首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A statistical analysis of published seismic refraction results in the Pacific Ocean confirms the existence of a progressive thickening of the oceanic layer with age, following an inverse exponential law. There is no strong indication in the Pacific data of an increase in the thickness of layer 2 with decreasing spreading rate.Contribution No. 93 of the Département Scientifique of the Centre Océanologique de Bretagne, B.P. 337, 29200, Brest, France.  相似文献   

2.
We undertook the first measurements of metabolic Cu requirements (net Cu:C assimilation ratios) and steady-state Cu uptake rates (ρCuss) of natural plankton assemblages in the northeast subarctic Pacific using the short-lived radioisotope 67Cu. Size-fractionated net Cu:C assimilation ratios varied ~3 fold (1.35–4.21 μmol Cu mol C?1) among the stations along Line P, from high Fe coastal waters to the Fe-limited open ocean. The variability in Cu:C was comparable to biogenic Fe:C ratios in this region. As previously observed for Fe uptake, the bacterial size class accounted for half of the total particulate ρCuss. Interestingly, carbon biomass-normalized rates of Fe uptake from the siderophore desferrioxamine B (DFB) (ρFeDFB; a physiological proxy for Fe-limitation) by the >20 μm size class were positively correlated with the intracellular net Cu:C assimilation ratios in this size class, suggesting that intracellular Cu requirements for large phytoplankton respond to increased Fe-limitation. At Fe-limited Ocean Station Papa (OSP), we performed short-term Cu uptake (ρCuL) assays to determine the relative bioavailability of Cu bound to natural and synthetic ligands. Like the volumetric ρCuss measured along Line P, the bacterial size class was responsible for at least 50% of the total ρCuL. Uptake rates of Cu from the various organic complexes suggest that Cu uptake was controlled by the oxidation state of the metal and by the metal:ligand concentration ratio, rather than the concentration of inorganic species of Cu in solution. Collectively, these data suggest that Cu likely plays an important role in the physiology of natural plankton communities beyond the toxicological effects studied previously.  相似文献   

3.
To evaluate their response to oceanographic conditions, interannual variations in seasonal abundance of Eucalanus bungii were investigated in zooplankton samples collected from the Oyashio Current system from 1960 to 2002. Large decadal changes were observed in seasonal timing and population age-structure. During the early 1970s and 1990s, E. bungii were abundant until mid-summer, but during the late 1970s and early 1980s, the season of maximum abundance was limited to spring and early summer. From the late 1970s to early 1980s, spring–summer abundance of newly recruited young copepodites (C1–C2) declined significantly, and an even more pronounced decline was observed for the abundance of the late copepodite stages (C3–C5). Monthly population structure showed that young of the year stopped development at C3 during the late 1970s to early 1980s, but molted into late copepodite stages in the other decades. Seasonal weakening of the Aleutian Low Pressure System estimated from North Pacific Index (NPI) was rapid during the late 1970s to early 1980s, and the NPI was positively correlated with phosphate concentrations at sea surface, spring–summer abundance of the young copepodites stages, and the extended duration of the season of high abundance. These results suggest that the decadal decline of copepod abundance originated at the early life stages, and was associated with a shift of atmospheric and oceanographic conditions. As possible biological mechanisms, we propose reduced egg production, lower survival for the portion of the annual cohort with late birth date, and overwintering of the survivors at younger stages.  相似文献   

4.
Seasonal change in the downward carbon transport due to respiration and mortality through diel vertical migration (DVM) of the calanoid copepods Metridia pacifica and Metridia okhotensis was estimated in the Oyashio region, western subarctic Pacific during six cruises from June 2001 to June 2002. M. pacifica (C4, C5 and adult females) was an active migratory species throughout the year though its DVM amplitude varied among seasons and stages. The mean distribution depths of adult females during the daytime were positively related with the illumination level in the water column, being shallowest in April and deepest in January. M. okhotensis generally showed less-extensive migrations than M. pacifica. Therefore, together with their lower abundance, this species is considered to be a less-important mechanism of downward transport of carbon except for April when their DVM was more active and descended deeper than M. pacifica, which remained in the upper 150 m even during the daytime. The mean migrating biomass of the two Metridia species was 558 mg C m−2 d−1 and was high during summer to winter (263–1676 mg C m−2 d−1) and low during spring (59–63 mg C m−2 d−1). Total downward flux through DVM fluctuated between 1.0 and 20.0 mg C m−2 d−1 with an annual mean of 8.0 mg C m−2 d−1. Contribution of the respiratory flux was greater than the mortality flux and accounted for 64–98% of total migratory flux throughout the year except for January when contribution of both fluxes was equal. Overall the annual carbon transport by DVM of Metridia spp. was estimated as 3.0 g C m−2 year−1, corresponding to 15% of the annual total POC flux at 150 m at the study site, suggesting that DVM is a significant process for carbon export in the subarctic region as well as that in tropical and subtropical oceanic regions. Since DVM in M. pacifica is more active during the non-bloom season when the gravitational flux of particulate matter is low, this species plays an important role in driving the biological pump in the subarctic Pacific during summer to winter.  相似文献   

5.
The copepods Neocalanus plumchrus, N. flemingeri, N. cristatus, and Eucalanus bungii dominate the net zooplankton throughout the subarctic Pacific Ocean. All four species have an extensive seasonal ontogenetic vertical migration, completing most or all of their feeding and somatic growth in spring and early summer. We used stratified tows with MOCNESS and BIONESS instrumented net systems to resolve their upper ocean vertical distributions in May and June of 1984, 1987 and 1988. In each year the feeding copepodite stages of all four species were concentrated above the permanent halocline (roughly from 0 to 150m). However, the four species showed strong vertical species zonation and segregation within this layer. We consistently found a near-surface pair (N. plumchrus and N. flemingeri) and a subsurface pair (N. cristatus and E. bungii). The boundary between these groups shifts vertically, but was sharply defined and was very often coincident with a weak and transient thermocline marking the base of the layer actively mixed by surface wind and wave energy. Diel vertical migration was very limited during our sampling periods.The data suggest that the vertical distribution patterns of the copepods could be set by responses to the local intensity of turbulent mixing in the watercolumn. N. plumchrus and N. flemingeri occupied a stratum characterized by strong turbulence. N. cristatus and E. bungii occupied a stratum that was a local minimum in turbulence profiles. The depth of the boundary between the species pairs was deeper when winds and surface energy inputs were strong. The vertical partition pattern may also be determined by a difference in feeding strategy between the species pairs. N. plumchrus and N. flemingeri may feed on the enhanced protozoan population of the mixed layer, while N. cristatus and E. bungii feed on particle aggregates settling from above.  相似文献   

6.
During periods of sunspot maxima (approximately every 11 years) the mean winter position of the center of the Aleutian Low pressure system shifts from the Gulf of Alaska to the western Aleutian Islands, and mean, cyclonic, wind-stress transport in the Gulf of Alaska is reduced by roughly 20%. Coastal sea level data in the gulf do not reflect an 11-year cycle but spectral energy densities indicate an approximate 6-year periodicity also present in transpacific annual mean sea surface temperatures that, in the last one or two decades, parallels large year classes of Pacific herring in southeastern Alaska, large escapements of sockeye salmon fry in the Bristol Bay area, and maxima in the January catch of Dungeness crab in Alaska.  相似文献   

7.
Nitrogen uptake rates, and physical, chemical and biological characteristics of the euphotic zone were studied in winter, spring and late summer during the period 1992–1994 along a transect (Line P) extending from the continental slope off the southwest corner of Vancouver Island (British Columbia, Canada; station P4; 49°N, 127°W) to open waters in the NE Pacific (OSP; 50°N, 145°W). Nitrate (NO3) and silicic acid (Si(OH)4) concentrations increased offshore during every season. Lowest NO3 and Si(OH)4 values were observed during late summer and spring, and highest during winter throughout the euphotic zone. For spring and late summer, surface depletion of NO3 was observed at the inshore end of the transect, while offshore concentrations were never limiting for phytoplankton growth. Silicic acid was never depleted at any depth or station during the period covered by this study. Ammonium (NH4+) and urea concentrations exhibited a patchy distribution along the transect, with no seasonal variations. Chlorophyll a and particulate nitrogen did not show a consistent longitudinal pattern from year to year. In general, the highest concentrations of chlorophyll a and particulate nitrogen were measured during the late summer cruises, with lower values in spring and lowest in winter. Phytoplankton assemblages were numerically dominated by flagellates <5 μm throughout the water column on each cruise transect. Ammonium, urea and NO3 uptake rates represented on average 55, 24 and 21% of the depth-integrated total nitrogen uptake, both longitudinally and seasonally; hence, phytoplankton utilized nitrogen in the following order: NH4+>urea>NO3 along Line P. Ammonium may have inhibited the uptake rates of NO3 and urea. Urea uptake rates were lower than those of NH4+, but higher values were occasionally observed at a few depths along the transect, particularly during the spring of 1993. Depth-integrated NH4+ uptake rates were generally higher inshore, while NO3 uptake rates showed higher values offshore during most seasons. In contrast, urea uptake rates did not exhibit a consistent longitudinal trend. The depth-integrated f-ratio ranged from 0.05 to 0.37 with an average of 0.21 for all stations and cruises, and was overestimated on average by 36% when urea was excluded from the calculation. On a yearly basis, primary productivity in the NE subarctic Pacific was based on regenerated nitrogen.  相似文献   

8.
Discovery that the subarctic Pacific copepods previously grouped as Neocalanus plumchrus belong to two species required reanalysis of the life histories of both. After correction of the abundance estimates for N. plumchrus s.str., our concept of its life history remains much as previously described, because it makes up about 90% of the summed populations. Fifth copepodites of the new species, Neocalanus flemingeri, descend from the surface layer in late May to early June and mature immediately. Males are only present for about two months, and females carrying spermatophores are found during that period. Throughout the summer and autumn the entire population is constituted of females with small, dormant ovaries. This appears to be a diapause phase. Ovarian development begins in November, and spawning occurs at the end of January. Copepodite stages develop in surface layers from February through May.  相似文献   

9.
近来的研究表明,一些所谓的环球或环极地分布的广布种实际上包含着一些局限性分布的隐存种,物种多样性可能被低估。本文采用形态学和DNA条形码技术相结合的方式,对印度洋和西北太平洋海域的龟螺属(Cavolinia)和小龟螺属(Diacavolinia)的种类进行了分类学研究和物种鉴定。结果表明,线粒体16S rRNA基因数据不支持小龟螺属形态种的划分,分布于西北太平洋的D. grayiD. vanutrechtiD. pacificaD. elegansD. angulosa等多个形态种可能属同一个种,即长吻小龟螺(D. longirostris)。COI基因数据也不支持钩龟螺(C. uncinata)亚种和变形的划分。许多形态特征不能作为种或种下分类单元的区分依据。钩龟螺、球龟螺(C. globulosa)和长吻小龟螺在COI系统树中均形成2个地理支系,其内部可能存在隐存种。西北太平洋海域长吻小龟螺的核基因组中存在线粒体假基因,对DNA条形码分析产生严重干扰。  相似文献   

10.
Five vertical profiles of silver (Ag) in the subarctic northeast Pacific are presented. Dissolved (< 0.2 μm) Ag concentrations within the surface mixed layer range from 6–25 pM, with the highest observed values at the most coastal site. Elevated Ag concentrations at this station are most likely attributable to the estuarine circulation in the Juan de Fuca Strait. One open-ocean station (P20) exhibited a strong surface Ag maximum. The station was located at the edge of a Haida eddy which raises the possibility that such eddies transport Ag seaward from the coastal zone. Ag concentrations in the deep waters ranged from 60–80 pM. These measurements are consistent with other recent Ag data collected in the Pacific. Ag profiles throughout the Pacific Ocean yield a strong positive correlation between Ag concentration and dissolved silicic acid concentration. However, Ag is depleted relative to silicic acid at intermediate depths where dissolved O2 concentrations are low, implying a possible removal of Ag from oxygen-depleted waters by scavenging and/or precipitation.  相似文献   

11.
The recent NE subarctic Pacific study of the Canadian JGOFS project was designed primarily to address why phytoplankton biomass and production at Ocean Station Papa (OSP: 50°N, 145°W) are not as high as the nitrate concentrations could potentially support. To examine the possible role of iron (Fe) limitation in concert with microzooplankton grazing and physical supply of nitrate, we have coupled a four-compartment Nitrogen–Phytoplankton–Zooplankton–Detritus planktonic ecosystem model with a 60-layer (each 2 m thick) one-dimensional mixed-layer model (Mellor–Yamada level 2.5), driven by annual forcing characteristic of OSP. Both the physical and ecological models are forced with the same annual heat budget, mean phytoplankton concentration was tuned with the equilibrium solution of the model, and the zooplankton parameter values were chosen to be representative of microzooplankton. Modelled sea surface temperature ranged between 6 (fixed – late winter) and 13–14°C, depending on the distribution and amount of phytoplankton and detritus calculated by the model. Simulations with Fe limitation reducing the maximum specific growth rate of phytoplankton (for Fe-replete conditions) by a factor of ∼3 best reproduced the annual cycle of surface layer nitrate, although the resulting annual f-ratio calculated from the fluxes into and out of the nitrogen compartment was marginally higher than recent estimates of f-ratio based on observations at OSP. The best simulations with Fe limitation agreed with observations of the annual cycle of surface nitrate concentration, the f-ratio, particulate nitrogen concentration in the euphotic layer, the export production, and the remineralization depth scale for sinking detritus, to within ∼50%, probably within the range of observational uncertainty and/or seasonal and interannual variability. Possible modifications include separating the detrital pool into suspended and sinking organic matter, decreasing the rate of remineralization with increasing depth, and examining the supply of nitrate to the surface layer by means of horizontal advection. The observational basis required to formulate these processes is marginal at present.  相似文献   

12.
This volume of DSR II is dedicated to the Canadian Joint Global Ocean Flux Study (JGOFS) in the NE subarctic Pacific. This oceanic province is one of three High Nitrate Low Chlorophyll (HNLC) regions in the world oceans. Furthermore, this region is characterised by a shallow (ca. 100–120 m) permanent pycnocline during winter, which permits relatively high numbers of phytoplankton and micro-grazers to subsist over winter, which in turn strongly influences pelagic community structure. The 5-year field study encompassed two phases – phase 1 (seven voyages between September 1992 and May 1995), and the intensive phase 2 (six voyages between September 1995 and June 1997). Each voyage transected line P – from the coastal ocean westward to the open ocean. In addition to the JGOFS study, this volume also includes analyses of long time-series (>20 yr) data sets from Ocean Station Papa (OSP; 50°N 145°W) and other stations in the coastal and open ocean.  相似文献   

13.
Foraminiferal oozes were sampled from the tropical West Pacific seamount and seabed of deep sea,by a remotely operated vehicle(ROV)in December 2014 and March 2016.Using standard morphological method,four Miliolinella species,including Miliolinella obesa,M.circularis,M.suborbicularis and M.subrotunda were described.Among the four species,M.obesa is a new species.It is a large member(about 500μm in length)of the genus.This species is characterized by having a very stout and transverse broadly circular outline,and its body width is greater than the body length.In addition,its chamber demarcations are obscure from the exterior appearance.Three chambers are unclearly visible on one side and two chambers are visible on the opposite.Finally,we provided very detailed taxonomic microphotographs and the ecological distribution information for each species.  相似文献   

14.
The role of copepod grazing on the ecosystem dynamics in the Oyashio region, western subarctic Pacific was investigated during six cruises from June 2001 to June 2002. In situ grazing rates of the copepod community (CGR) were measured by the gut fluorescence method in respect to developmental stages of dominant species. In terms of biomass, more than 80% of the copepod community was dominated by six large calanoid species (Neocalanus cristatus, Neocalanus flemingeri, Neocalanus plumchrus, Eucalanus bungii, Metridia pacifica and Metridia okhotensis) throughout the year. Resulting from the observed pattern of the interzonal migrating copepods, the CGR in the Oyashio region was divided into three phases, i.e. spring (bloom), summer (post-bloom) and autumn-winter phase. During the spring bloom, late copepodites of the interzonal migrating species, N. cristatus, N. flemingeri and E. bungii appeared in the surface layer (0-50 m) to consume the production of the bloom, resulting in a high grazing rate of the copepod community (7.9 mg Chl m−2 d−1), though its impact on phytoplankton community was low due to the high primary productivity. During the post-bloom period, although the copepod community which was dominated by N. cristatus, N. plumchrus, M. pacifica and newly recruited E. bungii still maintained a high biomass, the CGR was generally lower (1.8-2.6 mg Chl m−2 d−1 for June and August 2001), probably due to the lower availability of phytoplankton. Nevertheless, the highest CGR was also observed during this period (10.5 mg Chl m−2 d−1 in June 2002). The high CGR on autotrophic carbon accounted for 69% of the primary production, suggesting that the copepod community in the Oyashio region potentially terminates the phytoplankton bloom. Abundant occurrence of young E. bungii, which is a characteristic phenomenon in the Oyashio region, was largely responsible for the high grazing pressure in June 2002 suggesting that success of reproduction, growth, and survival in E. bungii during the spring bloom is an important factor in controlling phytoplankton abundance during the post-bloom season. During autumn and winter, CGR was the lowest in the year (0.29-0.38 mg Chl. m−2 d−1) due to the disappearance of the interzonal migrating copepods from the surface layer. Diel migrant M. pacifica was the most important grazer during this period. The annual ingestion of the copepod community is estimated as 37.7 gC m−2 on autotrophic carbon (converted using C:Chl ratio of 30) or 137.9 gC m−2 on suspended particles (using C:Chl ratio of in situ value, 58-191), accounting for 13% and 46% of annual primary production, respectively. This study confirms that copepod grazing is an important pathway in carbon flow in the Oyashio region and in particular their role in the phytoplankton dynamics is significant for the termination of the spring bloom.  相似文献   

15.
16.
Phytoplankton acclimate to low irradiance by increasing their cellular demand for Fe, to allow synthesis of additional light-harvesting pigments and Fe-containing redox proteins involved in photosynthesis. In the open NE subarctic Pacific, Fe concentrations limit primary productivity and irradiances may be suboptimal, particularly during winter. Phytoplankton thus may be unable to fulfill their extra Fe requirements for growth under these low-light conditions and become effectively co-limited. We tested this hypothesis by manipulating Fe and light in in vitro experiments at OSP (Ocean Station PAPA, 50°N 145°W) during winter 1997. The results show that metabolic rates, growth, and photosynthetic parameters of phytoplankton are enhanced in winter by increasing either irradiance or Fe. The greatest response occurs when Fe and light are amended concomitantly, confirming that the community is indeed co-limited by both resources. Analysis of environmental conditions (i.e. incident irradiance, mixed layer depth and Fe concentrations) in winter at OSP reveals that they are similar to those observed in the austral spring and fall at three sites in the Southern Ocean. Extrapolating our experimental field results to the Southern Ocean illustrates that co-limitation by light and Fe also may play an important role in regulating phytoplankton growth in this region.  相似文献   

17.
Phytoplankton growth and microzooplankton grazing rates were measured by the dilution technique in the subarctic North Pacific Ocean along a west–east transect during summer 1999. Average phytoplankton growth rates without added nutrients (μ0) were 0.33, 0.41, 0.20 and 0.49 d−1 for the four regions sampled: the Western Gyre, the Bering Sea, the Gulf of Alaska gyre and stations along the Aleutian Trench. Average grazing mortality rates (m) were 0.34, 0.27, 0.20 and 0.49 d−1. Limitation of phytoplankton growth by macronutrients, such as NO3 and SiO2, was identified only at a few stations, with overall μ0/μn (μn is nutrient-enhanced growth rate) averaging 0.9. Phytoplankton growth and microzooplankton grazing were approximately balanced, as indicated by high m/μ0 ratio, except in the Bering Sea, where the m/μ0 ratio was 0.65, indicating the relative importance of the diatom-macrozooplankton grazing food chain and possible higher export flux to the deep layer. Flow cytometric analysis revealed that the growth rates of picoplankton (Synechococcus and picoeukaryotes) were usually much lower than the total phytoplankton community growth rates estimated from chlorophyll a, except for stations in the Gulf of Alaska Gyre, where the growth rates for different populations were about the same. Lower than community-average growth rate for picoplankton indicates larger phytoplankters, presumably diatoms, were growing at a much faster rate. Suppressed phytoplankton growth in the Gulf of Alaska was probably a result of iron limitation.  相似文献   

18.
Ocean Station Papa (OSP, 50°N 145°W) in the NE subarctic Pacific is characterised as high nitrate low chlorophyll (HNLC). However, little is known about the spatial extent of these HNLC waters or the phytoplankton dynamics on the basin scale. Algal biomass, production and size-structure data are presented from winter, spring and summer between 1992 and 1997 for five stations ranging from coastal to open-ocean conditions. The inshore stations (P04–P16) are characterised by the classical seasonal cycle of spring and late summer blooms (production >3 g C m−2 d−1), diatoms are not Fe-stressed, and growth rate is probably controlled by macronutrient supply. The fate of the phytoplankton is likely sedimentation by diatom-dominated spring blooms, with a pelagic recycling system predominating at other times. The offshore stations (P20/OSP) display low seasonality in biomass and production (OSP, mean winter production 0.3 g C m−2 d−1, mean spring/summer production 0.85 g C m−2 d−1), and are dominated by small algal cells. Low Fe availability prevents the occurrence of diatom blooms observed inshore. The main fate of phytoplankton is probably recycling through the microbial food web, with relatively low sedimentation compared to inshore. However, the supply of macro- and micro-nutrients to the coastal and open ocean, respectively, may vary between years. Variability in macro-nutrient supply to the coastal ocean may result in decreased winter reserve nitrate, summer nitrate limitation, subsequent floristic shifts towards small cells, and reduced primary production. Offshore, higher diatom abundances are occasionally observed, perhaps indicating episodic Fe supply. The two distinct oceanic regimes have different phytoplankton dynamics resulting in different seasonality, community structure and fate of algal carbon. These differences will strongly influence the biogeochemical signatures of the coastal and open-oceanic NE subarctic Pacific.  相似文献   

19.
赵宁  韩震  刘贤博 《海洋科学》2016,40(1):123-131
海洋锋面区域对气候变化以及海气耦合作用的影响非常显著,通过分析其形成机制,可以帮助进一步了解海洋与大气的相互作用过程以及其物理过程。利用Argo数据、NCEP/NCAR再分析数据和遥感风场数据对西北太平洋的混合层温度与温度锋面的变化机制进行了研究。基于海洋混合层的热量收支模型,发现在北太平洋区域的海洋混合层温度主要受到净热通量控制,同时还存在一个季节变化明显的温度锋面。9~2月为温度锋面加强时期,3~4月温度锋面变化不明显,而5~8月温度锋面则迅速减弱。根据研究,该温度锋面的加强与减弱主要是由于净热通量的南北差异造成的,而在净热通量中则以短波辐射通量与潜热通量为主要影响因子。  相似文献   

20.
Copepodites of Neocalanus plumchrus dominate the macrozooplankton biomass of the subarctic Pacific during spring. Living specimens have patches of bright red-orange pigment. During May of 1984 it was found sharing dominance with another, related species with differently placed patches of more distinctly red pigment. This is an undescribed species, which is designated here as Neocalanus flemingeri sp. nov. In the Gulf of Alaska it is smaller than N. plumchrus, but in the Bering Sea where food supplies are greater it reaches dimensions as large or larger. The morphologies of the two species are distinct, and previous confusion in the taxonomy of these forms was caused by differences in their life histories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号