首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Residual displacements of single‐degree‐of‐freedom systems due to ground motions with velocity pulses or fling step displacements are presented as a function of period T and of its ratio to the pulse period Tp. Four hysteretic behaviors are considered: bilinear elastoplastic, stiffness‐degrading with cycling, stiffness‐cum‐strength degrading, with or without pinching. When expressed in terms of T/Tp, peak inelastic and residual displacements due to motions with a pulse or fling appear similar to those due to far‐fault motions, if the response to far‐field records are expressed in terms of the ratio of T to the record's characteristic period. However, as the latter is usually much shorter than the pulse period of motions with fling, the range of periods of interest for common structures becomes a short‐period range under fling motions and exhibits very large amplification of residual and peak inelastic displacements. Similar, but less acute, are the effects of motions with a velocity pulse. Wavelets of different complexity are studied as approximations to near‐fault records. Simple two‐parameter wavelets for fling motions overestimate peak inelastic displacements; those for pulse‐type motions overestimate residual displacements. A more complex four‐parameter wavelet for motions with a velocity pulse predicts overall well residual and peak displacements due to either pulse‐ or fling‐type motions; a hard‐to‐identify parameter of the wavelet impacts little computed residual displacements; another significantly affects them and should be carefully estimated from the record. Even this most successful of wavelets overpredicts residual displacements for the periods of engineering interest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper demonstrates the effectiveness of utilizing advanced ground motion intensity measures (IMs) to evaluate the seismic performance of a structure subject to near‐source ground motions. Ordinary records are, in addition, utilized to demonstrate the robustness of the advanced IM with respect to record selection and scaling. To perform nonlinear dynamic analyses (NDAs), ground motions need to be selected; as a result, choosing records that are not representative of the site hazard can alter the seismic performance of structures. The median collapse capacity (in terms of IM), for example, can be systematically dictated by including a few aggressive or benign pulse‐like records into the record set used for analyses. In this paper, the elastic‐based IM such as the pseudo‐spectral acceleration (Sa) or a vector of Sa and epsilon has been demonstrated to be deficient to assess the structural responses subject to pulse‐like motions. Using advanced IMs can be, however, more accurate in terms of probabilistic response prediction. Scaling earthquake records using advanced IMs (e.g. inelastic spectral displacement, Sdi, and IM 1I&2E; the latter is for the significant higher‐mode contribution structures) subject to ordinary and/or pulse‐like records is efficient, sufficient, and robust relative to record selection and scaling. As a result, detailed record selection is not necessary, and records with virtually any magnitude, distance, epsilon and pulse period can be selected for NDAs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A predictive model is presented for estimating the peak inelastic oscillator displacements (Sd,ie) from peak ground velocity (PGV). The proposed model accounts for the variation of Sd,ie for bilinear hysteretic behavior under constant ductility (µ) and normalized lateral strength ratio (R) associated with postyield stiffness ratios of α=0 and 5%. The regression coefficients are based on a ground‐motion database that contains dense‐to‐stiff soil site recordings at distances of up to 30 km from the causative fault. The moment magnitude ( M ) range of the database is 5.2? M ?7.6 and the ground motions do not exhibit pulse‐dominant signals. Confined to the limitations imposed by the ground‐motion database, the model can estimate Sd,ie by employing the PGV predictions obtained from the attenuation relationships (ground‐motion prediction equations). In this way, the influence of important seismological parameters can be incorporated to the variation of Sd,ie in a fairly rationale manner. This feature of the predictive model advocates its implementation in the probabilistic seismic hazard analysis that employs scalar ground‐motion intensity indices. Various case studies are presented to show the consistent estimations of Sd,ie by the proposed model. The error propagation in the Sd,ie estimations is also discussed when the proposed model is associated with attenuation relationships. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
In the framework of the revision of Part 1 of Eurocode 8, this study aims at developing new empirical correlations to compute peak values of ground velocity (PGV) and displacement (PGD) as a function of elastic spectral ordinates for design. At variance with the expressions for PGV and PGD currently adopted in the Eurocode 8, based solely on the peak ground acceleration (PGA), in this paper reference is made to spectral ordinates of the short and intermediate period range, namely Ss, which is the constant acceleration spectral ordinate, and S1, which is the spectral ordinate at 1 s. On the one hand, a relationship between PGV and the product (Ss?S1) was found based on the regression analysis on a high‐quality strong‐motion dataset. On the other hand, the PGD was estimated by extrapolating to long periods the constant displacement branch of the elastic response spectrum, introducing a correlation between the corner period TD and S1. For this purpose, results of a long period probabilistic seismic hazard assessment study for Italy, encompassing low to high seismicity areas, were considered. Furthermore, verification of the proposed relationship against strong‐motion records was carried out, and differences justified in terms of the concept of uniform hazard spectrum.  相似文献   

5.
在拟合或合成近断层脉冲型地震动的研究中,速度等效脉冲中的参数需要依据实际地震动确定,因此,如何从地震动中识别这些参数就成为一个需要解决的问题.详细分析了已有脉冲周期和脉冲速度峰值的识别方法,分析结果表明这些方法均具有局限性,尤其是对于不规则地震动.提出了基于平滑后的地震动识别脉冲周期和脉冲速度峰值的方法,并验证了这种识别方法的有效性.结果表明: 提出的脉冲周期和脉冲速度峰值识别方法可以克服以往方法的局限性,可以实现脉冲周期和脉冲速度峰值识别的程序化.  相似文献   

6.
A companion paper has investigated the effects of intensity measure (IM) selection in the prediction of spatially distributed response in a multi‐degree‐of‐freedom structure. This paper extends from structural response prediction to performance assessment metrics such as probability of structural collapse; probability of exceeding a specified level of demand or direct repair cost; and the distribution of direct repair loss for a given level of ground motion. In addition, a method is proposed to account for the effect of varying seismological properties of ground motions on seismic demand that does not require different ground motion records to be used for each intensity level. Results illustrate that the conventional IM, spectral displacement at the first mode, Sde(T1), produces higher risk estimates than alternative velocity‐based IM's, namely spectrum intensity, SI, and peak ground velocity, PGV, because of its high uncertainty in ground motion prediction and poor efficiency in predicting peak acceleration demands. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
核电厂在遭遇超设计基准地震时需要考虑安全停堆,以避免造成核泄漏事故。采用地震动的峰值加速度参数(PGA)作为判别停堆的参数具有一定的局限性,PGA参数不能反映地震动的频谱和持时特征,因而可能引起不必要的停堆。针对此问题,基于我国本土大量实际强震记录,遴选出7种典型的工程相关地震动参数,进而基于地震烈度指标,分析发现地震动的标准累计绝对速度参数能更好地表征地震对核电厂的整体潜在破坏能力,适合作为判别停堆的参数,然后提出两种确定预警参数阈值的方法,最终建议考虑我国强震数据特征的核电厂判别停堆的预警参数阈值,为我国核电厂的地震安全停堆参数的确定提供了参考。  相似文献   

8.
This study proposes an improved energy‐based approach for quantitative classification of velocity‐pulse‐like ground motions. The pulse amplitude is determined, in its value and in time location, by the amplitude of the half‐cycle pulse having the largest seismic energy. After conducting statistical analyses, a newly‐determined threshold level for selecting pulse‐like ground motions is derived; and then what followed is a comparison analysis of three pulse‐detecting schemes, one using the wavelet analysis, the other two using the energy concept. It is believed that other than providing a useful way of classifying pulse‐like ground motions for structural demand analysis, knowledge of this work could also benefit the development of the ground motion prediction equations accounting for pulse effects, and further to aid the probabilistic seismic hazard analysis in a near‐fault environment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Near-fault ground motions can impose particularly high seismic demands on the structures due to the pulses that are typically observed in the velocity time-histories. The velocity pulses can be further categorized into either a distinct acceleration pulse (acc-pulse) or a succession of high-frequency, one-sided acceleration spikes (non-acc-pulse). The different characteristics of velocity pulses imply different frequency content of the ground motions, potentially causing different seismic effects on the structures. This study aims to investigate the characteristics of the two types of velocity pulses and their impacts on the inelastic displacement ratio (CR) of single-degree-of-freedom systems. First, a new method that enables an automated classification of velocity pulses is used to compile a ground motion dataset which consists of 74 acc-pulses and 45 non-acc-pulses. Several intensity measures characterizing different seismological features are then compared using the two groups of records. Finally, the influences of acc-pulses and non-acc-pulses on the CR spectra are studied; the effects of pulse period and hysteretic behavior are also considered. Results indicate that the characteristics of the two types of velocity pulses differ significantly, resulting in clearly distinct CR spectral properties between acc-pulses and non-acc-pulses. Interestingly, mixing acc-pulses and non-acc-pulses can lead to local “bumps” that were found in the CR spectral shape by previous studies. The findings of this study highlight the importance of distinguishing velocity pulses of different types when selecting near-fault ground motions for assessing the nonlinear dynamic response of structures.  相似文献   

10.
This paper focuses on the effects of long‐period pulse of near‐fault ground motions on the structural damage potential. Two sets of near‐fault ground motion records from Chi‐Chi, Taiwan earthquake and Northridge earthquake with and without distinct pulse are selected as the input, and the correlation analysis between 30 non‐structure‐specific intensity measure parameters and maximum inelastic displacements and energy responses (input energy and hysteretic energy) of bilinear single degree of freedom systems are conducted. Based on the frequency characteristic of near‐fault ground motions with remarkable long‐period components, two intensity indices are proposed, namely, the improved effective peak acceleration (IEPA) and improved effective peak velocity (IEPV). In addition a new characteristic period of these ground motions is defined based on IEPA and IEPV. Numerical results illustrate that the intensity measure parameters related to ground acceleration present the best correlation with the seismic responses for rigid systems; the velocity‐related and displacement‐related parameters are better for medium‐frequency systems and flexible systems, respectively. The correlation curves of near‐fault ground motions with velocity pulse differ from those of ground motions without pulse. Moreover, the improved parameters IEPA and IEPV of near‐fault impulsive ground motions enhance the performance of intensity measure of corresponding conventional parameters, i.e. EPA and EPV. The new characteristic period based on IEPA and IEPV can better reflect the frequency content of near‐fault ground motions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
2021年5月22日,青海省果洛州玛多县发生7.4级地震,中国强震动观测网络在主震中捕获16组强震动数据.对48条三分向加速度记录进行基线校正、滤波等常规处理,计算相应的地震动参数,发现位于断层破裂前向位置的63DAW台NS向记录的地震动速度波形具有长周期分量丰富的特征.分析6个典型台站的单自由度加速度反应谱,并与我国...  相似文献   

12.
在分析和研究近场强震记录的基础上,对地面运动速度大脉冲进行了数值模拟。研究结果表明:有速度大脉冲的地面运动主要产生在断层周围。是地震发生时断层两盘突然错动在周围场地产生的特殊运动效应,单耳速度大脉冲常伴随有较大的地面永久位移,双耳或多耳速度脉冲常对应于位移大脉冲及可恢复位移,其产生机理与断层的破裂速度关系不大,与断层两盘的位移量有直接关系。速度大脉冲对近断层的长周期结构作用显著,值得研究。  相似文献   

13.
近断层脉冲型地震动的模拟方法   总被引:12,自引:1,他引:11       下载免费PDF全文
近断层地震动的向前方向性效应和永久地面位移效应导致其速度时程表现为长周期、大峰值的速度脉冲,其位移时程表现为阶跃型脉冲. 针对这些特点,同时考虑向前方向性效应和永久地面位移效应,提出了一种简单的、连续函数形式表达的等效速度脉冲模型. 在该模型中,包含描述速度脉冲周期、峰值和形状的5个待定参数,方便了实际脉冲型地震记录的拟合及模拟. 等效速度脉冲模型只包含单一的频率成分,不能反映脉冲型地震记录的高频成分. 根据对11次地震28条地震记录的分析, 速度脉冲的频率一般小于1Hz. 因此, 在模拟脉冲型地震记录的方法中,分别模拟低频脉冲成分和高频成分,并将两者叠加生成近断层脉冲型地震动的模拟时程.  相似文献   

14.
Housner谱烈度及修正谱烈度作为基于加速度记录时程直接得到的地震动强度参数,与建筑结构破坏及地震宏观烈度存在较高的相关性,是可靠的地震仪器烈度物理参数指标。然而,相对于地面加速度峰值、地面速度峰值等地震动峰值参数,三分量加速度记录对应的谱烈度计算过程较为复杂,耗时相对较长,影响了利用谱烈度确定地震仪器烈度的时效性。基于对强震动加速度记录的统计分析,本文提出了谱烈度的快速近似算法,仅计算4个方向上的谱烈度值,采用其中3点作圆即可获得水平面内谱烈度迹线的近似最大值,使计算速度提高了45倍,且保持了谱烈度作为地震仪器烈度物理指标的精度。利用在汶川MS 8.0地震等386次MS > 3.0地震中获取的2701组强震动加速度记录,经可靠性检验,结果表明所提出的Housner谱烈度快速近似算法的计算误差在±4.5%以内,可以同时满足地震仪器烈度速报的可靠性和时效性需求。  相似文献   

15.
Introduction By analyzing earthquake motions, we could find that earthquake motions near the causativefault have two characteristics. One is the remarkable directivity effect. The amplitude of thefault-normal component is larger than that of the fault-parallel one; the other is obvious pulse mo-tions. Bertero, et al (1977) studied the earthquake records of the 1971 San Fernando earthquake.They first pointed out that some ground motions recorded near the causative fault is characterizedb…  相似文献   

16.
近断层地震动等效速度脉冲研究   总被引:22,自引:5,他引:17       下载免费PDF全文
李新乐  朱晞 《地震学报》2004,26(6):634-643
近断层地震动对地表结构物造成严重的破坏,它具有明显的方向性和脉冲型特征. 在速度时程中含有大幅值、长周期的脉冲波,对结构响应影响很大. 为简化计算和分析的需要,在既有的等效速度脉冲模型的基础上,建议了较为合理等效速度脉冲模型. 在充分收集脉冲型近断层地震记录的基础上,对等效速度脉冲模型的脉冲周期、脉冲强度及卓越脉冲数等参数进行了研究,并与以往研究者的结果进行比较,以利于近断层区结构的抗震设计.  相似文献   

17.
近断层速度脉冲与震源机制的关系浅析   总被引:1,自引:1,他引:0  
本文初步分析了近断层速度脉冲的成因和特点,主要包括方向性效应与滑冲效应,并通过中国台湾集集地震的脉冲记录,分析了断层破裂方向和位移大小等震源参数对脉冲强度的影响。此外,基于有限移动源理论,说明了断层辐射与速度脉冲分布的关系,并探讨了利用运动学震源模型研究近断层地震动对速度脉冲影响的技术路线;评述了7种典型的等效速度脉冲模型,建议进一步研究等效速度脉冲函数与震源机制之间的关系。最后,简述了不同类型的断层引起速度脉冲的差异,并推测了产生脉冲型地震动的下限条件,同时展望该研究在地震预警方面的可能性。  相似文献   

18.
本文基于小波包技术的随机地震动模拟方法,提出一种改进的参数化随机近断层脉冲型地震动模拟方法。然后,通过识别和提取近断层脉冲型地震动数据库中脉冲型地震动的特征参数,建立了基于震源、传播路径和场地特征等参数的脉冲模型参数预测方程。最后,通过模拟实际记录和误差分析检验了改进的模拟方法的有效性。结果表明:应用改进的模拟方法得到的地震动时程无论在波形、频率特性还是峰值上均与实际记录具有较好的一致性。改进的模拟方法在保留地震动时频非平稳性的基础上,能够有效地提高近断层脉冲型地震动的模拟效果,并且能够很好地体现脉冲型地震动的主要特征。  相似文献   

19.
In order to investigate the response of structures to near‐fault seismic excitations, the ground motion input should be properly characterized and parameterized in terms of simple, yet accurate and reliable, mathematical models whose input parameters have a clear physical interpretation and scale, to the extent possible, with earthquake magnitude. Such a mathematical model for the representation of the coherent (long‐period) ground motion components has been proposed by the authors in a previous study and is being exploited in this article for the investigation of the elastic and inelastic response of the single‐degree‐of‐freedom (SDOF) system to near‐fault seismic excitations. A parametric analysis of the dynamic response of the SDOF system as a function of the input parameters of the mathematical model is performed to gain insight regarding the near‐fault ground motion characteristics that significantly affect the elastic and inelastic structural performance. A parameter of the mathematical representation of near‐fault motions, referred to as ‘pulse duration’ (TP), emerges as a key parameter of the problem under investigation. Specifically, TP is employed to normalize the elastic and inelastic response spectra of actual near‐fault strong ground motion records. Such normalization makes feasible the specification of design spectra and reduction factors appropriate for near‐fault ground motions. The ‘pulse duration’ (TP) is related to an important parameter of the rupture process referred to as ‘rise time’ (τ) which is controlled by the dimension of the sub‐events that compose the mainshock. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Ground motions with strong velocity pulses are of particular interest to structural earthquake engineers because they have the potential to impose extreme seismic demands on structures. Accurate classification of records is essential in several earthquake engineering fields where pulse‐like ground motions should be distinguished from nonpulse‐like records, such as probabilistic seismic hazard analysis and seismic risk assessment of structures. This study proposes an effective method to identify pulse‐like ground motions having single, multiple, or irregular pulses. To effectively characterize the intrinsic pulse‐like features, the concept of an energy‐based significant velocity half‐cycle, which is visually identifiable, is first presented. Ground motions are classified into 6 categories according to the number of significant half‐cycles in the velocity time series. The pulse energy ratio is used as an indicator for quantitative identification, and then the energy threshold values for each type of ground motions are determined. Comprehensive comparisons of the proposed approach with 4 benchmark identification methods are conducted, and the results indicate that the methodology presented in this study can more accurately and efficiently distinguish pulse‐like and nonpulse‐like ground motions. Also presented are some insights into the reasons why many pulse‐like ground motions are not detected successfully by each of the benchmark methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号