首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quaternary Rockeskyllerkopf Volcanic Complex (RVC) comprises three spatially and temporally distinct volcanic centers that can also be distinguished on the basis of their geochemical signatures. All the volcanic products in the complex are olivine basanites whose major and trace element compositions span almost the entire range defined for the West Eifel field as a whole. The RVC lavas have lower Al2O3, Na2O and Y contents and higher TiO2, CaO, K2O, Sc, V, Co, Rb, and Ba than the Tertiary lavas in nearby Hocheifel volcanic field. Within the complex, the oldest South East Lammersdorf Center (SEL) comprises primitive lavas with an average MgO content of ~11 wt.% and LaN/YbN of 29?±?2. The second center, Mäuseberg, has similar MgO to SEL but is distinct in its much higher LaN/YbN of 42?±?2. The Rockeskyllerkopf Center, which was erupted after a break in activity, comprises lavas similar in composition to the SEL Center but with distinctly higher Al2O3 and lower MgO contents. Given the lack of evidence for significant fractionation or assimilation in the RVC lavas, we attribute the compositional variations within and between the centers of the RVC to be due to variations in the composition of the source region in combination with magma mixing. Our preferred model involves 1–5% partial melting of LREE-enriched mantle in the garnet stability field, likely within the thermal boundary layer at the base of the lithospheric mantle. These melts mixed to variable degrees with 2–4% partial melts of phlogopite-spinel peridotite formed at higher levels in the modally metasomatised lithospheric mantle.  相似文献   

2.
The Laacher See phonolite tephra sequence (11,000 years B.P.) of the Quaternary East Eifel volcanic field (West Germany) represents an inverted, chemically zoned magma column. Mafic and differentiated phonolites, respectively, represent the lowermost and uppermost erupted portion of the Laacher See magma chamber. Sr and Nd isotopic compositions of whole rocks, matrices and phenocrysts have been analyzed in order to provide constraints for open versus closed system evolution of the Laacher See magma chamber. 87Sr/86Sr isotope ratios of mafic phonolites and their phenocrysts are slightly more radiogenic than parental East Eifel basanite magmas. Bulk rock samples show a drastic increase in 87Sr/86Sr from mafic towards the most differentiated compositions that were erupted from the top of the magma chamber. Glass matrix separates show a parallel, but less pronounced, increase in 87Sr/86Sr. Phenocrysts, in contrast, show a narrow range in 87Sr/86Sr with a slight, but significant, increase towards the top of the magma chamber. Phenocrysts from the uppermost portion of the magma column were not in isotopic (or chemical) equilibrium with their host matrices.143Nd/144Nd isotope ratios for whole rocks, matrices, and phenocrysts fall within a restricted range similar to that of East Eifel mafic magmas. A representative suite of crustal rocks (lower crustal granulites, quartzo-feldspathic gneisses, mica schists, Devonian slates and graywacke) was also analyzed in order to permit an evaluation of possible assimilation models.Our results are consistent with chemical evolution of the zoned Laacher See magma chamber mainly through crystal fractionation accompanied by minor amounts of assimilation. Slight contamination of the magma system may have involved (a) the assimilation of gneisses (?) and mica schists during the initial stage of magma chamber evolution (basanite-mafic phonolite), (b) combined assimilation-fractional crystallization (AFC) concurrent with the second differentiation stage (mafic phonolite-zoned phonolite), and (c) post-crystallization assimilation of the most fractionated volatile-rich melts of the top magma layers during a late, liquid-state (?) differentiation stage. The latter possibly involved fluid transport and/or exchange with the surrounding (partially molten) country rocks. Open system evolution of the Laacher See magma chamber is further indicated by magma mixing, as confirmed by our isotope data, leakage of volatiles from the cupola and metasomatism of wall rocks.  相似文献   

3.
Preliminary paleointensity results are presented from 36 sites with virtual geomagnetic pole (VGP) latitudes of about 30–90° normal polarity in the Quaternary West Eifel volcanic field. A strong correlation between VGP latitude and the Earth's virtual magnetic dipole moment (VDM) is observed, with low intensities for low VGP latitudes indicating possibly an emplacement during an excursion or event of the Brunhes epoch. The age distribution of the West Eifel volcanics is, as yet, poorly known. Also, the mean VDM value for sites with high VGP latitudes is considerably lower than the present day dipole moment of the Earth.  相似文献   

4.
The Quaternary Eifel volcanic fields, situated on the Rhenish Massif in Germany, are the focus of a major interdisciplinary project. The aim is a detailed study of the crustal and mantle structure of the intraplate volcanic fields and their deep origin. Recent results from a teleseismic P-wave tomography study reveal a deep low-velocity structure which we infer to be a plume in the upper mantle underneath the volcanic area [J.R.R. Ritter et al., Earth Planet. Sci. Lett. 186 (2001) 7-14]. Here we present a travel-time investigation of 5038 teleseismic shear-wave arrivals in the same region. First, the transverse (T) and radial (R) component travel-time residuals are treated separately to identify possible effects of seismic anisotropy. A comparison of 2044 T- and 2994 R-component residuals demonstrates that anisotropy does not cause any first-order travel-time effects. The data sets reveal a deep-seated low-velocity anomaly beneath the volcanic region, causing a delay for teleseismic shear waves of about 3 s. Using 3773 combined R- and T-component residuals, an isotropic non-linear inversion is calculated. The tomographic images reveal a prominent S-wave velocity reduction in the upper mantle underneath the Eifel region. The anomaly extends down to at least 400 km depth. The velocity contrast to the surrounding mantle is depth-dependent (from −5% at 31-100 km depth to at least −1% at 400 km depth). At about 170-240 km depth the anomaly is nearly absent. The resolution of the data is sufficient to recover the described features, however the anomaly in the lower asthenosphere is underestimated due to smearing and damping. The main anomaly is similar to the P-wave model except the latter lacks the ‘hole’ near 200 km depth, and both are consistent with an upper mantle plume structure. For plausible anhydrous plume material in the uppermost 100 km of the mantle, an excess temperature as great as 200-300 K is estimated from the seismic anomaly. However, 1% partial melt reduces the required temperature anomaly to about 100 K. The temperature anomaly associated with the deeper part of the plume (250 to about 450 km depth) is at least 70 K. However, this estimate is quite uncertain, because the amplitude of the shear-wave anomaly may be larger than the modelled one. Another possibility is water in the upwelling material. The gap at 170-240 km depth could arise from an increase of the shear modulus caused by dehydration processes which would not affect P-wave velocities as much. An interaction of temperature and compositional variations, including melt and possibly water, makes it difficult to differentiate quantitatively between the causes of the deep-seated low-velocity anomaly.  相似文献   

5.
Peridotite xenoliths from the Eifel can be divided into incompatible element-depleted and -enriched members. The depleted group is restricted to dry lherzolites whereas the enriched group encompasses dry harzburgites, dry websterite and amphibole and/or phlogopite-bearing peridotites. Isotopically the depleted group is very diverse with143Nd/144Nd ranging from 0.51302 to 0.51355 and87Sr/86Sr from 0.7041 to 0.7019, thus occupying a field larger than expected for oceanic-type subcontinental mantle. These xenoliths are derived from a mantle which appears to have diverged from a bulk-earth Nd and Sr isotopic evolution path 2 Ga ago as a consequence of partial melting. The combination of high143Nd/144Nd with high87Sr/86Sr in some members of the depleted-xenoliths suite is likely to be the result of incipient reaction with incompatible element-enriched fluids in the mantle. In the enriched group such reactions have proceeded further and erased any pre-enrichment isotope memory resulting in a smaller isotopic diversity (143Nd/144Nd 0.51256–0.51273,87Sr/86Sr 0.7044–0.7032). An evaluation of SmHf and YbHf relationships suggests that the amphibole-bearing lherzolites and harzburgites acquired their high enrichment of light rare earth elements by fluid infiltration into previously depleted peridotite rather than by silicate melt-induced metasomatism. Upper mantle composed of such metasomatized peridotites does not represent a potential source for the basanites and nephelinites from the Eifel. The isotopic and chemical diversity of the subcontinental lithospheric part of the mantle may result from it having remained isolated from the convecting mantle for times > 1 Ga.  相似文献   

6.
The local reach gradient of small gravel bed rivers (drainage area 0-8-110 km2) in the Eifel, West Germany, is adjusted to transport the river bed sediments. Transport of gravel becomes possible under high flow conditions (Shields entrainment factor ≈-03). Mean bed material size for riffle sections increases with distance downstream. For small drainage areas channel slope is a negative exponential function of drainage area, while for the larger region the additional influence of bedload size has to be considered. Good agreement with Hack's data (1957) for Virginia and Maryland, U.S.A., is achieved (S = 0.0066 (D50/A)- 40., r = 0.67).  相似文献   

7.
The Tuxtla Volcanic Field (TVF) is located on the coast of the Gulf of Mexico in the southern part of the state of Veracruz, Mexico. Volcanism began about 7 my ago, in the Late Miocene, and continued to recent times with historical eruptions in ad 1664 and 1793. The oldest rocks occur as highly eroded remnants of lava flows in the area surrounding the historically active cone of San Martín Tuxtla. Between about 3 and 1 my ago, four large composite volcanoes were built in the eastern part of the area. Rocks from these structures are hydrothermally altered and covered with lateritic soils, and their northern slopes show extensive erosional dissection that has widened preexisting craters to form erosional calderas. The eastern volcanoes are composed of alkali basalts, hawaiites, mugearites, and benmoreites, with less common calc-alkaline basaltic andesites and andesites. In the western part of the area, San Martín Tuxtla Volcano and its over 250 satellite cinder cones and maars produced about 120 km3 of lava over the last 0.8 my. A ridge of flank cinder cones blocked drainage to the north to form Laguna Catemaco. Lavas erupted from San Martín and its flank vents are restricted to compositions between basanite and alkali basalt. The alignment of major volcanoes and flank vents along a N55°W trend suggests an extensional stress field in the crust with a minimum compressional stress orientation of N35° E. In total, about 800 km3 of lava has been erupted in the TVF in the last 7 my. This gives a magma output rate of about 0.1 km3/1000 year, a value smaller than most composite cones, but similar to cinder cone fields that occur in central Mexico. Individual eruptions over the last 5000 years had volumes on the order of 0.1km3, with average recurrence intervals of 600 years. The alkaline compositions of the TVF lavas contrast markedly with the calc-alkaline compositions erupted in the subduction-related Mexican Volcanic Belt to the west, leading previous workers to suggest that the TVF is not related to subduction. Trace-element signatures of TVF lavas indicate, however, that they are probably related to subduction. We suggest that the alkaline character of the TVF lavas is the result of low degrees of melting of a mantle source coupled with a stress regime that allows these small-volume melts to reach the surface in the TVF.  相似文献   

8.
This study is concerned with the Ushishir volcanic massif, which is an ideal place for routine observations of the interaction between products of gas-charged hydrothermal activities and seawater. The Kraternaya Bay was studied by performing a detailed echo sounding and continuous seismoacoustic profiling, while the environs of Ushishir Island were echo-sounded and studied by continuous seismoacoustic profiling and hydromagnetic surveying. We provide results from an interpretation of these surveys. The Ushishir massif structure is described. The hypothesis is proposed that an ancient caldera exists in the area of Yankich Island that is up to 5 km across. The evolution of the Ushishir volcanic massif is inferred.  相似文献   

9.
This petrologic analysis of the Negra Muerta Volcanic Complex (NMVC) contributes to understanding the magmatic evolution of eruptive centres associated with prominent NW-striking fault zones in the southern Central Andes. Specifically, the geochemical characteristics and magmatic evolution of the two eruptive episodes of this Complex are analysed. The first one occurred as an explosive eruption at 9 Ma and is represented by a strongly welded, fiamme-rich, andesitic to dacitic ignimbrite deposit. The second commenced with an eruption of a rhyolitic ignimbrite at 7.6 Ma followed by effusive discharge of hybrid lavas at 7.3 Ma and by emplacement of andesitic to rhyodacitic dykes and domes. Both explosive and effusive eruptions of the second episode occurred within a short time span, but geochemical interpretations permit consideration of the existence of different magmas interacting in the same magma chamber. Our model involves an andesitic recharge into a partially cooled rhyolitic magma chamber, pressurising the magmatic system and triggering explosive eruption of rhyolitic magma. Chemical or mechanical evidence for interaction between the rhyolitic and andesitic magma in the initial stages are not obvious because of their difference in composition, which could have been strong enough to inhibit the interaction between the two magmas. After the initial explosive stages of the eruption at 7.6 Ma, the magma chamber become more depressurised and the most mafic magma settled in compositional layers by fractional crystallisation. Restricted hybridisation occurred and was effective between adjacent and thermally equivalent layers close to the top of the magma chamber. At 7.3 Ma, increments of caldera formation were accompanied by effusive discharge of hybrid lavas through radially disposed dykes whereby andesitic magma gained in importance toward the end of this effusive episode in the central portion of the caldera. Assimilation during turbulent ascent (ATA) is invoked to explain a conspicuous reversed isotopic signature (87Sr/86Sr and 143Nd/144Nd) in the entire volcanic series. Therefore, the 7.6 to 7.3 Ma volcanic rocks of the NMVC resulted from synchronous and mutually interacting petrological processes such as recharge, fractional crystallization, hybridisation, and Assimilation during Turbulent Ascent (ATA).Geochemical characteristics of both volcanic episodes show diverse type and/or depth in the sources and variable influence of upper crustal processes, and indicate a recurrence in the magma-forming conditions. Similarly, other minor volcanic centres in the transversal volcanic belts of the Central Andes repeated their geochemical signatures throughout the Miocene.  相似文献   

10.
We present a new local Bouguer anomaly map of the Central Volcanic Complex (CVC) of Tenerife, Spain, constructed from the amalgamation of 323 new high precision gravity measurements with existing gravity data from 361 observations. The new anomaly map images the high-density core of the CVC and the pronounced gravity low centred in the Las Cañadas caldera in greater detail than previously available. Mathematical construction of a sub-surface model from the local anomaly data, employing a 3D inversion based on “growing” the sub-surface density distribution via the aggregation of cells, enables mapping of the shallow structure beneath the complex, giving unprecedented insights into the sub-surface architecture. We find the resultant density distribution in agreement with geological and other geophysical data. The modelled sub-surface structure supports a vertical collapse origin of the caldera, and maps the headwall of the ca. 180 ka Icod landslide, which appears to lie buried beneath the Pico Viejo–Pico Teide stratovolcanic complex. The results allow us to put into context the recorded ground deformation and gravity changes at the CVC during its reactivation in spring 2004 in relation to its dominant structural building blocks. For example, the areas undergoing the most significant changes at depth in recent years are underlain by low-density material and are aligned along long-standing structural entities, which have shaped this volcanic ocean island over the past few million years.  相似文献   

11.
The Iliniza Volcanic Complex (IVC) is a poorly known volcanic complex located 60 km SSW of Quito in the Western Cordillera of Ecuador. It comprises twin peaks, North Iliniza and South Iliniza, and two satellite domes, Pilongo and Tishigcuchi. The study of the IVC was undertaken in order to better constrain the role of adakitic magmas in the Ecuadorian arc evolution. The presence of volcanic rocks with an adakitic imprint or even pristine adakites in the Ecuadorian volcanic arc is known since the late 1990s. Adakitic magmas are produced by the partial melting of a basaltic source leaving a garnet rich residue. This process can be related to the melting of an overthickened crust or a subducting oceanic crust. For the last case a special geodynamic context is required, like the subduction of a young lithosphere or when the subduction angle is not very steep; both cases are possible in Ecuador. The products of the IVC, made up of medium-K basaltic andesites, andesites and dacites, have been divided in different geochemical series whose origin requires various interactions between the different magma sources involved in this subduction zone. North Iliniza is a classic calc-alkaline series that we interpret as resulting from the partial melting of the mantle wedge. For South Iliniza, a simple evolution with fractional crystallization of amphibole, plagioclase, clinopyroxene, magnetite, apatite and zircon from a parental magma, being itself the product of the mixing of 36% adakitic and 64% calc-alkaline magma, has been quantified. For the Santa Rosa rhyolites, a slab melting origin with little mantle interactions during the ascent of magmas has been established. The Pilongo series magma is the product of a moderate to high degree (26%) of partial melting of the subducting oceanic crust, which reached the surface without interaction with the mantle wedge. The Tishigcuchi series shows two stages of evolution: (1) metasomatism of the mantle wedge peridotite by slab melts, and (2) partial melting (10%) of this metasomatized source. Therefore, the relative ages of the edifices show a geochemical evolution from calc-alkaline to adakitic magmas, as is observed for several volcanoes of the Ecuadorian arc.  相似文献   

12.
13.
The Donguinyó-Huichapan caldera complex is located 110 km to the NNW of Mexico City, in the central sector of the Mexican Volcanic Belt. It is a 10 km in diameter complex apparently with two overlapping calderas, each one related to an ignimbrite sequence that contrasts in composition, mineralogy, welding, distribution, and physical aspect. The geologic evolution of this complex includes the following phases, 1) A first caldera formed at 5.0 ± 0.3 Ma, with the eruption of several discrete pulses of andesitic to trachydacitic pyroclastic flows that produced a series of densely welded ignimbrites; 2) At 4.6 ± 0.3 Ma, several small shield volcanoes and cinder cones built the rim of this caldera and erupted basaltic-andesite and andesitic lava flows; 3) At 4.2 ± 0.2 Ma, a second caldera was formed associated to the eruption of the Huichapan Tuff, which is a rhyolitic pyroclastic sequence consisting of minor unwelded ignimbrites, pumice fall and surge deposits, and a voluminous welded ignimbrite; 4) Also yielding an age of 4.2 ± 0.2 Ma, several trachydacitic lava domes were extruded along the new ring fracture and formed the rim of the Huichapan caldera, as well as five intra-caldera domes of dacitic and trachydacitic composition. Peripheral volcanism includes a large 2.5 ± 0.1 Ma shield volcano that was emplaced on the Huichapan caldera rim.The two calderas that form the Donguinyó-Huichapan complex have contrasting differences in volcanic styles that were apparently due to their differences in composition. Products erupted by the Donguinyó caldera are basaltic-andesite to trachydacitic in composition, whereas Huichapan caldera products are all high-silica rhyolites.  相似文献   

14.
Magmas erupted from Quaternary volcanoes of Southern Andes between 37° and 46° S latitude are mainly basaltic to andesitic. However, PCCVC (40° S) shows a singular magmatic evolution due to the abnormal evacuation of rhyolites, especially in the last 100 ka. In addition, PCCVC is the result of juxtaposing products from the NW-trending alignment of Cordillera Nevada caldera, Cordón Caulle fissure volcano and the Puyehue stratocone. Using 40Ar/39Ar and 14C geochronology it can be established that they evolved since ca. 500 ka as coeval but separated vents with a first stage of shield volcanism, followed by repeated collapses that formed an internal NW-elongated graben. From ca. 100 ka, volcanic activity occurred in both a fissure system (Cordón Caulle) and a central volcano (Puyehue). Holocene explosive eruptions, mainly in the Puyehue crater, accompanied the dome growing along a NW-trending fissure system. Last historical eruptions were in 1921 and 1960 when NW fissures of Cordón Caulle fed rhyodacitic lava flows. In 1960, the fissure eruption was triggered by a remote Mw: 9.5 thrust earthquake.Cordillera Nevada caldera presents a reduced compositional range (52–63% SiO2) and geochemical features of low-pressure magma mixing and assimilation. Instead, Cordón Caulle and Puyehue volcanoes have a wide silica range (48–71% SiO2) and an outstanding affinity, which can be modelled with initial high-pressure fractional crystallization, moderate magma mixing and subsequent low-pressure fractional crystallization from a common parental source.The exceptional magmatic evolution and eruptive style of PCCVC in Southern Andes could be related with the physics of the plumbing system, which in turn can be controlled by external factors as the structure of the continental crust and the ongoing stress regime.  相似文献   

15.
16.
This study focuses on the medium scale morphodynamics of the tidal flat and channel system Fedderwarder Priel, located in the Outer Weser estuary (Wadden Sea, Germany). Tidal channels and adjacent flats are highly dynamic systems whose morphologic evolution are driven by tidal, wind, and wave forcings. These coastal environments are an important ecosystem and react to changes in hydrodynamic conditions in various spatial and temporal scales. Based on annual medium-resolution digital elevation models from 1998 to 2016, we describe changes in the surface area over depth with hypsometries and use vertical dynamic trends in order to analyze and visualize the morphologic evolution of the Fedderwarder Priel and adjacent tidal channels. It is shown that several intertidal flats rise in the order of 1.3 to 5.6 cm/year. The findings indicate that the Outer Weser estuary was not in an equilibrium state for the investigated period, and tidal flats accreted with a rate exceeding mean sea level rise.  相似文献   

17.
The common occurrence of compositionally and mineralogically zoned ash flow sheets, such as those of the Timber Mountain Group, provides evidence that the source magma bodies were chemically and thermally zoned. The Rainier Mesa and Ammonia Tanks tuffs of the Timber Mountain Group are both large volume (1200 and 900 km3, respectively) chemically zoned (57–78 wt.% SiO2) ash flow sheets. Evidence of distinct magma batches in the Timber Mountain system are based on: (1) major- and trace-element variations of whole pumice fragments; (2) major-element variations in phenocrysts; (3) major-element variations in glass matrix; and (4) emplacement temperatures calculated from Fe-Ti oxides and feldspars. There are three distinct groups of pumice fragments in the Rainier Mesa Tuff: a low-silica group and two high-silica groups (a low-Th and a high-Th group). These groups cannot be related by crystal fractionation. The low-silica portion of the Rainier Mesa Tuff is distinct from the low-silica portion of the overlying Ammonia Tanks Tuff, even though the age difference is less than 200,000 years. Three distinct groups occur in the Ammonia Tanks Tuff: a low-silica, intermediate-silica and a high-silica group. Part of the high-silica group may be due to mixing of the two high-silica Rainier Mesa groups. The intermediate-silica group may be due to mixing of the low- and high-silica Ammonia Tanks groups. Three distinct emplacement temperatures occur in the Rainier Mesa Tuff (869, 804, 723 °C) that correspond to the low-silica, high-Th and low-Th magma batches, respectively. These temperature differences could not have been maintained for any length of time in the magma chamber (cf. Turner, J.S., Campbell, I.H., 1986. Convection and mixing in magma chambers. Earth-Sci. Rev. 23, 255–352; Martin, D., Griffiths, R.W., Campbell, I.H., 1987. Compositional and thermal convection in magma chambers. Contrib. Mineral. Petrol. 96, 465–475) and therefore eruption must have occurred soon after emplacement of the magma batches into the chamber. Emplacement temperatures of the pumice fragments from the Ammonia Tanks Tuff show a continuous gradient of temperatures with composition. This continuous temperature gradient is consistent with the model of storage of magma batches in the Ammonia Tanks group that have undergone both thermal and chemical diffusion.  相似文献   

18.
Long‐term heating of shallow urban aquifers is observed worldwide. Our measurements in the city of Cologne, Germany revealed that the groundwater temperatures found in the city centre are more than 5 K higher than the undisturbed background. To explore the role of groundwater flow for the development of subsurface urban heat islands, a numerical flow and heat transport model is set up, which describes the hydraulic conditions of Cologne and simulates the transient evolution of thermal anomalies in the urban ground. A main focus is on the influence of horizontal groundwater flow, groundwater recharge and trends in local ground warming. To examine heat transport in groundwater, a scenario consisting of a local hot spot with a length of 1 km of long‐term ground heating was set up in the centre of the city. Groundwater temperature‐depth profiles at upstream, central and downstream locations of this hot spot are inspected. The simulation results indicate that the main thermal transport mechanisms are long‐term vertical conductive heat input, horizontal advection and transverse dispersion. Groundwater recharge rates in the city are low (<100 mm a?1) and thus do not significantly contribute to heat transport into the urban aquifer. With groundwater flow, local vertical temperature profiles become very complex and are hard to interpret, if local flow conditions and heat sources are not thoroughly known. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
 In the Upper Cretaceous Gross Brukkaros Volcanic Field, southern Namibia, a radial dyke system surrounds a dome structure and its 74 closely related carbonatite diatremes. This paper focuses on volcanological features which seem to be typical for a low-viscosity melt in various settings such as dykes, sills and diatremes. The total or near absence of vesicles in carbonatite ash grains and lapilli inside the diatremes is evidence against explosive exsolution of volatile phases and in favour of a phreatomagmatic fragmentation mechanism and thus for a phreatomagmatic eruption mechanism of the carbonatite diatremes. Received: 15 August 1996 / Accepted: 13 January 1997  相似文献   

20.
The Auckland Volcanic Field (AVF) with 49 eruptive centres in the last c. 250 ka presents many challenges to our understanding of distributed volcanic field construction and evolution. We re-examine the age constraints within the AVF and perform a correlation exercise matching the well-dated record of tephras from cores distributed throughout the field to the most likely source volcanoes, using thickness and location information and a simple attenuation model. Combining this augmented age information with known stratigraphic constraints, we produce a new age-order algorithm for the field, with errors incorporated using a Monte Carlo procedure. Analysis of the new age model discounts earlier appreciations of spatio-temporal clustering in the AVF. Instead the spatial and temporal aspects appear independent; hence the location of the last eruption provides no information about the next location. The temporal hazard intensity in the field has been highly variable, with over 63% of its centres formed in a high-intensity period between 40 and 20 ka. Another, smaller, high-intensity period may have occurred at the field onset, while the latest event, at 504 ± 5 years B.P., erupted 50% of the entire field’s volume. This emphasises the lack of steady-state behaviour that characterises the AVF, which may also be the case in longer-lived fields with a lower dating resolution. Spatial hazard intensity in the AVF under the new age model shows a strong NE-SW structural control of volcanism that may reflect deep-seated crustal or subduction zone processes and matches the orientation of the Taupo Volcanic Zone to the south.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号