首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
ABSTRACT

The administration of U.S. President Donald Trump has promised to stop the ongoing spiralling down of the U.S. coal industry. We discuss the origins of the decline and assess the effects of policy interventions by the Trump administration. We find that, with fierce competition from natural gas and renewables, a further decrease of coal consumption must be expected by the old and inefficient U.S. coal-fired electricity generation fleet. By contrast, we consider the overly optimistic (for coal producers) view of the U.S. Energy Information Agency, and test whether the tide for the U.S. coal industry could turn as a result of three potential support measures: (i) revoking the Clean Power Plan (CPP); (ii) facilitating access to the booming Asian market; and (iii) enhanced support for Carbon Capture, Transport and Storage (CCTS) technology. We investigate the short-term and long-term effects on U.S. coal production using a comprehensive partial equilibrium model of the world steam coal market, COALMOD-World (Holz, Haftendorn, Mendelevitch, & von Hirschhausen, 2016). We find that revoking the CPP could stop the downward trend of steam coal consumption in the U.S., but even allowing for additional exports, will not lead to a return of U.S. coal production to the levels of the 2000s, that is, over 900?Mt per year. When global steam coal use is aligned with the 2°C climate target, U.S. steam coal production drops to around 100?Mt per year by 2030 and below 50?Mt by 2050, even if CCTS is available and exports via the U.S. West Coast is possible.

Key policy insights
  • Declining U.S. coal use is primarily caused by competition from natural gas and renewables not by environmental regulation of the coal sector.

  • Without substantial policy support, U.S. coal-fired generation capacity will continue to decline rapidly.

  • Revoking the Clean Power Plan will lead to about one eighth higher U.S. coal production in the next years.

  • Carbon Capture, Transport and Storage does not prevent the rapid decline of coal use required under stringent climate policy.

  • Even in the most extreme pro-coal scenarios with additional export possibilities, U.S. coal production will not return to its pre-2010 levels.

  相似文献   

2.
Non-acceleration theorem in a primitive equation system is developed to investigate the influences of waves on the mean flow variation against external forcing. Numerical results show that mechanical forcing overwhelms thermal forcing in maintaining the mean flow in which the internal mechanical forcing associated with horizontal eddy flux of momentum plays the most important roles. Both internal forcing and external forcing are shown to be active and at the first place for the mean flow variations, whereas the forcing-induced mean meridional circulation is passive and secondary. It is also shown that the effects on mean flow of external mechanical forcing are concentrated in the lower troposphere, whereas those due to wave-mean flow interaction are more important in the upper troposphere. These act together and result in the vertically easterly shear in low latitudes and westerly shear in mid-latitudes. This vertical shear of mean flow is to some extent weakened by thermal forcing.  相似文献   

3.
The role of various mountains in the Asian monsoon system is investigated by AGCM simulations with different mountains.The comparison of the simulation with Asian mountains(MAsia run)with the simulation without mountains(NM run)reveals that the presence of the Asian mountains results in a stronger South Asian summer monsoon(SASM),characterized by enhanced lower-tropospheric westerly winds,uppertropospheric easterly winds,and stronger water vapor convergence.In East Asia,the southerly winds and water vapor convergence are significantly strengthened in association with the intensified zonal pressure gradient between the East Asian continent and the Pacific Ocean.Both the dynamical and thermodynamic forcing of the Tibetan Plateau play important role in strengthening the Asian summer monsoon.In winter,the presence of Asian mountains significantly strengthens the continental high,which leads to a stronger Asian winter monsoon.The presence of African-Arabian mountains helps to intensify the exchange of mass between the Southern Hemisphere and Northern Hemisphere by strengthening the cross equatorial flows in the lower and upper troposphere over East Africa. Asian mountains also play a crucial role in the seasonal evolution of Asian monsoons.In comparison with the NM run,the earlier onset and later withdrawal of lower-tropospheric westerly winds can be found over South Asia in the MAsia run,indicating a longer SASM period.The African-Arabian mountains also moderately contribute to the seasonal variation of the South Asian monsoon.In East Asia,the clear southto-north march of the southerly winds and subtropical rainfall starts to occur in early summer when the effects of Asian mountains are considered.  相似文献   

4.
5.
Assuming that cloud reaches static state in the warm microphysical processes, water vapor mixing ratio(qv), cloud water mixing ratio (qc), and vertical velocity (w) can be calculated from rain water mixing ratio (qr)- Through relation of Z-qr, qr can be retrieved by radar reflectivity factor (Z). Retrieval results indicate that the distributions of mixing ratios of vapor, cloud, rain, and vertical velocity are consistent with radar images, and the three-dimensional spatial structure of the convective cloud is presented. Treating q,v saturated at the echo area, the retrieved qr is about 0.1 g kg-1, qc is always less than 0.3 g kg-1, w is usually below 0.5 m s-1, and rain droplet terminal velocity (vr) is around 5.0 m s-1 in the place where radar reflectivity factor is about 25 dBz; in the place where echo is 45 dBz, the retrieved qr and qc are always about 3.0 g kg-1, w is greater than 5.0 m s-1, and vr is around 7.0 m s-1. In the vertical, the maximum updraft velocity is greater than 3.0 m s-1 at the height of around 5.0 kin, the maximum cloud water content is about 3.0 g kg-1 above 5 km and the maximum rain water content is about 3.0 g kg-1 below 6 kin. Due to the assumption that the cloud is in static state, there will be some errors in the retrieved variables within the clouds which axe rapidly growing or dying-out, and in such cases, more sophisticated radar data control technique will help to improve the retrieval results.  相似文献   

6.
Microphysics elements and vertical velocity retrieved were incorporated using the nudging method into the initial data assimilation of GRAPES (Global/Regional Assimilation and Prediction System) model.Simulation experiments indicated that nudging technique was effective in forcing the model forecast gradually consistent to the observations, yielding the thermodynamically and dynamically balanced analysis field. As viewed from the simulation results, water vapor is vital to precipitation, and it is a governing factor for the amount and duration of precipitation. The initial cloud water, rain water, and vertical velocity determine the strength distribution of convection and precipitation at the beginning time of forecast; the horizontal wind field steers the motion of the mesoscale weather system embedded in and impacts the position of precipitation zone to a large extent. The simulation experiments show that the influence of the initial retrieval data on prediction weakens with the increase of forecast time, and within the first hour of forecast, the retrieval data have an important impact on the evolution of the weather system, but its influence becomes trivial after the first three hours. Changing the nudging coefficient and the integral time-spacing of numerical model will bring some influences to the results. Herein only one radar reflectivity was used, the radar observations did not cover the whole model domain, and some empirical parameters were used in the retrieval method, therefore some differences still lie between simulation and observation to a certain extent, and further studies on several aspects are expected.  相似文献   

7.
将边界层相似性理论同线性热力学理论结合,间接地以观测实验事实证明大气边界层内线性唯象关系是成立的,而且线性湍流输送系数同相应的线性唯象系数成正比关系。但实验事实表明,大涡对流的混合层线性唯象系数成正比关系。但实验事实表明,大涡对流的混合层线性唯象关系是不成立的,混合层内湍流输送过程是一种强的非线性过程。所以,对流边界层是一种远离平衡态非线性区的热力学状态。地转风和热成风是一种大气系统特有的动力过程和热力过程和交叉耦合现象,这是大气系统交叉耦合现象的一个实际例证。  相似文献   

8.
l.Intr0ducti0nAschemeforretrievingCOprofilesinthetroPOspherehasbeendiscussedinthepreviousPartI(WuandGille,partI)foragascorrelationradiometerMeasurementsofPollutionintheTroPOsphere(M0PITT)workingatthe4.6pmwaveband.Thebasicequationshavebeendiscussed.TheuseofthewidebandsignalforprovidingthesurfacetemPeratureandanaddi-tionalchannelforthecolumnarC0amounttoimprovetheretrievalinthenearsurfacelayerhasbeentested.Itisfoundthaterrorsinthetemperatureprofilemayincreaseerrorsinthere-trievedprofiles…  相似文献   

9.
Can near-term public support of renewable energy technologies contain the increase of mitigation costs due to delays of implementing emission caps at the global level? To answer this question we design a set of first and second best scenarios to analyze the impact of early deployment of renewable energy technologies on welfare and emission timing to achieve atmospheric carbon stabilization by 2100. We use the global multiregional energy?Ceconomy?Cclimate hybrid model REMIND-R as a tool for this analysis. An important design feature of the policy scenarios is the timing of climate policy. Immediate climate policy contains the mitigation costs at less than 1% even if the CO2 concentration target is 410?ppm by 2100. Delayed climate policy increases the costs significantly because the absence of a strong carbon price signal continues the carbon intensive growth path. The additional costs can be decreased by early technology policies supporting renewable energy technologies because emissions grow less, alternative energy technologies are increased in capacity and their costs are reduced through learning by doing. The effects of early technology policy are different in scenarios with immediate carbon pricing. In the case of delayed climate policy, the emission path can be brought closer to the first-best solution, whereas in the case of immediate climate policy additional technology policy would lead to deviations from the optimal emission path. Hence, technology policy in the delayed climate policy case reduces costs, but in the case of immediate climate policy they increase. However, the near-term emission reductions are smaller in the case of delayed climate policies. At the regional level the effects on mitigation costs are heterogeneously distributed. For the USA and Europe early technology policy has a positive welfare effect for immediate and delayed climate policies. In contrast, India looses in both cases. China loses in the case of immediate climate policy, but profits in the delayed case. Early support of renewable energy technologies devalues the stock of emission allowances, and this effect is considerable for delayed climate policies. In combination with the initial allocation rule of contraction and convergence a relatively well-endowed country like India loses and potential importers like the EU gain from early renewable deployment.  相似文献   

10.
11.
Following the parameterization of sheared entrainment obtained in the companion paper, Liu et al. (2016), the present study aims to further investigate the characteristics of entrainment, and develop a simple model for predicting the growth rate of a well-developed and sheared CBL. The relative stratification, defined as the ratio of the stratification in the free atmosphere to that in the entrainment zone, is found to be a function of entrainment flux ratio (A e). This leads to a simple expression of the entrainment rate, in which A e needs to be parameterized. According to the results in Liu et al. (2016), A e can be simply expressed as the ratio of the convective velocity scale in the sheared CBL to that in the shear-free CBL. The parameterization of the convective velocity scale in the sheared CBL is obtained by analytically solving the bulk model with several assumptions and approximations. Results indicate that the entrainment process is influenced by the dynamic effect, the interaction between mean shear and environmental stratification, and one other term that includes the Coriolis effect. These three parameterizations constitute a simple model for predicting the growth rate of a well-developed and sheared CBL. This model is validated by outputs of LESs, and the results show that it performs satisfactorily. Compared with bulk models, this model does not need to solve a set of equations for the CBL. It is more convenient to apply in numerical models.  相似文献   

12.
This paper asks whether extreme weather events are becoming more discernible. It uses the Vanderbilt University Television News Archives to determine if annual coverage given to heat waves, droughts, hurricanes and floods has increased on the network news between 1968 and 1996. An index of extreme weather events shows a clear trend toward increased coverage, especially since 1988. However, the different types of extreme events do not receive equal coverage: for example, annual peaks for droughts contain about twice as many stories as the peaks for heat waves. The data further reveal that there is no association between coverage of climate change and the overall coverage of extreme events. While extreme events have attracted more stories in the U.S., there has been no increase in the coverage devoted to extreme events in foreign countries. The possible effects of shifts in TV coverage on the public salience and understanding of climate change are discussed.  相似文献   

13.
《大气与海洋》2013,51(3):177-194
Abstract

Flash density and occurrence features for more than 23.5 million cloud‐to‐ground (CG) lightning flashes detected by the Canadian Lightning Detection Network (CLDN) from 1999 to 2008 are analyzed on 20 × 20 km equal area squares over Canada. This study was done to update an analysis performed in 2002 with just three years of data. Flashes were detected throughout the year, and distinct geographic differences in flash density and lightning occurrence were observed. The shape and locations of large scale patterns of lightning occurrence remained almost the same, although some details were different. Flash density maxima occurred at the same locations as found previously: the Swan Hills and Foothills of Alberta, southeastern Saskatchewan, southwestern Manitoba and southwestern Ontario. A region of greater lightning occurrence but relatively low flash density south of Nova Scotia occurred at the same location as reported previously. New areas of higher flash density occurred along the US border with northwestern Ontario and southern Quebec. These appear to be northward extensions of higher flash density seen in the previous study. The greatest average CG flash density was 2.8 flash km?2 y?1 in southwestern Ontario, where the greatest single‐year flash density (10.3 flash km?2 y?1) also occurred. Prominent flash density minima occurred east of the Continental Divide in Alberta and over the Niagara Escarpment in southern Ontario.

Lightning activity is seen to be highly influenced by the length of the season, proximity to cold water bodies and elevation. The diurnal heating and cooling cycle exerted the main control over lightning occurrence over most land areas; however, storm translation and transient dynamic features complicated the time pattern of lightning production. A large portion of the southern Prairie Provinces experienced more than 50% of flashes between 22:30 and 10:30 local solar time. The duration of lightning over a 20 × 20 km square at most locations in Canada is 5–10 h y?1, although the duration exceeded 15 h y?1 over extreme southwestern Ontario. Lightning occurred on 15–30 days each year, on average, over most of the interior of the country. The greatest number of days with lightning in a single year was 47 in the Alberta foothills and 50 in southwestern Ontario. Beginning and ending dates of the lightning season show that the season length decreases from north to south; however, there are considerable east‐west differences between regions. The season is nearly year‐round in the Pacific coastal region, southern Nova Scotia, southern Newfoundland and offshore.  相似文献   

14.
In this paper, we analyze a major controversy regarding the allocation of water for Indian Premier League (IPL) cricket matches during a period of extreme drought in the state of Maharashtra in India. We use a discursive approach to public policy to understand water policy production and to analyze the competing narratives on water advanced by opposing discourse coalitions during the ‘IPL vs. drought’ controversy. We find that the neoliberal view of ‘water as an economic good’ is dominant and institutionalized in the water allocation priorities determined by the Maharashtra State government. This is resisted by civil society actors like Loksatta and by the Indian judiciary, who view ‘water as a Human Right.’ Our reading of the ‘IPL vs. drought’ public interest litigation (PIL) shows that Loksatta’s decision to target water allocation for the IPL through the Courts leverages the popularity of the IPL in the Indian media, as well as the uneven unfolding of neoliberalism across institutions of the state in India. At the same time, Loksatta’s PIL focuses solely on the IPL and does not pay attention to the water allocation to larger users like industry and sugarcane cultivation that best represent the institutionalization of the neoliberal view of water in Maharashtra. We argue that the focus on the IPL makes it the site of contesting water policy on ideological grounds. We conclude by examining the challenge provided by Loksatta’s PIL to the dominant neoliberal view of water in Maharashtra.  相似文献   

15.
Theoretical and Applied Climatology - Based on the precipitation records of 2474 meteorological stations, this study investigated precipitation characteristics and trends in China from 1961 to...  相似文献   

16.
17.
Coupled ocean atmosphere general circulation models (GCM) are typically coupled once every 24 h, excluding the diurnal cycle from the upper ocean. Previous studies attempting to examine the role of the diurnal cycle of the upper ocean and particularly of diurnal SST variability have used models unable to resolve the processes of interest. In part 1 of this study a high vertical resolution ocean GCM configuration with modified physics was developed that could resolve the diurnal cycle in the upper ocean. In this study it is coupled every 3 h to atmospheric GCM to examine the sensitivity of the mean climate simulation and aspects of its variability to the inclusion of diurnal ocean-atmosphere coupling. The inclusion of the diurnal cycle leads to a tropics wide increase in mean sea surface temperature (SST), with the strongest signal being across the equatorial Pacific where the warming increases from 0.2°C in the central and western Pacific to over 0.3°C in the eastern equatorial Pacific. Much of this warming is shown to be a direct consequence of the rectification of daily mean SST by the diurnal variability of SST. The warming of the equatorial Pacific leads to a redistribution of precipitation from the Inter tropical convergence zone (ITCZ) toward the equator. In the western Pacific there is an increase in precipitation between Papa new guinea and 170°E of up to 1.2 mm/day, improving the simulation compared to climatology. Pacific sub tropical cells are increased in strength by about 10%, in line with results of part 1 of this study, due to the modification of the exchange of momentum between the equatorially divergent Ekman currents and the geostropic convergence at depth, effectively increasing the dynamical response of the tropical Pacific to zonal wind stresses. During the spring relaxation of the Pacific trade winds, a large diurnal cycle of SST increases the seasonal warming of the equatorial Pacific. When the trade winds then re-intensify, the increase in the dynamical response of the ocean leads to a stronger equatorial upwelling. These two processes both lead to stronger seasonal basin scale feedbacks in the coupled system, increasing the strength of the seasonal cycle of the tropical Pacific sector by around 10%. This means that the diurnal cycle in the upper ocean plays a part in the coupled feedbacks between ocean and atmosphere that maintain the basic state and the timing of the seasonal cycle of SST and trade winds in the tropical Pacific. The Madden–Julian Oscillation (MJO) is examined by use of a large scale MJO index, lag correlations and composites of events. The inclusion of the diurnal cycle leads to a reduction in overall MJO activity. Precipitation composites show that the MJO is stronger and more coherent when the diurnal cycle of coupling is resolved, with the propagation and different phases being far more distinct both locally and to larger lead times across the tropical Indo-Pacific. Part one of this study showed that that diurnal variability of SST is modulated by the MJO and therefore increases the intraseasonal SST response to the different phases of the MJO. Precipitation-based composites of SST variability confirm this increase in the coupled simulations. It is argued that including this has increased the thermodynamical coupling of the ocean and atmosphere on the timescale of the MJO (20–100 days), accounting for the improvement in the MJO strength and coherency seen in composites of precipitation and SST. These results show that the diurnal cycle of ocean–atmosphere interaction has profound impact on a range of up-scale variability in the tropical climate and as such, it is an important feature of the modelled climate system which is currently either neglected or poorly resolved in state of the art coupled models.  相似文献   

18.
Near real-time measurements of PM2.5 ionic compositions were performed at the summit of the highest mountain in the central-eastern plains in the spring and summer of 2007 in order to characterize aerosol composition and its interaction with clouds. The average concentrations of total water soluble ions were 27.5 and 36.7 μg?m?3, accounting for 44% and 62% of the PM2.5 mass concentration in the spring and summer, respectively. A diurnal pattern of SO 4 2- , NH 4 + and NO 3 - was observed in both campaigns and attributed to the upslope/downslope transport of air mass and the development of the planetary boundary layer (PBL). The average SO2 oxidation ratio (SOR) in summer was 57% (±27%), more than twice that in spring 24% (±16%); the fine nitrate oxidation ratio (NOR) was comparable in the two seasons (9?±?6% and 11?±?10% in summer and spring, respectively). This result indicates strong summertime production of sulfate aerosol. A principal component analysis shows that short-range and long-range transport of pollution, cloud processing, and crustal source were the main factors affecting the variability of the measured ions (and other trace gases and aerosols) at Mt. Tai. Strong indications of biomass burning were observed in summer. Cloud scavenging rates showed larger variations for different ions and in different cloud events. The elevated concentrations of the water soluble ions at Mt. Tai indicate serious aerosol pollution over the North China plain of eastern China.  相似文献   

19.
20.
An increasing trend and a statistically significant positive correlation between wildfire occurrence, area burned and drought (as expressed by the Standardized Precipitation Index, SPI) have been observed all over Greece, during the period 1961?C1997. In the more humid and colder regions (Northern and Western Greece) the number of fires and area burned were positively correlated to both summer (SPI6_October) and annual drought (SPI12_September), whereas in the relatively more dry and hot regions (Southern and Central Greece) the number of fires and area burned were correlated only to summer drought. In 1978, Greece entered a period of prolonged drought, possibly as a result of the global climatic change. Data analysis of the period 1978?C1997 revealed a statistically significant increase in the mean annual number of fires, the area burned and the summer and annual drought episodes in the relatively more humid and colder regions (Northern and Western) of Greece (which in the past were characterized by less fires and area burned) compared to the more dry and hot regions (Southern and Eastern Greece), which always presented high fire activity. Additionally, analyzing the two sub-periods (1961?C1977, 1978?C1997) separately, drought was significantly correlated only to fire occurrence during the years 1961?C1977, whereas during 1978?C1997 drought was significantly correlated mainly to area burned. It became obvious that drought episodes, although they are not solely responsible for fire occurrence and area burned, they exert an increasingly significant impact on wildfire activity in Greece.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号