首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
De-Yu Wang  Ding-Yi Li 《Solar physics》1991,135(2):393-405
A model of nonlinear parametric instability (NLPI) modulation is suggested to explain the millisecond spikes in solar decimetric radio emission. The radio emission energy will periodically transfer to two other waves, and the intensity of the radio emission will be modified by NLPI processes in the corona, when the matching conditions of three-wave coupling are satisfied. This model can simultaneously explain the duration of spikes, why the millisecond spikes have not been observed in other solar radio emission, and the relation between the duration of the spikes and the intensity and the frequency of the radio emission as well.  相似文献   

2.
This paper analyzes the frequency structure of the bands of electron-cyclotron maser instability. The calculations show that each term of the series describing the growth rate provides a double-peak structure, if we accept a nonthermal electron distribution with a two-side loss-cone. The ratio of central frequencies is found to be non-integer in general case. We conclude that the harmonic structure of solar radio spikes observed in a number of events can be imitated by electron-cyclotron maser emission of mildly relativistic electrons with a power-law momentum distribution.  相似文献   

3.
Wang  M.  Xie  R.X. 《Solar physics》1999,185(2):351-360
The characteristics of the millisecond spikes with short duration and weak flux density which were observed with high time resolution (1 ms) at 1420, 2000 and 2840 MHz during the great type IV solar radio burst of 30 July 1990 are introduced in detail in this article. The time profiles of the spikes are statistically analyzed and the parameters of the spike source are also estimated.  相似文献   

4.
K. H. Tsui 《Solar physics》1996,168(1):171-182
The generation of bright solar radio spikes by the beam-driven cyclotron resonance maser mechanism (the resonant interaction of an electron beam with a circularly polarized wave in a background plasma under the action of a guide magnetic field) is studied. Nonlinear effects such as radiation damping and gyrophase bunching on electron energy and momentum are responsible for the enhanced direct energy conversion between the beam and the coherent wave. Factors such as beam energy spread and pitch angle distribution are analyzed. The intense maser radiation is carried at the source by the circularly polarized wave propagating along the magnetic field. Due to the magnetic field curvature, the outgoing maser radiation converts into extraordinary and ordinary modes. The extraordinary mode suffers from plasma absorption at the second harmonic layer, whereas the ordinary mode is likely to get through.  相似文献   

5.
Millisecond radio spikes   总被引:9,自引:0,他引:9  
A. O. Benz 《Solar physics》1986,104(1):99-110
Millisecond spikes of the solar radio emission are known for more than two decades. They have recently seen a surge in interest of theoreticians who are fascinated by their high brightness temperature of up to 1015 K, their association with hard X-ray bursts, and a possibly very intimate relation to electron acceleration. This review is intended to bridge the gap that presently seems to separate theory and observations. The wide range of spike observations is summarized and brought into the perspective of recent models. It is concluded that spikes yield a considerable potential for the diagnostics of energetic particles, their origin, and history in astrophysical plasmas.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

6.
Magnetic field-aligned irregularities of the background plasma are assumed to be responsible for a strong conversion of upper hybrid plasma wave turbulence (PT) into the radio emission. It is shown that small-scale stratification (induced by PT interference and thermodiffusion) leads to the random occurrence of spike-type radio bursts.  相似文献   

7.
In order to explain a fine structure of parallel ridges in stationary type IV continua, the emission due to the coupling of electrostatic upper hybrid waves and Bernstein waves at the sum frequency of the upper hybrid and harmonics of the gyro frequency has been calculated. If the energy density of these electrostatic waves is of the order of 10-3 times the thermal energy density, then the observed zebra pattern can be emitted by a region with a diameter of 103 km.  相似文献   

8.
A. O. Benz  M. Güdel 《Solar physics》1987,111(1):175-180
The spectral distribution of millisecond radio spikes observed by the Zürich spectrometers in the 200–1100 MHz range has been studied. In one event out of a total of 36 we have found clearly developed harmonic structure. The ratio between the two bands of emission was 1:1.39 ± 0.01. We have also determined the sense of circular polarization of the spike events and compared it to the magnetic polarity of the leading spot of the flaring active region. According to the Leading Spot Rule the majority of the events (10 out of 13) were emitted in the ordinary mode.Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   

9.
The microwave spectrum of solar millisecond spikes   总被引:5,自引:0,他引:5  
M. Stähli  A. Magun 《Solar physics》1986,104(1):117-123
The microwave radiation from solar flares sometimes shows short and intensive spikes which are superimposed on the burst continuum. In order to determine the upper frequency limit of their occurrence and the circular polarization, a statistical analysis has been performed on our digital microwave observations from 3.2 to 92.5 GHz. Additionally, fine structures have been investigated with a fast (5 ms) 32-channel spectrometer at 3.47 GHz. We found that 10% of the bursts show fine structures at 3.2 and 5.2 GHz, whereas none occurred above 8.4 GHz. Most of the observed spikes were very short ( 10 ms) and their bandwidth varied from below 0.5 MHz to more than 200 MHz. Simultaneous observations at two further frequencies showed no coincident spikes at the second and third harmonic. The observations can be explained by the theory of electron cyclotron masering if the observed bandwidths are determined by magnetic field inhomogeneities or if the rise times are independent of the source diameters. The latter would imply source sizes between 50 and 100 km.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

10.
A real-time colour display of the Culgoora acousto-optical radio spectrograph is described and illustrated.  相似文献   

11.
12.
The type-I radio continuum may arise from the combination of two electrostatic waves, both directed nearly normal to the magnetic field. One wave, near the upper-hybrid frequency, is generated by gyroresonance with superthermal electrons and comes into equilibrium with these electrons. The other wave, at the lower-hybrid frequency, is generated by the loss-cone instability of trapped superthermal protons in those wave directions for which the lower-hybrid frequency is an exact multiple of the proton gyrofrequency. The brightness temperature of the continuum indicates both the energy of the superthermal electrons and the existance of at least a small number of superthermal protons.  相似文献   

13.
Decameter wavelength radio emission is finely structured in solar bursts. For their research it is very important to use a sufficient sensitivity of antenna systems. In this paper we study an influence of the radiotelescope‐antenna effective area on the results of decameter solar radio observations. For this purpose we compared the solar bursts received by the array of 720 ground‐based dipoles and the single dipole of the radiotelescope UTR‐2. It is shown that a larger effective area of the ground‐based antenna allows us to measure a weaker solar emission and to distinguish a fine structure of strong solar events. This feature has been also verified by simultaneous ground‐ and space‐based observations in the overlapping frequency range (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
A solar radio spectrometer records solar radio radiation in the radio waveband. Such solar radio radiation spanning multiple frequency channels and over a short time period could provide a solar radio spectrum which is a two dimensional image. The vertical axis of a spectrum represents frequency channel and the horizontal axis signifies time. Intrinsically, time dependence exists between neighboring columns of a spectrum since solar radio radiation varies continuously over time. Thus, a spectrum can be treated as a time series consisting of all columns of a spectrum, while treating it as a general image would lose its time series property. A recurrent neural network(RNN) is designed for time series analysis. It can explore the correlation and interaction between neighboring inputs of a time series by augmenting a loop in a network.This paper makes the first attempt to utilize an RNN, specifically long short-term memory(LSTM), for solar radio spectrum classification. LSTM can mine well the context of a time series to acquire more information beyond a non-time series model. As such, as demonstrated by our experimental results, LSTM can learn a better representation of a spectrum, and thus contribute better classification.  相似文献   

15.
One of the widely accepted models for solar radio pulsations invokes radial oscillations of a magnetic flux tube. Due to acoustic, radiative damping, this theory does not easily explain the long length of the pulse trains, the large modulation depths or the great stability of the pulse repetition rate often observed. Torsional waves efficiently modulate synchrotron emission, and since they do not undergo radiative damping, can produce stable pulse repetition rates and long pulse trains.  相似文献   

16.
A detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts for a relatively weak solar flare on 1981 August 6 at 10: 32 UT. The hard X-ray observations were made at energies above 30 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and with a balloon-born coarse-imaging spectrometer from Frascati, Italy. The radio data were obtained in the frequency range from 100 to 1000 MHz with the analog and digital instruments from Zürich, Switzerland. All the data sets have a time resolution of 0.1 s or better. The dynamic radio spectrum shows many fast drift type III radio bursts with both normal and reverse slope, while the X-ray time profile contains many well resolved short spikes with durations of 1 s. Some of the X-ray spikes appear to be associated in time with reverse-slop bursts suggesting either that the electron beams producing the radio bursts contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can trigger or occur in coincidence with the acceleration of additional electrons. One case is presented in which a normal slope radio burst at 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s. If the coincidence is not merely accidental and if it is meaningful to compare peak times, then the short delay would indicate that the radio signal was at the harmonic and that the electrons producing the radio burst were accelerated at an altitude of 4 × 109 cm. Such a short delay is inconsistent with models invoking cross-field drifts to produce the electron beams that generate type III bursts but it supports the model incorporating a MASER proposed by Sprangle and Vlahos (1983).  相似文献   

17.
Y. T. Chiu 《Solar physics》1970,13(2):420-443
We show that the observed modulation of some coronal microwave, X-ray and Type III emission into pulses of 10 sec intervals is a consequence of the stimulation of electron cyclotron waves propagated in the whistler mode in dipole-like bipolar regions of dimension 0.2 R . Assuming that a power law spectrum of 10 keV electrons with a slope similar to solar flare protons can be trapped in a bipolar region, we show that whistlers can be generated by pitch angle instability. The resultant 10 sec bounce motion of whistler wave trains leads to enhanced, modulated emission in microwave and X-ray frequencies by pitch angle scattering of MeV electrons, and to modulated Type III emission by scattering with coherent plasma waves. A direct prediction of the theory is the existence of sympathetic pulsations at two sources a fraction of a solar radius apart. A second test of the theory is that modulated Type III emission should show strong polarization.This work was conducted under U.S. Air Force Space and Missile Systems Organization (SAMSO) Contract No. F04701-69-C-0066.  相似文献   

18.
19.
20.
The mechanisms for the transformation of plasma waves into radiation near the fundamental and second harmonic of the plasma frequency are reviewed and equations are given for both the emission and absorption coefficients for these mechanisms. Near the fundamental the process is the scattering of plasma waves on the polarization clouds of ions and the absorption coefficient can be negative, i.e. the radiation can be amplified. Near the second harmonic the process is the combination of two excited plasma waves for which the absorption coefficient can only be positive. These results are applied to construct models of the radiation source for type III solar radio bursts both at high frequencies where the fundamental is dominant and at low frequencies where the second harmonic is dominant using two model plasma wave spectra, one being one-dimensional, the other isotropic. At high frequencies second harmonic radiation is used to determine the source area for a given energy density in plasma waves W p . The source size and W p are detrmined uniquely for a given plasma wave spectrum by tracing rays in a model source taking into account amplification of the fundamental. The results for a strong source at the 80 MHz plasma level with a ratio of emissivities of the fundamental to second harmonic P(ω p )/P(2ω p ) ≈ 10 are that the source with a one-dimensional plasma wave spectrum is about 14000 km in diameter and W p = 10?6.52 erg cm?3, and the source with an isotropic distribution of plasma waves is about 200 km in diameter and W p = 10?6.3 erg cm?3. It is shown that at low frequencies, where amplification of the fundamental is no longer possible, second harmonic radiation must be dominant and thus very little information about the source can obtained from the radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号