首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultraviolet aerosol index(UVAI) is essential for monitoring the absorbing aerosols during aerosol events. UVAI depends on the absorbing aerosol concentration, the viewing geometry, and the temporal drift of radiometric sensitivity. To efficiently detect absorbing aerosols with the highest precision and to improve the accuracy of long-term UVAI estimates,the background UVAI must be examined through the UVAI retrieval. This study presents a statistical method that calculates the background val...  相似文献   

2.
该文选取新疆阿克苏地区2006年11月22—24日的EOS/MODIS卫星遥感资料,同时选取相关气象站的观测资料,应用三光谱云相态反演法,对阿克苏地区暴雪云团的变化过程进行了研究,通过三光谱亮温差点聚图对云相态变化的分析,清晰地展示出该天气系统的发生、发展到最终暴雪形成过程中的物理机制。反演结果与实际气象观测情况相一致;表明三光谱云相态反演法在理论和实际应用方面具有一定优势。  相似文献   

3.
Stray light in single-monochromator Brewer instruments increases the uncertainty of solar ultraviolet spectral irradiance measurements and ozone retrievals. To study how spectral irradiance within and outside the measurement ranges of the instruments affects stray light, two Brewer MKII instruments were characterized for the level of in- and out-of-range stray light at multiple laser wavelengths. In addition, several solar-blind filters utilized in single-monochromator Brewers to limit out-of-range stray light were characterized for spectral and spatial transmittances. Finally, the measurement results were used to simulate the effect of stray light and stray light correction on spectral irradiance and ozone measurements at different wavelength regions. The effect of stray light from wavelengths above 340?nm was found to be negligible compared with other sources of uncertainty. On the other hand, contributions from wavelengths between 325 and 340?nm can form a significant portion of the overall stray light of the instrument, with 325?nm being the upper limit of the nominal measurement range of the instrument.  相似文献   

4.
国际卫星红外大气探测器发展新特点   总被引:1,自引:1,他引:1  
为了深入了解国际卫星红外大气探测仪器的新特点,推动其资料应用,以美国NASA Aqua卫星装载的高光谱红外大气探测仪器AIRS(Atmospheric Infrared Sounder)为例,介绍卫星红外探测仪研发背景、仪器特征、研制技术、数据产品处理和应用。研究表明,AIRS开辟了卫星大气探测的新时代,它为其他未升空的高光谱仪器提供了不可或缺的研究资料,对将装载于我国风云卫星的高光谱红外大气垂直探测仪器的研制具有重大的参考价值。  相似文献   

5.
MODIS与NCEP大气可降水量资料的比较分析   总被引:1,自引:4,他引:1  
利用中国大陆地区2001年4个季节(1、4、7、10月)中8d和4m的NCEP资料,对整层大气的比湿进行积分得到大气可降水量。选用了同时同地的MODIS大气可降水量资料,然后对两者进行了对比分析。结果发现:在中国西北、内蒙地区MODIS大气可降水量资料要比NCEP资料普遍偏大,而在东南和华南部分地区则普遍偏小。如果对上述两个地区的MODIS资料分别乘以修正系数0.933983和1.07686,则两者的差别可控制在0.2cm以内。因此,MODIS大气可降水量资料经过修正后,可以为卫星反演模式提供同化性较好的输入资料。  相似文献   

6.
The features of sea ice drift in the Sea ofOkhotsk are studied using Terra and Aqua satellite MODIS spectroradiometer data. The spatial heterogeneity of sea ice drift in the areas of hydrocarbon fields on the Magadan and Sakhalin shelves is analyzed.  相似文献   

7.
Based on a current fog detection theory, a multiband threshold method for MODIS data was put forward to detect daytime fog in the South China Sea. It used Bands 1, 2, 18, 20 and 31 of MODIS data to separate fog from the cloud and the sea surface. The digital detection indexes were as follows. If RB1<20%, RB2<20% and RB1>RB2, the pixel was identified to be the sea surface. If RB1>55%, RB2>55% and TB31<273 K, the pixel was identified to be a middle- and high-level cloud. If IFC>20, the pixel was classified to be sea fog. The method was verified with sea fog data observed from the coastal region of Guangdong during January-April 2011. Out of the 13 samples of satellite detection, nine were consistent with the surface observations, three were identified to be low-level the cloud according to the satellite detection but fog according to the surface observations, and only one sample was identified to be the ocean surface by the satellite detection but fog by the surface observations. Because the MODIS data cannot penetrate the cloud or fog, the model was designed for a single field of view which had only one layer of cloud or fog. It can accurately distinguish fog which is not covered by the cloud, but it identifies fog as cloud if the former is covered by a cloud. Generally speaking, the model is effective and feasible.  相似文献   

8.
MODIS探测器的大扫描角多探元并扫方式是造成扫描图像严重畸变的主要根源,应用基于SWATH的卫星遥感数据处理策略,分析MODIS 1B各分辨率数据空间位置关系及图像数据与经纬度数据的对应情况,结合探测器扫描方式、卫星升降轨和地球曲率等各方面因素按像元地理位置合成图像,抛弃数据光栅特性采取矢量特性实现对像元几何精定位。结果表明:应用该种方法处理的MODIS数据几何校正精度高,方便进行亚像元级精确几何校正,而且可以避免2次或多次像素重定位导致信息丢失,不会出现“BowTie”现象。  相似文献   

9.
张磊  董超华  张文建  张鹏 《气象科技》2008,36(5):639-642
为了深入了解国际卫星红外大气探测仪器的新特点,以欧洲METOP卫星装载的超高光谱红外大气探测仪(IASI:Infrared Atmospheric Sounding Interferometer)为例,介绍卫星红外探测仪研发背景、仪器特征和数据产品处理,并与第1个高光谱大气红外探测仪(AIRS:Atmosphenic Inftared Sounder)作了比较分析.采用干涉分光技术的IASI为地球大气遥感提供了丰富的研究资料,可用于反演大气、海洋、云和大气成分,对我国风云卫星的高光谱红外大气垂直探测仪器的研发具有重要参考价值.  相似文献   

10.
风云气象卫星数据处理算法的若干创新   总被引:2,自引:0,他引:2       下载免费PDF全文
This study introduces some innovations in the data processing algorithm for Chinese FY meteorological satellites. Issues about satellite image navigation, radiation calibration, and data assimilation are discussed.
A time series of the earth's disk center-line count provides information on the orientation of the satellite spin axis. With this information, the altitude parameters of the satellite and then the earth disk location in the south-north direction may be solved. In each spin cycle, the satellite views the sun and the earth. Given the satellite position and altitude, the angle (β) subtended at the satellite by the sun and the earth can be calculated and predicted. Thus, the earth's disk location in the east-west direction is fixed. Based on this principle, we derived an automatic image navigation algorithm for FY2 geosynchronous meteorological satellites with an accuracy approaching pixel level.
The FY2 meteorological satellite traveling in a geostationary orbit suffers a large amount of radiation from the sun. The radiation varies on both diurnal and annual scales, which causes radiation responses in the thermal infrared (IR) bands wherein the wavelengths greater than 3.5 μm vibrate periodically on scales of hours to years. These vibrations must be precisely calibrated. First, based on the accurate estimation of the radiant contribution from the front-optics, the variation characteristics of the calibration parameters are obtained on a temporal scale of hours from the space-borne inner-blackbody (IBB) measurement results. Second, the in-orbit measured radiation of the lunar surface is referenced and utilized to correct the sys- tematic bias of the IBB calibration from daily to annual scales. By using such algorithms, we achieved a calibration accuracy of the FY2 satellite's IR imagery of less than 1 K.
The on-orbit satellite instrument parameters play an important role in data quality; however, they may be mis-measured due to limitations in the measurement conditions or may be  相似文献   

11.
杨冰韵  刘健  贾煦 《大气科学》2020,44(5):1013-1022
卷云在大气辐射中扮演着重要角色,对天气系统和气候变化产生重要影响。相比传统地基观测手段,卫星遥感更容易探测到高层卷云的信息,本文利用CALIOP主动遥感仪器可获取较为准确的薄卷云特性的特点,针对MODIS被动遥感探测器反演的薄卷云云顶高度的偏差开展订正研究。研究选取2013~2017年京津冀地区MODIS云产品,结合CALIPSO卫星的卷云云顶高度数据,基于交叉验证的方法得到线性拟合方案,对MODIS卷云云顶高度进行订正。订正后的MODIS与CALIPSO卷云云顶高度差值的分布区间由?3~2 km变为?2.0~2.5 km,峰值由?0.8 km左右变为0.2 km左右。订正效果随云顶高度和云光学厚度的不同有所变化,其中较低层卷云和光学薄卷云的订正效果更明显。  相似文献   

12.
Climatic change caused by solar variability has been proposed for at least a century, but could not be assessed reliably in the past because the uncertainty in solar irradiance measured from the Earth's surface is too large. Now satellite measurements by such instruments as the Active Cavity Radiometer Irradiance Monitor (ACRIM) permit a preliminary assessment. The satellite data exhibit irradiance variations over a spectrum of shorter timescales, but the first 5-yr overall trend indicates slightly decreasing luminosity. The global temperature response to monthly-mean ACRIM-measured fluctuations from 1980–1984 was computed from the NYU 1D transient climate model - which includes thermal inertia effects of the world oceans - starting from an assumed pre-existing steady state, and the results compared with observations of recent global temperature trends. The modeled surface temperature evolution exhibited a complex history-dependent behavior whose fluctuations were an order of magnitude smaller than observed, primarily owing to oceanic thermal damping. Thus solar variability appears unlikely to have been an important factor in global-scale climate change over this period. The possibility of using the measurements to develop simple correlations for irradiance with longer term solar activity observable from the surface, and therefore to analyze historical effects, was considered, but is not supported by the satellite data. However, we have used a model of solar irradiance variation with time (Schatten, 1988), covering the period 1976–1997 in order to assess our model's response to forcing whose fluctuation timescale is comparable to the thermal relaxation time of the upper ocean. Continuous monitoring of solar flux by space-based instruments over timescales of 20 yr or more, comparable to timescales for thermal relaxation of the oceans, and of the solar cycle itself, is probably needed to resolve issues of long-term solar variation effects on climate.Presently at Lamont-Doherty Geological Observatory of Columbia University, Palisades, NY 10964.  相似文献   

13.
A comparison study for the solar radiative flux above clouds is presented between the regional climate model system BALTEX integrated model system (BALTIMOS) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. For MODIS, an algorithm has been developed to retrieve reflected shortwave fluxes over clouds. The study area is the Baltic Sea catchment area during an 11-month period from February to December 2002. The intercomparison focuses on the variations of the daily and seasonal cycle and the spatial distributions. We found good agreement between the observed and the simulated data with a bias of the temporal mean of 13.6 W/m2 and a bias of the spatial mean of 35.5 W/m2. For summer months, BALTIMOS overestimates the solar flux with up to 90 W/m2 (20%). This might be explained by the insufficient representation of cirrus clouds in the regional climate model.  相似文献   

14.
为了丰富贵州西部光伏电站的功率预测思路与方法,利用2019—2021年贵州西部5个光伏电站发电功率、气象要素、卫星反演辐照度、地面观测辐照度数据,分析光伏功率的时间演变和与卫星反演辐照度、地面观测辐照度的相关性。利用前80%样本数据为测试集,剩余数据为预测模拟模型的检验集,利用机器学习中的BP、GRNN神经网络算法和测试集分别对5个电站建立光伏功率预测模拟模型。利用检验集和光伏电站的检验方法对各个模型进行效果验证,并对比不同算法不同站点间的预测模拟效果。结果表明,BP、GRNN算法在5个光伏电站的功率预测模拟中平均日准确率在90%左右,标准化均方误差在0.07~0.12,且FY-4A反演辐照度参与建立的光伏功率预测模拟模型较地面观测辐照度参与建立的模型效果更佳,能够为光伏功率预测提供一种参考方案和思路。  相似文献   

15.
自20世纪70年代气象卫星进入业务化观测以来,气象卫星已提供了40余年的观测数据。长时间序列的卫星数据为云气候研究提供了可能。基于长时间序列的卫星数据,构建云气候数据集会涉及诸如定标、反演算法、反演数据精度验证等方面。目前国际上也已生成了一系列的云气候数据集,如ISCCP,Patmos-x,CLARA和MODIS-ST等,这些数据集所选用的探测数据、反演算法不尽一致,数据集产品的时空属性各异。如何发挥极轨和静止气象卫星各自优势,融合两类卫星数据,形成高时间分辨率、质量稳定的长时间序列云气候数据集是未来需要解决的问题。  相似文献   

16.
Accurate information about the solar irradiance at the soil surface is essential for many agricultural, hydrological and environmental models that take into account the surface energy balance. The main goal of present study was to evaluate the solar irradiance predictions from the Advanced Research Weather Research and Forecasting (ARW) model for both clear sky and cloudy conditions. An extended observational dataset from the Georgia Automated Environmental Monitoring Network (AEMN) provided hourly solar irradiance at the surface and other collocated surface level measurements. The radiation bias (determined from the difference between the ARW predictions and AEMN observations) showed a linear relationship with the cloud optical depth and the cirrus cloud amount from the moderate resolution imaging spectroradiometer (MODIS). For cloud-free days, the ARW model had a positive radiation bias that exceeded 120 W m?2 over coastal and urban areas of Georgia. The model radiation and air temperature bias increased with increasing aerosol optical depth derived from the MODIS observations during the cloud-free days, attributed to fire events that lasted intermittently throughout the study period. The model biases of temperature, mixing ratio, wind speed, and soil moisture were linearly dependent on the radiation bias.  相似文献   

17.
An overview of MODIS radiometric calibration and characterization   总被引:11,自引:0,他引:11  
The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key instruments for NASA’s Earth Observing System (EOS), currently operating on both the Terra and Aqua satellites. The MODIS is a major advance over the previous generation of sensors in terms of its spectral, spatial, and temporal resolutions. It has 36 spectral bands: 20 reflective solar bands (RSB) with center wavelengths from 0.41 to 2.1 μm and 16 thermal emissive bands (TEB) with center wavelengths from 3.7 to 14.4 μm, making observations at three spatial resolutions: 250 m (bands 1–2), 500 m (bands 3–7), and 1km (bands 8-36). MODIS is a cross-track scanning radiometer with a wide field-of-view, providing a complete global coverage of the Earth in less than 2 days. Both Terra and Aqua MODIS went through extensive pre-launch calibration and characterization at various levels. In orbit, the calibration and characterization tasks are performed using its on-board calibrators (OBCs) that include a solar diffuser (SD) and a solar diffuser stability monitor (SDSM), a v-grooved flat panel blackbody (BB), and a spectro-radiometric calibration assembly (SRCA). In this paper, we present an overview of MODIS calibration and characterization activities, methodologies, and lessons learned from pre-launch characterization and in-orbit operation. Key issues discussed in this paper include in-orbit efforts of monitoring the noise characteristics of the detectors, tracking the solar diffuser and optics degradations, and updating the sensor’s response versus scan angle. The experiences and lessons learned through MODIS have played and will continue to play major roles in the design and characterization of future sensors.  相似文献   

18.
A Seasat-A Project was conceived and is being implemented to establish the utility of an array of microwave instruments in space for oceanic research and marine technology. The instruments include: a short-pulse radar altimeter, a wind-field scatterometer, an experimental synthetic-aperture imaging radar, a scanning multifrequency microwave radiometer, and a supporting visual and infrared radiometer. All weather, day-night measurements of sea-surface temperature, surface wind speed and direction, sea state and directional wave spectra will be made, the latter over limited areas and times because of operational limitations on the synthetic-aperture-radar instrument. Highly precise (&<0.1 m) range information from the radar altimeter, in combination with an accurate satellite emphemeris, will be used to infer dynamic departures of sea level from the marine geoid produced by tides, currents, and storm surges. Sea ice will be observed by the synthetic-aperture radar, radar altimeter and the scanning multifrequency microwave radiometer, with particular emphasis on demonstrating their capability to determine polar ice coverage, dynamics and navigability.The satellite will be launched into a high-inclination (108 °), non-sun-synchronous, nearly-circular 800 km orbit in May of 1978. The orbit is such that a dense network traced out by the subsatellite point (18.5-km equatorial separation of ascending orbits) will be obtained in 152 days for geodesy. The satellite is designed for a minimum lifetime of one year; with expendables, including orbit adjust capability, for three.All data, except those obtained from the synthetic-aperture radar, will be collected globally, and returned, as measured, first by a 25 kbps data stream, and then after playback at a rate of 800 kbps from the on-board tape recorder. Synthetic-aperture radar data will be returned in real time only, over a 20-MHz analog telemetry link. We expect that satellite data will be distributed through the National Oceanic and Atmospheric Administrations Environmental Data Service. Processed data are expected to be generally available through this agency within a very few months of launch, following preliminary assessment of instrument operation and evaluation of performance.  相似文献   

19.
利用MODIS卫星通道的红外特征,对2009年1月8—11日长江中游地区的一次大雾过程进行了分析。结果表明,由于云、雾、地表所处高度不同,位于水汽的强吸收带的MODIS卷云通道(1.38μm),在辐射传输过程中对水汽吸收的程度有一定的差异,从而导致MODIS接收到这些目标物的反射率差异较明显。其中雾与地表在1.38μm波段的反射率近似相等,而与云则有明显的差别。另外,通过31波段与20波段辐射亮温差的光谱廓线分析,发现云雾的亮温差要明显小于地表。  相似文献   

20.
TUVR型紫外辐射表性能研究   总被引:3,自引:0,他引:3       下载免费PDF全文
利用多台Eppley实验室的TUVR紫外辐射表, 设计并进行比对观测试验, 定量了解TUVR型辐射表测量误差来源及贡献, 了解该辐射表性能, 从而提出数据订正方法。试验结果表明:TUVR型辐射表测量误差来源于感应元件和散射片两部分; 感应元件的衰减率y与使用时间t (月) 呈线性关系。散射片的测量误差跟一个地区的污染状况有关。清洗后散射片透过率与原始水平的透过率仍能保持线性关系, 不影响其余弦订正能力。订正后的结果与标准测量值相关显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号