首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cultural ecosystem services represent nonmaterial benefits people derive from the environment; these benefits include outdoor recreation opportunities. Changes in climatic conditions are likely to shift the spatial and temporal demand for recreational ecosystem services. To date, little is known about the magnitude and spatial variability in these shifts across large geographic extents. We use 14 years of geotagged social media data to explore how the climatological mean of maximum temperature affects the demand for recreational ecosystem services by season across public lands in the continental United States. We also investigate how the demand for recreational ecosystem services on public lands may change by 2050 under two climate change scenarios, RCP 4.5 and RCP 8.5. Across all public lands in the continental U.S., demand for recreational ecosystem services is expected to decrease 18% by 2050 under RCP 4.5 in the summer, but increase 12% in the winter and 5% in the spring, with no significant changes in the fall. There is substantial variation in the magnitude of projected changes by region. In the spring and fall, some regions are likely to see an increase in the demand for recreational ecosystem services (e.g., Arkansas-Rio Grande-Texas-Gulf), while others will see declines (e.g., South Atlantic Gulf, California Great Basin). Our findings suggest the total demand for recreational ecosystem services across the continental U.S. is expected to decline under warming temperatures. However, there is a large amount of variation in where, when, and by how much, demand will change. The peak season for visiting public lands is likely to lengthen in the continental U.S. as the climate continues to warm, with demand declining in the summer and growing in the off-season.  相似文献   

4.
5.
6.
Climate change impacts on fish catch in the major fishing areas in the world oceans using a new method for forecasting of fish catch is presented with probability statements. The data on historical behaviour of surface water temperature and fish catches were analyzed and processed to assess the dynamics of spatial temperature distribution and fish catches for the world oceans. An analysis shows that the species diversity of fish catch does not change significantly with time and hence the total fish catch was used as the main dynamic variables, practically without loss of information about the dynamic properties of the system. A predictor was constructed to predict the dynamics of fish catch for new values of four moments for a future temperature distribution and the predictor’s power was estimated with a probability statement. Based on the predicted temperatures for the years 2000–2100, the fish catches in the Pacific, Atlantic and Indian Oceans have been predicted with a probability statement.  相似文献   

7.
8.
Wetlands are among the most valuable ecosystems in the world due to their delivery of ecosystem services (ES), but they are particularly vulnerable to drivers of land-use change. However, little is known about how different wetlands respond to drivers of land-use change and how that impacts their delivery of ES. After extreme floods hit Colombia in 2010–2011, negative impacts from these storms heightened the interest of Colombian policy-makers in understanding and recognizing the importance of wetlands. Here, we present a map with 19 wetland types for Colombia and assess the ES that these wetlands deliver and how those ES are impacted by drivers of land-use change. We based our spatial analysis on the Corine Land Cover data for Colombia and combined that with spatial indices derived from knowledgeable experts using the matrix approach and participatory mapping (PGIS). The most vulnerable wetland types identified were floodplain forests, riparian wetlands, freshwater lakes and rivers. The region of Magdalena-Cauca has been identified as the most vulnerable to the impacts of land-use change, until 2025. We discuss our results in light of the current Colombian policy-debate which concerns the designation of wetlands as strategic ecosystems. This designation implies necessary restrictions or prohibition of harmful activities in wetlands, principally mining and industrial agriculture.  相似文献   

9.
10.
Global, national, and regional assessments of the potential effects of Global Climate Change (GCC) have been recently released, but not one of these assessments has specifically addressed the critical issue of the potential impacts of GCC on ephemeral freshwater systems (EFS). I suggest that this is a major oversight as EFS occur in various forms across the globe. In the northeastern United States, these systems, whether ephemeral (“vernal”) pools or ephemeral or intermittent headwater streams are abundant and provide unique habitats critical to the maintenance of forest biodiversity. Since the hydrology of these waterbodies is strongly affected by weather patterns (in the short-term) or climate (long-term), they are especially sensitive to climate change. In this essay, I review the literature on relationships between climate and hydrology of EFS and on relationships between hydrology and ecology of these systems. I then conclude with my assessment of potential impacts of GCC on the hydrology of EFS and implications for their ecology. The focus of this essay will be on EFS of the forests of the northeastern United States, but will include literature from other regions as they relate to the general relationships between GCC and EFS.  相似文献   

11.
This paper evaluates the global economic damage arising from the effects of climate change and associated carbon dioxide concentrations on the loss of coral reefs. We do this by first estimating the effects of sea surface temperature and carbon dioxide concentrations on coral cover. We develop a statistical relationship between coral coverage and sea surface temperature that indicates that the effects are dependent on the temperature range. For example, we find that increasing sea surface temperature causes coral coverage to decrease when sea surface temperature is higher than 26.85 °C, with the estimated reduction being 2.3% when sea surface temperature increases by 1%. In addition, we find that a 1% carbon dioxide increase induces a 0.6% reduction in global coral coverage. We also estimate the resultant loss in economic value based on a meta-analysis of the recreational and commercial value of reef coverage and a crude proportional approach for other value factors. The meta-analysis shows that the coral reef value decreases by 3.8% when coral cover falls by 1%. By combining these two steps we find that the lost value in terms of the global coral reef value under climate change scenarios ranges from US$3.95 to US$23.78 billion annually.  相似文献   

12.
13.
Ensemble regional model simulations over the central US with 30-km resolution are analyzed to investigate the physical processes of projected precipitation changes in the mid-twenty-first century under greenhouse gas forcing. An atmospheric moisture balance is constructed, and changes in the diurnal cycle are evaluated. Wetter conditions over the central US in April and May occur most strongly in the afternoon and evening, supported primarily by moisture convergence by transient eddy activity, indicating enhanced daytime convection. In June, increased rainfall over the northern Great Plains is strongest from 0000 to 0600 LT. It is supported by positive changes in stationary meridional moisture convergence related to a strengthening of the GPLLJ accompanied by an intensification of the western extension of the North Atlantic subtropical high. In the Midwest, decreased rainfall is strongest at 1500 LT and 0000 LT. Both a suppression of daytime convection as well as changes in the zonal flow in the GPLLJ exit region are important. Future drying over the northern Great Plains in summer is triggered by weakened daytime convection, and persists throughout August and September when a deficit in soil moisture develops and land–atmosphere feedbacks become increasingly important.  相似文献   

14.
A February 2012 survey of almost 5,000 farmers across a region of the U.S. that produces more than half of the nation’s corn and soybean revealed that 66 % of farmers believed climate change is occurring (8 % mostly anthropogenic, 33 % equally human and natural, 25 % mostly natural), while 31 % were uncertain and 3.5 % did not believe that climate change is occurring. Results of initial analyses indicate that farmers’ beliefs about climate change and its causes vary considerably, and the relationships between those beliefs, concern about the potential impacts of climate change, and attitudes toward adaptive and mitigative action differ in systematic ways. Farmers who believed that climate change is occurring and attributable to human activity were significantly more likely to express concern about impacts and support adaptive and mitigative action. On the other hand, farmers who attributed climate change to natural causes, were uncertain about whether it is occurring, or did not believe that it is occurring were less concerned, less supportive of adaptation, and much less likely to support government and individual mitigative action. Results suggest that outreach with farmers should account for these covariances in belief, concerns, and attitudes toward adaptation and mitigation.  相似文献   

15.
We use a physically-based water and energy balance model to simulate natural snow accumulation at 247 winter recreation locations across the continental United States. We combine this model with projections of snowmaking conditions to determine downhill skiing, cross-country skiing, and snowmobiling season lengths under baseline and future climates, using data from five climate models and two emissions scenarios. Projected season lengths are combined with baseline estimates of winter recreation activity, entrance fee information, and potential changes in population to monetize impacts to the selected winter recreation activity categories for the years 2050 and 2090. Our results identify changes in winter recreation season lengths across the United States that vary by location, recreational activity type, and climate scenario. However, virtually all locations are projected to see reductions in winter recreation season lengths, exceeding 50% by 2050 and 80% in 2090 for some downhill skiing locations. We estimate these season length changes could result in millions to tens of millions of foregone recreational visits annually by 2050, with an annual monetized impact of hundreds of millions of dollars. Comparing results from the alternative emissions scenarios shows that limiting global greenhouse gas emissions could both delay and substantially reduce adverse impacts to the winter recreation industry.  相似文献   

16.
Climate change in the twenty-first century, projected by a large ensemble average of global coupled models forced by a mid-range (A1B) radiative forcing scenario, is downscaled to Climate Divisions across the western United States. A simple empirical downscaling technique is employed, involving model-projected linear trends in temperature or precipitation superimposed onto a repetition of observed twentieth century interannual variability. This procedure allows the projected trends to be assessed in terms of historical climate variability. The linear trend assumption provides a very close approximation to the time evolution of the ensemble-average climate change, while the imposition of repeated interannual variability is probably conservative. These assumptions are very transparent, so the scenario is simple to understand and can provide a useful baseline assumption for other scenarios that may incorporate more sophisticated empirical or dynamical downscaling techniques. Projected temperature trends in some areas of the western US extend beyond the twentieth century historical range of variability (HRV) of seasonal averages, especially in summer, whereas precipitation trends are relatively much smaller, remaining within the HRV. Temperature and precipitation scenarios are used to generate Division-scale projections of the monthly palmer drought severity index (PDSI) across the western US through the twenty-first century, using the twentieth century as a baseline. The PDSI is a commonly used metric designed to describe drought in terms of the local surface water balance. Consistent with previous studies, the PDSI trends imply that the higher evaporation rates associated with positive temperature trends exacerbate the severity and extent of drought in the semi-arid West. Comparison of twentieth century historical droughts with projected twenty-first century droughts (based on the prescribed repetition of twentieth century interannual variability) shows that the projected trend toward warmer temperatures inhibits recovery from droughts caused by decade-scale precipitation deficits.  相似文献   

17.
Climate change is likely to exacerbate the dry conditions already experienced in southern Africa. When rainfall does come, it is likely to be in bursts of greater intensity, leading to erosion and flood damage. However, these predictions have had very little influence on policy in southern African countries. Computable general equilibrium (CGE) model simulations for Namibia indicate that over 20 years, annual losses to the Namibian economy could be up to 5% of GDP, due to the impact that climate change will have on its natural resources alone. This will affect the poorest people the most, with resulting constraints on employment opportunities and declining wages, especially for unskilled labour in rural areas. Namibia must take steps to ensure that all its policies and activities are ‘climate proofed’ and that it has a strategy to deal with displaced farmers and farm workers. The need to mainstream climate change into policies and planning is clear, and it is the responsibility of industrialized nations, who have largely created the problem of climate change, to help Namibia and other vulnerable countries cope with climate change impacts and plan for a climate-constrained future.  相似文献   

18.
We analyse the observed climate-driven changes in summer wildfires and their future evolution in a typical Mediterranean environment (NE Spain). By analysing observed climate and fire data from 1970 to 2007, we estimate the response of fire number (NF) and burned area (BA) to climate trends, disentangling the drivers responsible for long-term and interannual changes by means of a parsimonious Multi Linear Regression model (MLR). In the last forty years, the observed NF trend was negative. Here we show that, if improvements in fire management were not taken into account, the warming climate forcing alone would have led to a positive trend in NF. On the other hand, for BA, higher fuel flammability is counterbalanced by the indirect climate effects on fuel structure (i.e. less favourable conditions for fine-fuel availability and fuel connectivity), leading to a slightly negative trend. Driving the fire model with A1B climate change scenarios based on a set of Regional Climate Models from the ENSEMBLES project indicates that increasing temperatures promote a positive trend in NF if no further improvements in fire management are introduced.  相似文献   

19.
Climate change impacts on regional rice production in China   总被引:1,自引:0,他引:1  
Rice (Oryza sativa L.) production is an important contributor to China’s food security. Climate change, and its impact on rice production, presents challenges in meeting China’s future rice production requirements. In this study, we conducted a comprehensive analysis of how rice yield responds to climate change under different scenarios and assessed the associated simulation uncertainties of various regional-scale climate models. Simulation was performed based on a regional calibrated crop model (CERES-Rice) and spatially matched climatic (from 17 global climate models), soil, management, and cultivar parameters. Grain-filling periods for early rice were shortened by 2–7 days in three time slices (2030s, 2050s, and 2070s), whereas grain-filling periods for late rice were shortened by 10–19 days in three time slices. Most of the negative effects of climate change were predicted to affect single-crop rice in central China. Average yields of single-crop rice treated with CO2 fertiliser in central China were predicted to be reduced by 10, 11, and 11% during the 2030s, 2050s, and 2070s, respectively, compared to the 2000s, if planting dates remained unchanged. If planting dates were optimised, single-crop rice yields were predicted to increase by 3, 7, and 11% during the 2030s, 2050s, and 2070s, respectively. In response to climate changes, early and single-crop rice should be planted earlier, and late rice planting should be delayed. The predicted net effect would be to prolong the grain-filling period and optimise rice yield.  相似文献   

20.
J. Rolf Olsen 《Climatic change》2006,76(3-4):407-426
Federal agencies use flood frequency estimates to delineate flood risk, manage the National Flood Insurance Program, and ensure that Federal programs are economically efficient. The assumption behind traditional flood risk analysis is that climate is stationary, but anthropogenic climate change and better knowledge of interdecadal climate variability challenge the validity of the assumption. This paper reviews several alternative statistical models for flood risk estimation that do not assume climate stationarity. Some models require subjective judgement or presuppose an understanding of the causes of the underlying non-stationarity, which is problematic given our current knowledge of the interaction of climate and floods. Although currently out of favor, hydrometeorological models have been used for engineering design as alternatives to statistical models and could be adapted to different climate conditions. Floodplain managers should recognize the potentially greater uncertainty in flood risk estimation due to climate change and variability and try to incorporate the uncertainties into floodplain management decision-making and regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号