首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
中国东部地区冬夏季相对湿度变化特征   总被引:3,自引:0,他引:3  
利用中国东部315个台站近50a(1963-2012年)月平均地面相对湿度和降水量资料,对中国东部地区冬夏季相对湿度的变化特征进行了分析和比较,并讨论了相对湿度与降水的空间耦合关系。结果表明:1)冬季相对湿度的低值区集中在黄淮北部、华北和东北南部,高值区出现在35°N以南地区和东北北部,呈现出中部小、南北大的空间分布特征;夏季相对湿度较冬季明显增大,低值区主要集中在内蒙古中东部,表现出从东部沿海向内陆地区递减的特征。2)冬夏季相对湿度的高(低)值区,其相对变率偏小(大),即湿润(干旱)区的相对湿度较为(不)稳定。3)近50a来,东部大部分地区冬夏季相对湿度普遍表现为下降趋势,其中冬季东北北部及夏季东南部沿海、内蒙古中东部及东北西部相对湿度的下降趋势最为显著。4)东部地区冬夏季相对湿度与同期降水存在很好的同位相对应关系:相对湿度高(低)湿区对应多(少)雨区。其中冬季显著耦合区位于40°N以南地区;夏季相对湿度与降水的关系较冬季复杂,显著耦合区首先位于35°N以北地区,其次位于35°N以南地区,但江淮和华南存在反向的空间变化。  相似文献   

2.
大气成分变化对天气气候、环境生态,以及人体健康、社会生活等都有重要影响.只有通过长期观测,了解这些大气成分的浓度水平、变化趋势、相关源汇过程,才能准确地评估人类活动对当前地球气候、环境和生态系统造成的影响,保护人类发展和生存条件.本文概括介绍了世界气象组织全球大气监测计划(WMO/GAW)和我国开展大气本底观测的发展历...  相似文献   

3.
Two inter-decadal shifts in East China summer rainfall during the last three decades of the 20th century have been identified.One shift occurred in the late 1970s and featured more rainfall in the Yangtze River valley and prolonged drought in North China.The other shift occurred in the early 1990s and featured increased rainfall in South China.The role of black carbon(BC) aerosol in the first shift event is controversial,and it has not been documented for the second event.In this study,the authors used Geophysical Fluid Dynamics Laboratory's(GFDL's) atmospheric general circulation model known as Atmosphere and Land Model(AM2.1) ,which has been shown to capture East Asian climate variability well,to investigate these issues by conducting sensitive experiments with or without historical BC in East Asia. The results suggest that the model reproduces the first shift well,including intensified rainfall in the Yangtze River and weakened monsoonal circulation.However,the model captures only a fraction of the observed variations for the second shift event.Thus,the role of BC in modulating the two shift events is different,and its impact is relatively less important for the early 1990s event.  相似文献   

4.
自动站与人工站相对湿度观测结果的差异及原因分析   总被引:7,自引:2,他引:7  
余君  牟容 《气象》2008,34(12):96-102
相对湿度是大气探测中最重要的变量之一.只有正确的空气湿度记录序列才能揭示水汽在长期气候趋势监测方面所起的作用.自2000年以来,使用了几十年的相对湿度等常规气象要素的人工观测逐渐被自动观测所取代,为了了解两种观测仪器所测结果的差异,选取了全国17个具有代表性站点的观测数据并对其年平均差、标准差、日变化规律等进行了统计分析,然后根据自动观测与人工观测各自的优点和缺陷,将相对湿度数据按照气温和相对湿度大小分成了9类进行对比分析.研究发现,大多数站点的自动站与人工站相比较,两者之间有一定的"系统偏差",并且相对湿度的自动观测存在偏干的现象,年平均在3.5%左右,在相对湿润的地区,这一现象更明显;在相同的气温条件或相同的相对湿度条件下,高湿或高温情况下的对比差值均偏大.  相似文献   

5.
采用西南地区巫溪大官山同一坡面10个不同海拔高度梯度观测站2019~2020年逐小时温湿观测资料,分析了气温、气温直减率、日较差和相对湿度的梯度变化特征。结果表明:观测期间,气温随海拔升高而降低,海拔2000 m以上区域秋、冬季常出现逆温或同温现象;年平均气温递减率为0.57℃/100 m,最大值出现在3月和9月,分别为0.63℃/100 m和0.62℃/100 m,2月最低为0.49℃/100 m;日较差总体随海拔升高而减小,但在海拔1065~1222 m,出现了日较差随海拔升高而快速下降的突变区;年、春季在海拔1222~2180 m,秋季在海拔1222~2550 m,出现了日较差相对稳定层,其它季节不太明显。在海拔1670 m以下区域,年相对湿度为78.5%,夏季最大(85.3%),秋季次之(82%),冬季再次(74.3%),春季最低(72.3%);随着海拔升高云雾出现频率增大,年和各季相对湿度均随之增大;海拔1670~1930 m为突变区间,相对湿度迅速增加,在海拔1930~2550 m,年、春、夏、秋季处于云中的时间较多,相对湿度变化不大;冬季由于云层低,海拔较高的区域常处于云的上方,相对湿度随海拔升高反而有所减小。  相似文献   

6.
黄晓因  徐丽芬 《气象科技》2005,33(4):367-369372
对干湿球系数A与环境温度t的关系进行了研究。结果指出,A不仅与风速有关,也与环境温度有关,如果不考虑风速和环境温度,使用干湿球测湿法获得的测量结果没有使用价值。t〉40℃以后,随着t的升高,使用A的拟合公式计算得到的相对湿度值其误差愈来愈大,在相对湿度较低时情况更为明显。为此提出了在40℃〈t〈80℃范围内A的计算公式。经验证,使用此计算公式获得A值后再计算出相对湿度,其误差小于1.4%。  相似文献   

7.
张寅  罗亚丽  管兆勇 《大气科学》2012,36(1):170-184
利用美国大气辐射测量项目(ARM)制作的“气候模拟最佳估计”(CMBE)观测数据集,检验美国环境预报中心(NCEP)全球预报系统(GFS)2001~2008年在ARM Southern Great Plains(SGP)站点预报的大气温度、相对湿度和云量的垂直分布,主要结论如下:(1)NCEP GFS较好地预报出了温度...  相似文献   

8.
利用美国大气辐射测量项目(ARM)制作的“气候模拟最佳估计”(CMBE)观测数据集,检验美国环境预报中心(NCEP)全球预报系统(GFS)2001~2008年在ARM Southern Great Plains(SGP)站点预报的大气温度、相对湿度和云量的垂直分布,主要结论如下:(1)NCEP GFS较好地预报出了温度和相对湿度的季节变化.就各个季节平均而言,NCEP GFS高估了1.5~12km的大气温度,同时低估了春冬季13~16km和秋冬季1.5km以下的大气温度,各高度上温度偏差绝对值小于1℃;NCEP GFS预报结果再现了观测到的相对湿度垂直分布的双峰结构,但是高估了4~12 km的相对湿度.模式分辨率提高(T170L42更新为T254L64)显著改进了14~18 km相对湿度的预报.(2)预报的云量在10 km以下小于观测值,在10~13 km则高于观测值,而且,NCEPGFS没有预报出非降水性低云的云量,其预报的降水云的云量在8km以下也低于观测值,反映出NCEP GFS模式中浅对流和深对流活动不够活跃.(3)NCEP GFS模式用预报的相对湿度和云水/云冰混合比(qc)诊断云量,采用同样的诊断公式由观测的相对湿度和NCEP GFS预报输出的qc计算云量,得到的云量在11 km以下所有高度上都更加显著地小于观测值,即比NCEP GFS对云量的低估更加严重,说明NCEP GFS可能低估了此高度区间的qc.(4)2001~2008年间NCEP GFS预报的温度、湿度和云量改进不显著,其预报云量和qc的误差很可能与模式中深对流和浅对流方案、层云微物理方案的不确定性有关.  相似文献   

9.
中国西南地区地面平均相对湿度变化分析   总被引:3,自引:0,他引:3       下载免费PDF全文
本文利用1966~2013年中国地面气候资料月值数据集中的相对湿度数据,采用线性拟合、Mann-Kendall检验和小波分析等方法对中国西南地区的相对湿度变化特征进行了分析。结果显示西南地区年平均相对湿度值为66.44%,其中1966~2000年其值呈微弱上升态势,2000~2013年下降较快,从68%降至62%。年均相对湿度年际变化的突变检验可知在1990~2000年增长较快,在2007年发生突变;小波分析显示其存在约为3a和7a的短周期,以及约24a的长周期。月平均相对湿度的年内变化呈“单峰单谷”型,谷值57.62%出现在3月,峰值74.82%出现在9月。进入新世纪以来,年均相对湿度快速下降至62%,非常接近61.8%的人体最佳舒适程度,表明该地区居民可获得更好的舒适感,气候宜居条件变好。   相似文献   

10.
相对湿度对大气气溶胶粒子短波辐射特性的影响   总被引:23,自引:2,他引:23  
杨军  李子华  黄世鸿 《大气科学》1999,23(2):239-247
利用Mie散射原理和重庆实测气溶胶资料,详细计算了边界层内单个气溶胶粒子的光学特性参量,气溶胶粒子群体的散射、吸收、消光系数及不对称因子、散射比、光学厚度;进而采用二流近似和累加法计算了边界层内太阳短波辐射增温率。目的在于研究相对湿度对以上各特性参量的影响。结果表明,相对湿度在65%~95%之间变化时,对气溶胶粒子群体光学特性参数和太阳增温率的影响在量级上可与气溶胶粒子浓度成倍变化的影响相比拟。  相似文献   

11.
The North China Plain(NCP) is a region that experiences serious aerosol pollution. A number of studies have focused on aerosol pollution in urban areas in the NCP region; however, research on characterizing aerosols in rural NCP areas is comparatively limited. In this study, we deployed a TD-HR-AMS(thermodenuder high-resolution aerosol mass spectrometer) system at a rural site in the NCP region in summer 2013 to characterize the chemical compositions and volatility of submicron aerosols(PM_1). The average PM_1 mass concentration was 51.2 ± 48.0 μg m~(-3) and organic aerosol(OA) contributed most(35.4%) to PM_1. Positive matrix factorization(PMF) analysis of OA measurements identified four OA factors, including hydrocarbon-like OA(HOA, accounting for 18.4%), biomass burning OA(BBOA, 29.4%), lessoxidized oxygenated OA(LO-OOA, 30.8%) and more-oxidized oxygenated OA(MO-OOA, 21.4%). The volatility sequence of the OA factors was HOA BBOA LO-OOA MO-OOA, consistent with their oxygen-to-carbon(O:C)ratios. Additionally, the mean concentration of organonitrates(ON) was 1.48-3.39 μg m~(-3), contributing 8.1%–19% of OA based on cross validation of two estimation methods with the high-resolution time-of-flight aerosol mass spectrometer(HRToF-AMS) measurement. Correlation analysis shows that ON were more correlated with BBOA and black carbon emitted from biomass burning but poorly correlated with LO-OOA. Also, volatility analysis for ON further confirmed that particulate ON formation might be closely associated with primary emissions in rural NCP areas.  相似文献   

12.
Global secondary organic aerosol formation (SOA) is currently assumed to be between 11.2 and 270 Tg/yr. This range of uncertainty is reflected in the gas-phase chemistry. In this study, we focus on the feedback of SOA formation on the concentrations of most important trace gases such as ozone, and compare it to the impact of monoterpene gas-phase chemistry with a newly developed reduced monoterpene mechanism (MMM) for either α- or β-pinene in the global chemistry transport model MATCH-MPIC. With this set-up an uncertainty range of 3.5–4.0% increase in annually averaged tropospheric ozone was found to be caused by the gas-phase chemistry of the investigated monoterpenes. Moreover, a strong feedback has been observed for NOx, HCHO, HNO3 and PAN. These observations are affected remarkably by different SOA formation approaches like partitioning or saturation vapour pressure limitation and by the structure of the monoterpene used, e.g. reducing the impact on tropospheric ozone to 1.2–1.9% by using the partitioning approach versus the simulation with gas-phase chemistry only. Therefore, a consideration of the individual processes associated with SOA formation seems to be necessary to reduce the uncertainty in SOA formation and to understand the impact of VOCs on atmospheric chemistry. An erratum to this article is available at .  相似文献   

13.
Recently, the China Meteorological Administration (CMA) released a new Global Atmospheric Reanalysis (CRA-40) dataset for the period 1979-2018. In this study, surface relative humidity (RH) from CRA-40 and other current reanalyses (e.g., CFSR, ERA5, ERA-Interim, JRA-55, and MERRA-2) is comprehensively evaluated against homogenized observations over China. The results suggest that most reanalyses overestimate the observations by 15%-30% (absolute difference) over the Tibetan Plateau but underestimate the observations by 5%-10% over most of northern China. The CRA-40 performs relatively well in describing the long-term change and variance seen in the observed surface RH over China. Most of the reanalyses reproduce the observed surface RH climatology and interannual variations well, while few reanalyses can capture the observed long-term RH trends over China. Among these reanalyses, the CFSR does poorly in describing the interannual changes in the observed RH, especially in Southwest China. An empirical orthogonal function (EOF) analysis also suggests that the CRA-40 performs better than other reanalyses to capture the first two leading EOF modes revealed by the observations. The results of this study are expected to improve understanding of the strengths and weaknesses of the current reanalysis products and thus facilitate their application.  相似文献   

14.
一次华北暴雨过程中边界层东风活动及作用   总被引:7,自引:0,他引:7       下载免费PDF全文
利用常规气象观测资料、NCEP 1°×1°逐6 h分析资料、微波辐射计资料及FY-2E气象卫星及雷达探测资料,针对2013年6月4日发生在北京及周边地区的一次暴雨过程中边界层东风活动及作用进行了天气学诊断分析,结果表明:对流性暴雨过程伴随有源自东北平原的边界层东风活动,东风活动具有尺度小、降温明显和湿度大等特点。暴雨过程是边界层东风和中低空暖式切变线、偏南风急流和500 hPa短波槽共同作用的结果;东风湿冷空气的锋面抬升和地形抬升作用共同加强了中低层暖湿气流的辐合上升运动,同时东风冷垫和地形抬升作用触发了雷暴的再次发生,相应雷暴具有高架对流特点。东风气流起到了边界层水汽输送作用,中低层偏南暖湿气流为暴雨的产生提供了充足的水汽和不稳定层结条件。  相似文献   

15.
Black carbon(BC) is a component of fine particulate matter(PM_(2.5)), associated with climate, weather, air quality,and people's health. However, studies on temporal variation of atmospheric BC concentration at background stations in China and its source area identification are lacking. In this paper, we use 2-yr BC observations from two background stations, Lin'an(LAN) and Longfengshan(LFS), to perform the investigation. The results show that the mean diurnal variation of BC has two significant peaks at LAN while different characteristics are found in the BC variation at LFS, which are probably caused by the difference in emission source contributions. Seasonal variation of monthly BC shows double peaks at LAN but a single peak at LFS. The annual mean concentrations of BC at LAN and LFS decrease by 1.63 and 0.26 μg m–3 from 2009 to 2010, respectively. The annual background concentration of BC at LAN is twice higher than that at LFS. The major source of the LAN BC is industrial emission while the source of the LFS BC is residential emission. Based on transport climatology on a 7-day timescale, LAN and LFS stations are sensitive to surface emissions respectively in belt or approximately circular area, which are dominated by summer monsoon or colder land air flows in Northwest China. In addition, we statistically analyze the BC source regions by using BC observation and FLEXible PARTicle dispersion model(FLEXPART) simulation. In summer, the source regions of BC are distributed in the northwest and south of LAN and the southwest of LFS. Low BC concentration is closely related to air mass from the sea. In winter, the source regions of BC are concentrated in the west and south of LAN and the northeast of the threshold area of stot at LFS. The cold air mass in the northwest plays an important role in the purification of atmospheric BC. On a yearly scale, sources of BC are approximately from five provinces in the northwest/southeast of LAN and the west of LFS. These findings are helpful in reducing BC emission and controlling air pollution.  相似文献   

16.
Cloud/fog water samples were collected at Daekwanreung (840 m msl), a ridge site, in South Korea, from March 2002 to September 2003, by using a Caltech type, self fabricated active strand cloud water collector. The pH, electrical conductivity and major ion concentrations were analyzed. The cloud water pH ranged from 3.6 to 6.8 with an average of 5.2, which was close to the atmospheric neutral point. However, the pH calculated from average concentrations of H+ was 4.7, indicating the cloud/fog water was weakly acidified. SO4 2−, NO3 and NH4 + are predominant ions of which average concentrations were 203.1, 128.1, and 211.7 μeq⋅L−1, respectively. Samples were categorized into four groups by applying 48-hour back trajectory analysis, using the HYbrid Single-Particle Largrangian Integrated Trajectory (HYSPLIT) model. Chemical compositions for the four cases significantly differed from each other. For air masses transported from the East Sea (group E), sea salt concentrations, including Na+, Cl Mg2+, were relatively high. Principal acidifying pollutants, such as NO3 and nss-SO4 2−, significantly increased in the case of air masses transported from the Northeast Asian continent through North Korea (group N) and air masses from the Seoul metropolitan area (group W). However, the mean pH of group N was the highest while the mean pH of group W was the lowest. This suggests that most NO3 and nss-SO4 2− in cloud/fog water was neutralized by ammonia and calcium compounds under the influence of air masses transported from Northeast Asia. N/S ratio for the group W was significantly higher than those for the other three groups, suggesting nitrogen species transported from the Seoul metropolitan area contributed to acidification of cloud/fog water at Daekwanreung. Principle Component analysis (PCA) was applied to the cloud/fog water data for presenting characteristics in the four different categories.  相似文献   

17.
Measurements of gaseous pollutants (03, NOx, SO2, and CO) were conducted at Dinghushan background station in southern China from January to December 2013. The levels and variations of O3, NOx, SO2, and CO were analyzed and their possible causes discussed. The annual average concentrations of 03, NOx, SO2, and CO were 24.6 ± 23.9, 12.8 ± 10.2, 4.0 ± 4.8, and 348 ± 185 ppbv, respectively. The observed levels of the gaseous pollutants are comparable to those at other background sites in China. The most obvious diurnal variation of 03 was observed in autumn, with minima in the early morning and maxima in the afternoon. The diurnal variations of SO2 showed high values during the day. The diurnal cycles of NOx showed higher values in the morning and lower values during the night. Higher CO concentrations were observed in spring followed by winter, autumn, and summer. Biomass burning, in combination with the transport of regional pollution, is an important source of CO, SO2, and NOx in spring and winter. Backward trajectories were calculated and analyzed together with corresponding pollutant concentrations. The results indicate that air masses passing over polluted areas are responsible for the high concentrations of gaseous pollutants at the Dinghushan background station.  相似文献   

18.
利用中国东部地区315个台站1963~2012年月平均地面观测资料,揭示了东部地区冬季和夏季地面比湿(SH)和相对湿度(RH)多年平均值及其变率的空间分布特征,并分析和比较了地理因素(经度、纬度和海拔高度)对其空间分布的影响。结果表明:1)在冬季,SH(0.4~7 g kg-1)以秦岭-淮河线为界,呈现出"北低南高"的分布特征;RH(41%~82%)则呈现出"南北高、中间低"的分布特征;一般冬季地面湿度相对较低的地区其变化幅度相对较大。2)在夏季,SH(7~20 g kg-1)整体上明显大于冬季,RH(44%~89%)则与冬季差异不大,均呈现由东南部沿海向西北内陆递减的分布特征;同样夏季地面湿度较低的地区通常其变化幅度也相对较大。3)东部地区冬季地面湿度空间分布受地理因素影响,其中纬度是最主要的影响因素,经度次之,海拔高度对其整体分布影响不明显,且地理因素对冬季SH的回归效果明显好于对冬季RH的回归效果。4)东部地区夏季地面湿度空间分布受地理因素影响较冬季显著,纬度同样是影响夏季地面湿度最主要的因素,但海拔高度对夏季SH、经度对夏季RH的影响程度较冬季增大,且地理因素对夏季SH的回归效果同样好于对RH的回归效果。  相似文献   

19.
利用2015-2019年中国东部20个省份222个城市的地面O3观测数据和全球再分析风场数据,研究了中国东部地区O3的时空分布特征,以及在亚洲夏季风背景下污染上风方O3光化学输送对下风方O3质量浓度季节变化的影响.结果表明:中国东部地区O3质量浓度夏季高、冬季低,O3质量浓度按照东南、华东、东北、华北的顺序依次升高,位...  相似文献   

20.
Few studies have specifically focused on the validation and spatiotemporal distribution of planetary boundary layer height(PBLH) and relative humidity(RH) data in China. In this analysis, continuous PBLH and surface-level RH data simulated from GEOS-5 between 2004 and 2012, were validated against ground-based observations. Overall, the simulated RH was consistent with the statistical data from meteorological stations, with a correlation coefficient of 0.78 and a slope of 0.9. However, the simulated PBLH was underestimated compared to LIDAR data by a factor of approximately two,which was primarily because of poor simulation in late summer and early autumn. We further examined the spatiotemporal distribution characteristics of two factors in four regions—North China, South China, Northwest China, and the Tibetan Plateau. The results showed that the annual PBLH trends in all regions were fairly moderate but sensitive to solar radiation and precipitation, which explains why the PBLH values were ranked in order from largest to smallest as follows: Tibetan Plateau, Northwest China, North China, and South China. Strong seasonal variation of the PBLH exhibited high values in summer and low values in winter, which was also consistent with the turbulent vertical exchange. Not surprisingly, the highest RH in South China and the lowest RH in desert areas of Northwest China(less than 30%). Seasonally, South China exhibited little variation, whereas Northwest China exhibited its highest humidity in winter and lowest humidity in spring,the maximum values in the other regions were obtained from July to September.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号