required for coarse‐grained rivers that consider not only the bed surface but also the underlying permeable structure. Overall, our results suggest that the effects of bed permeability have critical implications for hyporheic exchange, fluvial sediment dynamics and benthic habitat availability. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

14.
Biogeomorphological processes are an important component of dynamic intertidal systems. On rocky shores, the direct contribution of microorganisms, plants and animals to weathering and erosion is well known. There is also increasing evidence that organisms can alter rock breakdown indirectly, by moderating temperature and moisture regimes at the rock–air interface. These influences have been purported to represent mechanisms of bioprotection, by buffering microclimatic fluctuations associated with weathering processes such as wetting and drying and salt crystallization. However, virtually nothing has been done to test whether microclimatic buffering translates to differences in actual rock breakdown rates. Here we report a preliminary laboratory experiment to assess how an artificial canopy (chosen to represent seaweed) affects mechanical rock breakdown. Using a simplified and accelerated thermal regime based on field data from a rocky shore platform in southern England, UK, we find that breakdown (mineral debris release) of mudstone covered with a canopy is reduced by as much as 79% relative to bare rock after around 100 thermal cycles. Reduction in rock surface hardness (measured using an Equotip device) was also greater for bare rock (17%) compared to covered rock (10%) over this period. Measurements of salt crystal formation indicate that the mechanism driving these differences was a reduction in the frequency of crystallization events, via moisture retention and shading of the rock surface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
We derived a high‐resolution, spatially continuous map of erosion and deposition associated with the debris‐laden flows triggered by the 2011 Las Conchas wildfire and subsequent rainstorms over a 197 km2 area in New Mexico, USA. This map was produced using airborne‐LiDAR‐derived bare‐earth digital elevation models (DEMs) acquired approximately one year before and one year after the wildfire. Differencing of the pre‐wildfire and post‐wildfire‐and‐rainstorm bare‐earth DEMs yielded a DEM‐of‐difference (DoD) map that quantifies the magnitude of ground‐surface elevation changes due to erosion/deposition within each 1 m2 pixel. We applied a 0.3 m threshold filter to our DoD to remove changes that could have been due to artifacts and/or imperfect georeferencing. The 0.3 m value for the threshold filter was chosen based on the stated accuracy of the LiDAR as well as a comparison of areas of significant topographic change mapped in aerial photographs with those predicted using a range of candidate threshold values for the DoD filter. We developed an automated procedure that accepts the DoD map as input and computes, for every pixel in the DEM, the net sediment volume exported through each pixel by colluvial and/or fluvial processes using a digital routing algorithm. An analysis of the resulting sediment volume map for the Las Conchas fire demonstrates that sediment volume is proportional to upstream contributing area. After normalized by contributing area, the average sediment yield (defined as the sediment volume divided by the contributing area) increases as a power‐law functions of the average terrain slope and soil burn severity class (SBSC) with exponents equal to approximately 1.5. Our analysis quantifies the relationships among sediment yield, average terrain slope, and average soil burn severity class at the watershed scale and should prove useful for predicting the geomorphic response of wildfire‐affected drainage basins. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This study analyzes and compares the P- and S-wave displacement spectra from local earthquakes and explosions of similar magnitudes. We propose a new approach to discrimination between low-magnitude shallow earthquakes and explosions by using ratios of P- to S-wave corner frequencies as a criterion. We have explored 2430 digital records of the Israeli Seismic Network (ISN) from 456 local events (226 earthquakes, 230 quarry blasts, and a few underwater explosions) of magnitudes Md?=?1.4–3.4, which occurred at distances up to 250 km during 2001–2013 years. P-wave and S-wave displacement spectra were computed for all events following Brune’s source model of earthquakes (1970, 1971) and applying the distance correction coefficients (Shapira and Hofstetter, Teconophysics 217:217–226, 1993; Ataeva G, Shapira A, Hofstetter A, J Seismol 19:389-401, 2015), The corner frequencies and moment magnitudes were determined using multiple stations for each event, and then the comparative analysis was performed.The analysis showed that both P-wave and especially S-wave displacement spectra of quarry blasts demonstrate the corner frequencies lower than those obtained from earthquakes of similar magnitudes. A clear separation between earthquake and explosion populations was obtained for ratios of P- to S-wave corner frequency f 0(P)/f 0(S). The ratios were computed for each event with corner frequencies f 0 of P- and S-wave, which were obtained from the measured f 0 I at individual stations, then corrected for distance and finally averaged. We obtained empirically the average estimation of f 0(P)/f 0(S)?=?1.23 for all used earthquakes, and 1.86 for all explosions. We found that the difference in the ratios can be an effective discrimination parameter which does not depend on estimated moment magnitude M w .The new multi-station Corner Frequency Discriminant (CFD) for earthquakes and explosions in Israel was developed based on ratios P- to S-wave corner frequencies f 0(P)/f 0(S), with the empirical threshold value of the ratio for Israel as 1.48.  相似文献   

17.
Time nonlocal transport models such as the time fractional advection‐dispersion equation (t‐fADE) were proposed to capture well‐documented non‐Fickian dynamics for conservative solutes transport in heterogeneous media, with the underlying assumption that the time nonlocality (which means that the current concentration change is affected by previous concentration load) embedded in the physical models can release the effective dispersion coefficient from scale dependency. This assumption, however, has never been systematically examined using real data. This study fills this historical knowledge gap by capturing non‐Fickian transport (likely due to solute retention) documented in the literature (Huang et al. 1995) and observed in our laboratory from small to intermediate spatial scale using the promising, tempered t‐fADE model. Fitting exercises show that the effective dispersion coefficient in the t‐fADE, although differing subtly from the dispersion coefficient in the standard advection‐dispersion equation, increases nonlinearly with the travel distance (varying from 0.5 to 12 m) for both heterogeneous and macroscopically homogeneous sand columns. Further analysis reveals that, while solute retention in relatively immobile zones can be efficiently captured by the time nonlocal parameters in the t‐fADE, the motion‐independent solute movement in the mobile zone is affected by the spatial evolution of local velocities in the host medium, resulting in a scale‐dependent dispersion coefficient. The same result may be found for the other standard time nonlocal transport models that separate solute retention and jumps (i.e., displacement). Therefore, the t‐fADE with a constant dispersion coefficient cannot capture scale‐dependent dispersion in saturated porous media, challenging the application for stochastic hydrogeology methods in quantifying real‐world, preasymptotic transport. Hence improvements on time nonlocal models using, for example, the novel subordination approach are necessary to incorporate the spatial evolution of local velocities without adding cumbersome parameters.  相似文献   

18.
19.
20.
Spatiotemporal mapping the minimum magnitude of completeness Mc and b-value of the Gutenberg–Richter law is conducted for the earthquake catalog data of Greece. The data were recorded by the seismic network of the Institute of Geodynamics of the National Observatory of Athens (GINOA) in 1970–2010 and by the Hellenic Unified Seismic Network (HUSN) in 2011–2014. It is shown that with the beginning of the measurements at HUSN, the number of the recorded events more than quintupled. The magnitude of completeness Mc of the earthquake catalog for 1970–2010 varies within 2.7 to 3.5, whereas starting from April 2011 it decreases to 1.5–1.8 in the central part of the region and fluctuates around the average of 2.0 in the study region overall. The magnitude of completeness Mc and b-value for the catalogs of the earthquakes recorded by the old (GINOA) and new (HUSN) seismic networks are compared. It is hypothesized that the magnitude of completeness Mc may affect the b-value estimates. The spatial distribution of the b-value determined from the HUSN catalog data generally agrees with the main geotectonic features of the studied territory. It is shown that the b-value is below 1 in the zones of compression and is larger than or equal to 1 in the zones dominated by extension. The established depth dependence of the b-value is pretty much consistent with the hypothesis of a brittle–ductile transition zone existing in the Earth’s crust. It is assumed that the source depth of a strong earthquake can probably be estimated from the depth distribution of the b-value, which can be used for seismic hazard assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号