首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human activities influence watershed sediment dynamics in profound ways, often resulting in excessive loading of suspended sediment to rivers. One of the primary factors limiting our ability to effectively manage sediment at the watershed scale has been our inability to adequately measure relatively small erosion rates (on the order of millimeters to centimeters per year) over annual and sub‐annual time scales on spatially‐extensive landforms, such as river banks and bluffs. Terrestrial laser scanning (TLS) can be employed to address this need. TLS collects high‐resolution data allowing for more accurate monitoring of erosion rates and processes, and provides a new opportunity to make precise measurements of geomorphic change on vertical landforms like banks and bluffs, but challenges remain. This research highlights challenges and limitations of using TLS for change detection on river banks and bluffs including the presence of vegetation, natural surface crenulations, and difficulties with creating benchmarks, and provides solutions developed to overcome these limitations. Results indicate that data processing algorithms for change detection can have a significant impact on the calculated erosion rates, with different methods producing results that can vary by over 100%. The most accurate change detection technique compares a point cloud to a triangulated irregular network (TIN) along a set of vectors that accommodate bluff curvature. This paper outlines a variety of methods used to measure bluff change via TLS and explains the accompanying error analysis that supports these methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
We present observations and analysis of gully headcut erosion, which differ from previous headcut studies in both spatial and temporal detail. Using ten terrestrial laser scanning (TLS) surveys conducted over a period of 3 years, we mapped headcut erosion with centimeter‐scale detail on a sub‐annual basis. Erosional change is observed through point cloud differencing, which expands on previous studies of headcut retreat rate by revealing the evolution of the headcut morphology. Headcut retreat observations are combined with hydrological measurements to explore the controlling factors of erosional retreat. We find that (i) mass failure due to wetting, (ii) saturation weakening of shale bedrock in plunge pools, and (iii) direct wash over the headcut face all appear to contribute to headcut retreat; however, mass failure via wetting appears to be the dominant process. Soil moisture was monitored near the study headcut at 0.4 m depth, and time‐lapse photos show that soil wetting tends to be concentrated along the headcut apex after rainfall and snowmelt runoff events. We find that moisture concentration at the headcut apex leads to more rapid erosion at that location than along the headcut sidewalls, resulting in a semi‐ellipsoidal plan view morphology that is maintained as the headcut migrates up‐valley. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A slow moving compound rock slide located in the northern Apennines of Italy was mapped and monitored through the integration of Airborne Laser Scanning (ALS), multi‐temporal long‐range Terrestrial Laser Scanning (TLS), and Automated Total Station (ATS) measurements. Landslide features were mapped using a High Resolution Digital Terrain Model (HR‐DTM) obtained by merging ALS and TLS data in an Iterative Closest Point (ICP) procedure. Slope movements in the order of centimeters to a few decimeters were quantified with Differential TLS (D‐TLS) based on a Surface Matching approach and supported by ATS data to define stable reference surfaces. The integrated approach allowed mapping of the composite geomorphic features of the rock slide under examination, revealing its complex dynamic nature and further proving that laser scanning is a versatile and widely applicable tool for slope process analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Influence of rock mass strength on the erosion rate of alpine cliffs   总被引:1,自引:0,他引:1  
Collapse of cliff faces by rockfall is a primary mode of bedrock erosion in alpine environments and exerts a first‐order control on the morphologic development of these landscapes. In this work we investigate the influence of rock mass strength on the retreat rate of alpine cliffs. To quantify rockwall competence we employed the Slope Mass Rating (SMR) geomechanical strength index, a metric that combines numerous factors contributing to the strength of a rock mass. The magnitude of cliff retreat was calculated by estimating the volume of talus at the toe of each rockwall and projecting that material back on to the cliff face, while accounting for the loss of production area as talus buries the base of the wall. Selecting sites within basins swept clean by advancing Last Glacial Maximum (LGM) glaciers allowed us to estimate the time period over which talus accumulation occurred (i.e. the production time). Dividing the magnitude of normal cliff retreat by the production time, we calculated recession rates for each site. Our study area included a portion of the Sierra Nevada between Yosemite National Park and Lake Tahoe. Rockwall recession rates determined for 40 alpine cliffs in this region range from 0·02 to 1·22 mm/year, with an average value of 0·28 mm/year. We found good correlation between rockwall recession rate and SMR which is best characterized by an exponential decrease in erosion rate with increasing rock mass strength. Analysis of the individual components of the SMR reveals that joint orientation (with respect to the cliff face) is the most important parameter affecting the rockwall erosion rate. The complete SMR score, however, best synthesizes the lithologic variables that contribute to the strength and erodibility of these rock slopes. Our data reveal no strong independent correlations between rockwall retreat rate and topographic attributes such as elevation, aspect, or slope angle. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The precision of height measurements derived from laser scanning a weathered rock surface was analysed. Different registration methods for comparing surfaces to deduce weathering were assessed and the most precise was found to be the method that used registration shapes as control, located in different planes relative to the scanned surface. In addition, the different sources of error in scanning precision were assessed by varying factors such as scan distance, lens configuration, scan angle and the nature of the topography being scanned. From this analysis it was possible to suggest what the optimal scanning conditions were for this particular experimental set‐up. The procedures outlined for assessing errors in the precision of height measurements are transferable to other scanning studies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Talus slopes are common places for debris storage in high-mountain environments and form an important step in the alpine sediment cascade. To understand slope instabilities and sediment transfers, detailed investigations of talus slope geomorphology are needed. Therefore, this study presents a detailed analysis of a talus slope on Col du Sanetsch (Swiss Alps), which is investigated at multiple time scales using high-resolution topographic (HRT) surveys and historical aerial photographs. HRT surveys were collected during three consecutive summers (2017–2019), using uncrewed aerial vehicle (UAV) and terrestrial laser scanning (TLS) measurements. To date, very few studies exist that use HRT methods on talus slopes, especially to the extent of our study area (2 km2). Data acquisition from ground control and in situ field observations is challenging on a talus slope due to the steep terrain (30–37°) and high surface roughness. This results in a poor spatial distribution of ground control points (GCPs), causing unwanted deformation of up to 2 m in the gathered UAV-derived HRT data. The co-alignment of UAV imagery from different survey dates improved this deformation significantly, as validated by the TLS data. Sediment transfer is dominated by small-scale but widespread snow push processes. Pre-existing debris flow channels are prone to erosion and redeposition of material within the channel. A debris flow event of high magnitude occurred in the summer of 2019, as a result of several convective thunderstorms. While low-magnitude (<5,000 m3) debris flow events are frequent throughout the historical record with a return period of 10–20 years, this 2019 event exceeded all historical debris flow events since 1946 in both extent and volume. Future climate predictions show an increase of such intense precipitation events in the region, potentially altering the frequency of debris flows in the study area and changing the dominant geomorphic process which are active on such talus slopes. © 2020 John Wiley & Sons, Ltd.  相似文献   

7.
Terrestrial Laser Scanners (TLS) provide a non‐contact method to measure soil microtopography of relatively large surface areas. The appropriateness of the technology in relatation to the derived Digital Elevation Models (DEM) however has not been reported. The suitability of TLS for soil microtopography measurements was tested on‐field for three large soil surface areas in agricultural fields. The acquired point clouds were filtered with a custom cloud import algorithm, and converted into digital elevation models (DEM) of different resolutions. To assess DEM quality, point clouds measured from different viewpoints were statistically compared. The statistical fit between point clouds from different viewpoints depends on spatial resolution of the DEM. The best results were obtained at the higher resolutions (0.02 to 0.04 cm), where less than 5 % of the grid cells showed significant differences between one viewpoint and the next (p < 0.01). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The boat‐based, mobile mapping system (BoMMS) with a laser scanner allows the derivation of detailed riverine topographical data for fluvial applications. Combined with data acquisition from static terrestrial LiDAR (light detection and range) or mobile terrestrial LiDAR on the ground, boat‐based laser scanning enables a totally new field mapping approach for fluvial studies. The BoMMS approach is an extremely rapid methodology for surveying riverine topography, taking only 85 min to survey a reach approximately 6 km in length. The BoMMS approach also allowed an effective survey angle for deep river banks, which is difficult to achieve with aerial or static terrestrial LiDAR. Further, this paper demonstrates the three‐dimensional mapping of a point‐bar and its detailed morphology. Compared with the BoMMS surface, approximately, 80% and 96% of the terrestrial LiDAR points showed a height deviation of less than 2 cm and 5 cm, respectively, with an overall standard deviation of ± 2·7 cm. This level of accuracy and rapidity of data capture enables the mapping of post‐flood deposition directly after a flood event without an extensive time lag. Additionally, the improved object characterisation may allow for better 3D mapping of the point bar and other riverrine features. However, the shadow effect of the BoMMS survey in point bar mapping should be removed by additional LiDAR data to acquire entire riverine topography. The approach demonstrated allowed a large reach to be surveyed compared with static terrestrial LiDAR and increased the spatial limit of survey towards aerial LiDAR, but it maintains the same or even better temporal resolution as static terrestrial LiDAR. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
High-resolution quantification of fluvial topography has been enabled by a number of geomatics technologies. Hyperscale surveys with spatial extents of <1 km2 have been widely demonstrated by means of terrestrial laser scanning (TLS) and structure-from-motion (SfM) photogrammetry. Recent advances in the development and integration of global navigation satellite system (GNSS), inertial measurement unit (IMU) and lightweight laser scanning technologies are now resulting in the emergence of personal mobile laser scanners (MLS) that have the potential to increase data acquisition and processing rates by one to two orders of magnitude compared to TLS/SfM, and thus challenge the recent dominance of these technologies. This investigation compares a personal MLS survey using a Leica Pegasus Backpack that integrates Velodyne Puck VLP-16 sensors, and a multi-station static TLS survey using a Riegl VZ-1000 scanner, to produce digital elevation models (DEMs) and surface sedimentology maps. The assessment is undertaken on a 500 m long reach of the braided River Feshie. Comparison to 107 independent real-time kinematic (RTK)-GNSS check points resulted in similar mean error (ME) and standard deviation error (SDE) for TLS (ME = −0.025 m; SDE = 0.038 m) and personal MLS (ME = −0.014 m; SDE = 0.019 m). Direct cloud-to-cloud (C2C) comparison between a sample of TLS and personal MLS observations (2.8 million points) revealed that C2C distances follow a sharply decreasing Burr distribution (a = 2.35, b = 3.19, rate parameter s = 9.53). Empirical relationships between sub-metre topographic variability and median sediment grain size (10–100 mm) demonstrate that surface roughness from personal MLS can be used to map median grain size. Differences between TLS and personal MLS empirical relationships suggest such relationships are dependent on survey technique. Personal MLS offers distinct logistical advantages over SfM photogrammetry and TLS for particular survey situations and is likely to become a widely applied technique. © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
For more than a decade, habitat mapping using biotopes (in‐channel hydraulically‐defined habitats) has underpinned aquatic conservation in the UK through (a) providing baseline information on system complexity and (b) allowing environmental and ecological change to be monitored and evaluated. The traditional method used is the subjective river habitat or corridor survey. This has recently been revised to include the floodplain via GeoRHS, but issues still exist concerning development of a national database due to the labour intensive nature of the data collection, subjectivity issues between samplers, temporal changes, the fuzzy nature of perceived habitats and habitat boundaries. This paper takes an innovative approach to biotope definition using high resolution spatial data to define water surface roughness for two representative reaches of the River South Tyne, Cumbria, and the River Rede, Northumberland, UK. Data was collected using a terrestrial laser scanner (TLS) and hydraulic variability simply expressed through assigning a local standard deviation value to a set of adjacent water surface values. Statistical linkage of these data with biotope locations defined visually in the field allowed complete mapping of the surveyed reach defining habitat and biotope areas to the fine scale resolution of the TLS data. Despite issues of data loss due to absorption and transmission through the water, the reflected signal generated an extremely detailed and objective map of the water surface roughness, which may be compared with known biotope locations as defined by visual identification in the field. The TLS accuracy achieved in the present study is comparable with those obtained using hyperspectral imagery: with 84% of the pool/glide/marginal deadwater amalgamated biotope, 88% of riffles, 57% of runs and 50% of the amalgamated cascade/rapid biotope successfully plotted. It is clear from this exercise that biotope distribution is more complex than previously mapped using subjective techniques, and based upon the water surface roughness delimiters presented in this study, the amalgamation of pools with glides and marginal deadwaters, riffles with unbroken standing waves, and cascades with rapids, is proposed. Copyright © 2010 John Wiley & Sons, Ltd  相似文献   

11.
层状结构岩质边坡动力稳定性试验研究   总被引:8,自引:0,他引:8  
介绍了所进行的层状结构岩质边坡动力稳定性试验。结果表明,在水平地震动加速度达到0.4g时,层状结构岩质边坡就会出现局部的层间错动现象,当水平地震加速度达到0.8g时,层间结合力较弱的边坡将发生大面积的表面滑动和崩塌。而在铅直地震力作用下,当地震加速度达到1.0g时,才会出现破坏现象。因而对层状结构岩质边坡来说,其水平地震力造成的危害是主要的。  相似文献   

12.
The subsurface temperature field of a rock slope is a key variable influencing both bedrock fracturing and slope stability. However, significant unknowns remain relating to the effect of air and water fracture flow, which can rapidly transmit temperature changes to appreciable depths. In this work, we analyze a unique set of temperature measurements from an alpine rock slope at ~2400 m a.s.l. in southern Switzerland. The monitored area encompasses part of an active slope instability above the village of Randa (VS) and is traversed by a network of open cracks, some of which have been traced to >80 m depth. We first describe distributed temperature measurements and borehole profiles, highlighting deep steady temperatures and different transient effects, and then use these data to approximate the conductive temperature field at the site. In a second step, we analyze the impact of air and water circulation in deep open fractures on the subsurface thermal field. On multiple visits to the study site in winter, we consistently noted the presence of warm air vents in the snowpack following the trace of deep tension cracks. Measurements showed that venting air changed temperature gradually from ~3 to 2 °C between December and May, which is similar to the rock temperature at around 50 m depth. Comparison with ambient air temperature suggests that winter conditions favor buoyancy‐driven convective air flow in these fractures, which acts to cool the deep subsurface as the rock gives up heat to incoming air. The potential impact of this process on the local thermal field is revealed by a disturbed temperature profile in one borehole and transient signals observed at depths well below the thermal active layer. Seasonal water infiltration during snowmelt appears to have little impact on the temperature field in the monitored area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Acquiring high resolution topographic data of natural gravel surfaces is technically demanding in locations where the bed is not exposed at low water stages. Often the most geomorphologically active surfaces are permanently submerged. Gravel beds are spatially variable and measurement of their detailed structure and particle sizes is essential for understanding the interaction of bed roughness with near‐bed flow hydraulics, sediment entrainment, transport and deposition processes, as well as providing insights into the ecological responses to these processes. This paper presents patch‐scale laboratory and field experiments to demonstrate that through‐water terrestrial laser scanning (TLS) has the potential to provide high resolution digital elevation models of submerged gravel beds with enough detail to depict individual grains and small‐scale forms. The resulting point cloud data requires correction for refraction before registration. Preliminary validation shows that patch‐scale TLS through 200 mm of water introduces a mean error of less than 5 mm under ideal conditions. Point precision is not adversely affected by the water column. The resulting DEMs can be embedded seamlessly within larger sub‐aerial reach‐scale surveys and can be acquired alongside flow measurements to examine the effects of three‐dimensional surface geometry on turbulent flow fields and their interaction with instream ecology dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Anthropogenic activities on peatlands, such as drainage, can increase sediment transport and deposition downstream resulting in harmful ecological impacts. The objective of this study was to quantify changes in erosion/deposition quantities and surface roughness in peatland forest ditches by measuring changes in ditch cross‐sections and surface microtopography with two alternative methods: manual pin meter and terrestrial laser scanning (TSL). The methods were applied to a peat ditch and a ditch with a thin peat layer overlaying erosion sensitive mineral soil within a period of two years following ditch cleaning. The results showed that erosion was greater in the ditch with exposed mineral soil than in the peat ditch. The two methods revealed rather similar estimates of erosion and deposition for the ditch with the thin peat layer where cross‐sectional changes were large, whereas the results for smaller scale erosion and deposition at the peat ditch differed. The TLS‐based erosion and deposition quantities depended on the size of the sampling window used in the estimations. Surface roughness was smaller when calculated from the pin meter data than from the TLS data. Both methods indicated that roughness increased in the banks of the ditch with a thin peat layer. TLS data showed increased roughness also in the peat ditch. The increase in surface roughness was attributed to erosion and growth of vegetation. Both methods were suitable for the measurements of surface roughness and microtopography at the ditch cross‐section scale, but the applicability, rigour, and ease of acquisition of TLS data were more evident. The main disadvantage of the TLS instrument (Leica ScanStation 2) compared with pin meter was that even a shallow layer of humic (dark brown) water prevented detection of the ditch bed. The geomorphological potential of the methods was shown to be limited to detection of surface elevation changes >~0.1 m. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Quantifying the morphology of braided rivers is a key task for understanding braided river behaviour. In the last decade, developments in geomatics technologies and associated data processing methods have transformed the production of precise, reach‐scale topographic datasets. Nevertheless, generating accurate Digital Elevation Models (DEMs) remains a demanding task, particularly in fluvial systems. This paper identifies a threefold set of challenges associated with surveying these dynamic landforms: complex relief, inundated shallow channels and high rates of sediment transport, and terms these challenges the ‘morphological’, ‘wetted channel’ and ‘mobility’ problems, respectively. In an attempt to confront these issues directly, this paper presents a novel survey methodology that combines mobile terrestrial laser scanning and non‐metric aerial photography with data reduction and surface modelling techniques to render DEMs from the resulting very high resolution datasets. The approach is used to generate and model a precise, dense topographic dataset for a 2.5 km reach of the braided Rees River, New Zealand. Data were acquired rapidly between high flow events and incorporate over 5 x 109 raw survey observations with point densities of 1600 pts m‐2 on exposed bar and channel surfaces. A detailed error analysis of the resulting sub‐metre resolution is described to quantify DEM quality across the entire surface model. This reveals unparalleled low vertical errors for such a large and complex surface model; between 0.03 and 0.12 m in exposed and inundated areas of the model, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Detection of surface change is a fundamental task in geomorphology. Terrestrial laser scanners are increasingly used for monitoring surface change resulting from a variety of geomorphic processes, as they allow the rapid generation of high‐resolution digital elevation models. Irrespective of instrument specifics, survey design or data processing, such data are subject to a finite level of ambiguity in position measurement, a consideration of which must be taken into account when deriving change. The propagation of errors is crucial in change detection because even very small uncertainties in elevation can produce large uncertainties in volume when extrapolated over an area of interest. In this study we propose a methodology to detect surface change and to quantify the resultant volumetric errors in areas of complex topography such as channels, where data from multiple scan stations must be combined. We find that a commonly proposed source of error – laser point elongation at low incidence angles – has a negligible effect on the quality of the final registered point cloud. Instead, ambiguities in elevation inherent to registered datasets have a strong effect on our ability to detect and measure surface change. Similarly, we find that changes in surface roughness between surveys also reduce our ability to detect change. Explicit consideration of these ambiguities, when propagated through to volume calculations, allows us to detect volume change of 87 ± 5 m3, over an area of ~ ?4900 m2, due to passage of a debris flow down a 300 m reach of the Illgraben channel in Switzerland. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Results are presented of distinct element computer modelling used to examine rates and mechanisms of change in rock slopes and cliffs, where material intact properties determine process and form but the most significant controls are the joint pattern and cross-joint properties. The modelling approach does not appear to have been used before in a geomorphological context and provides an alternative approach for examining cliff development. Field and laboratory data have been collected for the Portland Limestone outcrop of the Isle of Purbeck, central southern England. The Portland Limestome is a hard, shelly, crystalline sediment of the Upper Jurassic. It has a regular discontinuity pattern throughout the outcrop in Purbeck. While joint orientation remains relatively constant, bedding changes from horizontal to vertical, a consequence of the Purbeck Monocline. There are resulting implications for spatial variations in rock slope evolution. The modelling exercise enhances previous knowledge on rock failure mechanisms and slope development along the Purbeck coast and demonstrates its potential in research where landforms are developed in lithified, jointed rock masses. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Physical modelling experiments have been carried out in a cold room to test on a small scale, the effects of water supply during the thaw of an experimental slope with permafrost. Permafrost was maintained at depth and a thin active layer was frozen and thawed from the surface. Data from the experiments relate to two different conditions, first with moderate rainfall, and second with heavy rainfall during the thaw period. When moderate rainfall is applied during thaw phases, the experimental slope is slightly degraded. At the scale of the experiment, erosion processes involve frost jacking of the coarse blocks, frost creep and gelifluction that induce slow and gradual down slope displacements of the active layer, but also small landslides leading to large but slow mass movements with short displacements. Changes in experimental slope morphology are marked by the initiation of a small‐scale drainage network and the development of a little crest line which shows a progressive upslope migration. With such boundary conditions, there is not enough water supply to evacuate downslope the whole of the eroded material and a topographic smoothing is observed. When heavy rainfall is applied during thaw periods, rapid mass wasting (small mud‐flows and debris flows) become prominent. Slope failures are largely controlled by the water saturation of the active layer and by the occurrence of steeper slopes. At the scale of the experiment, rates of erosion and maximum incision increase by about 100% leading to significant slope degradation with marked and specific scars comparable to gullying. These morphological changes are dependant on both the size and the frequency of catastrophic events. These experiments provide detailed data that could improve the knowledge of the physical parameters that control the initiation, at a small‐scale, of erosion processes on periglacial slopes with a thin active layer and/or with thin cover of mobilizable slope deposits. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Saltation is the dominant form of aeolian transport of sand sized grains, yet its heterogeneous spatial and temporal distribution, and inherent feedback and interaction with the surface over which sand is transported, hinders large scale quantification. In this letter we present preliminary data on saltation cloud characteristics quantified using terrestrial laser scanning (TLS). These data, together with surface moisture and surface roughness patterns, elucidate the importance of saltation in the development of protodunes on a drying beach, and indicate the potential usefulness of TLS in examining aeolian processes in both beach and desert environments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号