首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
The presence of non‐erodible roughness elements on erodible surfaces has the effect of absorbing part of the wind shear stress and thus protecting the erodible surface from wind erosion. This paper examines the shear stress distribution over roughness arrays of varying density, representing the progress of erosion on a bed of erodible and non‐erodible particles. Three‐dimensional numerical simulations, simulating wind flow over a bed of particles covered by roughness elements, were conducted in order to investigate the effect of roughness elements on the shear stress near the surface. The results of these simulations confirm that the erosion of soil by wind is strongly attenuated by the presence of roughness elements on the surface and depends on the geometric properties of the roughness elements. Based on the new numerical results obtained, a refinement of existing theoretical approaches is developed to describe the dependence of the friction velocity upon roughness frontal area and real exposed cover rate. The new formulation proposed will allow a more accurate evaluation of shear stress partitioning as a function of topographic changes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Results from a series of numerical simulations of two‐dimensional open‐channel flow, conducted using the computational fluid dynamics (CFD) code FLUENT, are compared with data quantifying the mean and turbulent characteristics of open‐channel flow over two contrasting gravel beds. Boundary roughness effects are represented using both the conventional wall function approach and a random elevation model that simulates the effects of supra‐grid‐scale roughness elements (e.g. particle clusters and small bedforms). Results obtained using the random elevation model are characterized by a peak in turbulent kinetic energy located well above the bed (typically at y/h = 0·1–0·3). This is consistent with the field data and in contrast to the results obtained using the wall function approach for which maximum turbulent kinetic energy levels occur at the bed. Use of the random elevation model to represent supra‐grid‐scale roughness also allows a reduction in the height of the near‐bed mesh cell and therefore offers some potential to overcome problems experienced by the wall function approach in flows characterized by high relative roughness. Despite these benefits, the results of simulations conducted using the random elevation model are sensitive to the horizontal and vertical mesh resolution. Increasing the horizontal mesh resolution results in an increase in the near‐bed velocity gradient and turbulent kinetic energy, effectively roughening the bed. Varying the vertical resolution of the mesh has little effect on simulated mean velocity profiles, but results in substantial changes to the shape of the turbulent kinetic energy profile. These findings have significant implications for the application of CFD within natural gravel‐bed channels, particularly with regard to issues of topographic data collection, roughness parameterization and the derivation of mesh‐independent solutions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Laboratory tests using Jet Erosion Testing (JET) apparatus, impinging normally on a horizontal boundary, were conducted to determine the critical shear stress (τc) of non‐cohesive soil samples. A three‐dimensional (3D) SonTek/YSI 16 MHz Micro‐Acoustic Doppler Velocimeter (MicroADV) was used to measure turbulent kinetic energy (TKE) at a radial limit of entrainment in the wall jet zone and the measurements were used to calculate τc of the samples. The results showed that TKE increases exponentially with increasing particle size. The τc from this study were comparable (R2 = 0.8) to the theoretical τc from Shields diagram after bed roughness scale ratio (D/ks), due to the non‐uniform bed conditions, was accounted for. This study demonstrated that JET and TKE can be used to determine τc of non‐cohesive soils. The use of JET and TKE was found to be faster and easier when compared to the conventional approach of using flumes. A relationship of TKE at the onset of incipient motion (TKEc) and samples’ D50 developed in this study can be used to predict τc of non‐cohesive soils under similar non‐uniform conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The erosion rate of cohesive streambanks is typically modelled using the excess shear stress equation, dependent on two erodibility parameters: critical shear stress and erodibility coefficient. The jet erosion test (JET) has become the most common method for estimating these erodibility parameters in situ. Typically, results from a few JETs are averaged to acquire a single set of parameters for characterizing a streambank layer; however, this may be inadequate for accurately characterizing erodibility. The research objectives were to investigate the variability of JET results from assumed homogeneous streambank layers and to estimate the number of JETs required to accurately characterize erodibility for use in predictive models. On three unique streambanks in Oklahoma and across a range of erodibility, 20 to 30 JETs were conducted over a span of three days at each site. Unique to this research, each JET was analysed using the Blaisdell, scour depth and iterative solutions. The required sample size to accurately estimate the erodibility parameters depended on the JET solution technique, the parameter being estimated, and the degrees of precision and confidence. Conducting three to five JETs per soil layer on a streambank typically provided an order of magnitude estimate of the erodibility parameters. Because the parameters were log‐normally distributed, using empirical equations to predict erosion properties based on soil characteristics will likely contain high uncertainty and thus should be used with caution. This study exemplifies the need to conduct in situ measurements using the JET to accurately characterize streambank resistance to fluvial erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Processes of soil erosion and sediment transport are strongly influenced by land use changes so the modelling of land use changes is important with respect to the simulation of soil degradation and its on‐site and off‐site consequences. The reliability of simulation results from erosion models is circumscribed by considerable spatial variation in many parameters. However, most of the currently widely used erosion models at the mesoscale are semidistributed, which leads to difficulties in incorporating a high degree of spatial information, especially land use information, so that the effects of land use changes on soil erosion have hitherto not been investigated in detail using these models. In this article, a grid‐based distributed erosion and sediment transport model is introduced, which simulates the spatial pattern of erosion and deposition rates and sediment transport processes in river channels. In this model, land use affects soil erosion through altering soil loss and influencing sediment delivery. Simulated soil erosion for events recorded in 1989 and 1996 in the Lushi basin in China was analyzed by comparing it with historical land use maps. The results indicated that even relatively minor land use changes had a significant effect on regional soil erosion rates and sediment transport to rivers. The average erosion rate increased from 1989 to 1996, after the transformation of forest to farmland. The results of the study suggest that the proposed soil erosion model can be applied in similar river basins. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The vector physics of wind‐driven rain (WDR) differs from that of wind‐free rain, and the interrill soil detachment equations in the Water Erosion Prediction Project (WEPP) model were not originally developed to deal with this phenomenon. This article provides an evaluation of the performance of the interrill component of the WEPP model for WDR events. The interrill delivery rates were measured in the wind tunnel facility of the International Center for Eremology (ICE), Ghent University, Belgium with an experimental setup to study different raindrop impact velocity vectors. Synchronized wind and rain simulations with wind velocities of 6, 10 and 14 m s–1 were applied to a test surface placed on windward and leeward slopes of 7, 15 and 20%. Since both rainfall intensity and raindrop impact velocity varied greatly depending on differences in the horizontal wind velocity under WDRs, the resultant kinetic energy flux (KEr, in J m–2 s–1) was initially used in place of the WEPP model intensity term in order to incorporate the effect of wind on impact velocity and frequency of raindrops. However, our results showed only minor improvement in the model predictions. For all research data, the model Coefficients of Determination (r2) were 0·63 and 0·71, when using the WEPP and the KEr approaches, respectively. Alternately, integrating the angle of rain incidence into the model by vectorally partitioning normal kinetic energy flux (KErn, in J m–2 s–1) from the KEr greatly improved the model's ability to estimate the interrill sediment delivery rates (r2 = 0·91). This finding suggested that along with the fall trajectory of wind‐driven raindrops with a given frequency, raindrop velocity and direction at the point of impact onto the soil surface provided sufficient physical information to improve WEPP sediment delivery rate predictions under WDR. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Non‐uniform flows encompassing both accelerating and decelerating flows over a cobble‐bed flume have been experimentally investigated in a flume at a scale of intermediate relative submergence. Measurements of mean longitudinal flow velocity u, and determinations of turbulence intensities u′, v′, w′, and Reynolds shear stress ?ufwf have been made. The longitudinal velocity distribution was divided into the inner zone close to the bed and the outer zone far from the bed. In the inner zone of the boundary layer (near the bed) the velocity profile closely followed the ‘Log Law’; however, in the outer zone the velocity distribution deviated from the Log Law consistently for both accelerating and decelerating flows and the changes in bed slopes ranging from ?2% to + 2% had no considerable effect on the outer zone. For a constant bed slope (S = ±0·015), the larger the flow rate, the smaller the turbulence intensities. However, no detectable pattern has been observed for u′, v′ and w′ distributions near the bed. Likewise, for a constant flow rate (Q = 0·040 m3/s), with variation in bed slope the longitudinal turbulent intensity profile in the longitudinal direction remained concave for both accelerating and decelerating flows; whereas vertical turbulent intensity (w′) profile presented no specific form. The results reveal that the positions of maximum values of turbulence intensities and the Reynolds shear stress depend not only on the flow structure (accelerating or decelerating) but also on the intermediate relative submergence scale. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Sodium accumulating playas (also termed sodic or natric playas) are typically covered by polygonal crusts with different pattern characteristics, but little is known about the short‐term (hours) dynamics of these patterns or how pore water may respond to or drive changing salt crust patterning and surface roughness. It is important to understand these interactions because playa‐crust surface pore‐water and roughness both influence wind erosion and dust emission through controlling erodibility and erosivity. Here we present the first high resolution (10?3 m; hours) co‐located measurements of changing moisture and salt crust topography using terrestrial laser scanning (TLS) and infra‐red imagery for Sua Pan, Botswana. Maximum nocturnal moisture pattern change was found on the crests of ridged surfaces during periods of low temperature and high relative humidity. These peaks experienced non‐elastic expansion overnight, of up to 30 mm and up to an average of 1.5 mm/night during the 39 day measurement period. Continuous crusts however showed little nocturnal change in moisture or elevation. The dynamic nature of salt crusts and the complex feedback patterns identified emphasize how processes both above and below the surface may govern the response of playa surfaces to microclimate diurnal cycles. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

11.
This work focuses on the modelling issues related to the adoption of the pushover analysis for the seismic assessment of existing reinforced concrete (RC) structures. To this purpose a prototype reference structure, one of the RC shear walls designed according to the multi‐fuse concept and tested on shaking table for the CAMUS project, is modelled at different levels of refinement. The meso‐scale of a stiffness‐based fibre element and the micro‐scale of the finite element (FE) method are herein adopted; in the latter separate elements are adopted for the concrete, the steel and the steel–concrete interface. This first of the two companion papers presents in detail the wall under study, illustrating the design philosophy, the geometry of the wall, the instrumentation set‐up and the test programme. The two modelling approaches are then described; the most important points in terms of element formulation and constitutive relations for materials are presented and discussed for each approach, in the light of the particular design of the wall and of its experimental behaviour. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
In a companion paper two different modelling approaches have been described, operating at the meso‐scale of the fibre elements and at the micro‐scale of the finite element (FE) method. The aim of this paper is to explore the efficiency of these models in the pushover analysis for the seismic assessment of existing reinforced concrete (RC) structures. To this purpose a prototype reference structure, one of the RC shear walls designed according to the multi‐fuse concept and tested on shaking table for the CAMUS Project, is modelled at different levels of refinement. At the micro‐scale the reinforcement and anchorage details are described with increasing accuracy in separate models, whereas at the meso‐scale one single model is used, where each element represents a large part of the structure. Static incremental non‐linear analyses are performed with both models to derive a capacity curve enveloping the experimental results and to reproduce the damage pattern at the displacement level where failure is reached. The comparison between experimental and numerical results points out the strong and weak points of the different models inside the procedure adopted, and the utility of an integration of results from both approaches. This study confirms, even for the rather difficult case at study, the capability of the pushover in reproducing the non‐linear dynamic response, both at a global and a local level, and opens the way to the use of the models within a displacement‐based design and assessment procedure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Topographic interactions generate multidirectional and unsteady air?ow that limits the application of velocity pro?le approaches for estimating sediment transport over dunes. Results are presented from a series of wind tunnel simulations using Irwin‐type surface‐mounted pressure sensors to measure shear stress variability directly at the surface over both isolated and closely spaced sharp‐crested model dunes. Findings complement existing theories on secondary air?ow effects on stoss transport dynamics and provide new information on the in?uence of lee‐side air?ow patterns on dune morphodynamics. For all speeds investigated, turbulent unsteadiness at the dune toe indicates a greater, more variable surface shear, despite a signi?cant drop in time‐averaged measurements of streamwise shear stress at this location. This effect is believed suf?cient to inhibit sediment deposition at the toe and may be responsible for documented intermittency in sand transport in the toe region. On the stoss slope, streamline compression and ?ow acceleration cause an increase in ?ow steadiness and shear stress to a maximum at the crest that is double that at the toe of the isolated dune and 60–70 per cent greater than at ?ow reattachment on the lower stoss of closely spaced dunes. Streamwise ?ow accelerations, rather than turbulence, have greater in?uence on stress generation on the stoss and this effect increases with stoss slope distance and with incident wind speed. Reversed ?ow within the separation cell generates signi?cant surface shear (30–40 per cent of maximum values) for both spacings. This supports ?eld studies that suggest reversed ?ow is competent enough to return sediment to the dune directly or in a de?ected direction. High variability in shear at reattachment indicates impact of a turbulent shear layer that, despite low values of time‐averaged streamwise stress in this region, would inhibit sediment accumulation. Downwind of reattachment, shear stress and ?ow steadiness increase within 6 h (h = dune height) of reattachment and approach upwind values by 25 h. A distance of at least 30 h is suggested for full boundary layer recovery, which is comparable to ?uvial estimates. The Irwin sensor used in this study provides a reliable means to measure skin friction force responsible for sand transport and its robust, simple, and cost‐effective design shows promise for validating these ?ndings in natural dune settings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
A back‐propagation algorithm neural network (BPNN) was developed to synchronously simulate concentrations of total nitrogen (TN), total phosphorus (TP) and dissolved oxygen (DO) in response to agricultural non‐point source pollution (AGNPS) for any month and location in the Changle River, southeast China. Monthly river flow, water temperature, flow travel time, rainfall and upstream TN, TP and DO concentrations were selected as initial inputs of the BPNN through coupling correlation analysis and quadratic polynomial stepwise regression analysis for the outputs, i.e. downstream TN, TP and DO concentrations. The input variables and number of hidden nodes of the BPNN were then optimized using a combination of growing and pruning methods. The final structure of the BPNN was determined from simulated data based on experimental data for both the training and validation phases. The predicted values obtained using a BPNN consisting of the seven initial input variables (described above), one hidden layer with four nodes and three output variables matched well with observed values. The model indicated that decreasing upstream input concentrations during the dry season and control of NPS along the reach during average and flood seasons may be an effective way to improve Changle River water quality. If the necessary water quality and hydrology data are available, the methodology developed here can easily be applied to other case studies. The BPNN model is an easy‐to‐use modelling tool for managers to obtain rapid preliminary identification of spatiotemporal water quality variations in response to natural and artificial modifications of an agricultural drainage river. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A simple grid cell‐based distributed hydrologic model was developed to provide spatial information on hydrologic components for determining hydrologically based critical source areas. The model represents the critical process (soil moisture variation) to run‐off generation accounting for both local and global water balance. In this way, it simulates both infiltration excess run‐off and saturation excess run‐off. The model was tested by multisite and multivariable evaluation on the 50‐km2 Little River Experimental Watershed I in Georgia, U.S. and 2 smaller nested subwatersheds. Water balance, hydrograph, and soil moisture were simulated and compared to observed data. For streamflow calibration, the daily Nash‐Sutcliffe coefficient was 0.78 at the watershed outlet and 0.56 and 0.75 at the 2 nested subwatersheds. For the validation period, the Nash‐Sutcliffe coefficients were 0.79 at the watershed outlet and 0.85 and 0.83 at the 2 subwatersheds. The per cent bias was less than 15% for all sites. For soil moisture, the model also predicted the rising and declining trends at 4 of the 5 measurement sites. The spatial distribution of surface run‐off simulated by the model was mainly controlled by local characteristics (precipitation, soil properties, and land cover) on dry days and by global watershed characteristics (relative position within the watershed and hydrologic connectivity) on wet days when saturation excess run‐off was simulated. The spatial details of run‐off generation and travel time along flow paths provided by the model are helpful for watershed managers to further identify critical source areas of non‐point source pollution and develop best management practices.  相似文献   

16.
The present study demonstrates a spatially distributed application of a field‐scale annual soil loss model, the modified‐MMF (MMMF), to a large watershed using hydrological routing techniques, remote sensing data and geospatial technologies. In this study, the MMMF model is implemented after incorporating the corrections suggested in recent literature along with appropriate modifications of the model to suit the agro‐climatological conditions prevailing in most parts of India. Sensitivity analysis carried out through an Average Linear Sensitivity approach indicates that the model outputs are highly sensitive to soil moisture (MS), bulk density (BD), effective hydraulic depth (EHD), ground cover (GC) and settling velocity for clay (VSc). During calibration and validation, the performance evaluation statistics are mostly in the range of very good to satisfactory for both runoff and soil loss at the watershed outlet. Even spatial validation of the results of intermediate processes in the water phase and the sediment phase, although qualitative, seems to be reasonable and rational. Furthermore, the soil erosion severity analysis for different land‐uses existing in the watershed indicates that about 90% of the watershed area, especially that occupied by agricultural lands, is vulnerable to the long‐term effects of soil erosion. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

17.
Buildings are continually subject to dynamic loads, such as wind load, seismic ground motion, and even the load from internal utility machines. The recent trend of constructing more flexible high‐rise buildings underscores the importance of including viscoelastic dampers in building designs. Viscoelastic dampers are used to control the dynamic response of a building. If the seismic design is based only on the linear response spectrum, considerable error may occur when calculating the seismic response of a building; rubber viscoelastic dampers show non‐linear hysteretic damping that is quite different from viscous damping. This study generated a non‐linear response spectrum using a non‐linear oscillator model to simulate a building with viscoelastic dampers installed. The parameters used in the non‐linear damper model were obtained experimentally from dynamic loading tests. The results show that viscoelastic dampers effectively reduce the seismic displacement response of a structure, but transmit more seismic force to the structure, which essentially increases its seismic acceleration response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
19.
In order to understand the differences in the suspended sediment and total dissolved solid (TDS) yield patterns between the glacial and non‐glacial catchments at the headwaters of Urumqi River, northwestern China, water samples were collected from a glacier catchment and an empty cirque catchment within the region, during three melting seasons from 2006 to 2008. These samples were analyzed to estimate suspended sediment and TDS concentrations, fluxes and erosion rates in the two adjoining catchments. There were remarked differences in suspended sediment and TDS yield patterns between the two catchments. Suspended sediment concentrations were controlled mainly by the sediment source, whereas TDS concentrations were primarily related to the hydrologic interaction with soil minerals. Generally, the glacial catchment had much higher suspended sediment and TDS yields, together with higher denudation rates, than the non‐glacial catchment. Overall, glacial catchment was mainly dominated by physical denudation process, whereas the non‐glacial catchment was jointly influenced by physical and chemical denudation processes. The observed differences in material delivery patterns were mainly controlled by the runoff source and the glacial processes. The melting periods of glacier and snow were typically the most important time for the suspended sediment and TDS yields. Meanwhile, episodic precipitation events could generate disproportionately large yields. Subglacial hydrology dynamics, glaciers pluck and grind processes could affect erodibility, and the large quantities of dust stored on the glacier surface provided additional sources for suspended sediment transport in the glacial catchment. These mechanisms imply that, in response to climate change, the catchment behaviour will be modified significantly in this region, in terms of material flux. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号