首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A probabilistic assessment of the seismic hazard in Turkey   总被引:1,自引:0,他引:1  
  相似文献   

2.
A probabilistic procedure was applied to assess seismic hazard for the sites of five Greek cities (Athens, Heraklion, Patras, Thessaloniki and Volos) using peak ground acceleration as the hazard parameter. The methodology allows the use of either historical or instrumental data, or a combination of both. It has been developed specifically for the estimation of seismic hazard at a given site and does not require any specification of seismic sources or/and seismic zones. A new relation for the attenuation of peak ground acceleration was employed for the shallow seismicity in Greece. The computations involved the area- and site-specific parts. When assessing magnitude recurrence for the areas surrounding the five cities, the maximum magnitude, mmax, was estimated using a recently derived equation. The site-specific results were expressed as probabilities that a given peak ground acceleration value will be exceeded at least once during a time interval of 1, 50 and 100 years at the sites of the cities. They were based on the maximum peak ground acceleration values computed by assuming the occurrence of the strongest possible earthquake (of magnitude mmax) at a very short distance from the site and using the mean value obtained with the help of the attenuation law. This gave 0.24 g for Athens, 0.53 g for Heraklion (shallow) and 0.39 g Heraklion (intermediate-depth seismicity), 0.30 g for Patras, 0.35 g for Thessaloniki and 0.30 g for Volos. In addition, the probabilities of exceedance of the estimated maximum peak ground acceleration values were calculated for the sites. The standard deviation of the new Greek attenuation law demonstrates the uncertainty and large variation of predicted peak ground acceleration values.  相似文献   

3.
4.
Ommi  Salma  Janalipour  Milad 《Natural Hazards》2022,113(1):345-363
Natural Hazards - After a major earthquake, one of the main tasks is to identify temporary shelters. In this study, we utilized probabilistic aftershock hazard analysis based on land use...  相似文献   

5.
The seismic hazard for the Lake Van basin is computed using a probabilistic approach, along with the earthquake data from 1907 to present. The spatial distribution of seismic events between the longitudes of 41–45° and the latitudes of 37.5–40°, which encompasses the region, indicates distinct seismic zones. The positions of these zones are well aligned with the known tectonic features such as the Tutak-Çald?ran fault zone, the Özalp fault zone, the Geva? fault zone, the Bitlis fault zone and Karl?ova junction where the North Anatolian fault zone and East Anatolian fault zone meet. These faults are known to have generated major earthquakes which strongly affected cities and towns such as Van, Mu?, Bitlis, Özalp, Muradiye, Çald?ran, Erci?, Adilcevaz, Ahlat, Tatvan, Geva? and Gürp?nar. The recurrence intervals of M s ≥ 4 earthquakes were evaluated in order to obtain the parameters of the Gutenberg–Richter measurements for seismic zones. More importantly, iso-acceleration maps of the basin were produced with a grid interval of 0.05 degrees. These maps are developed for 100- and 475- year return periods, utilizing the domestic attenuation relationships. A computer program called Sistehan II was utilized to generate these maps.  相似文献   

6.
Modeling of seismic hazard for Turkey using the recent neotectonic data   总被引:1,自引:0,他引:1  
Kamil Kayabali   《Engineering Geology》2002,63(3-4):221-232
Recent developments in the neotectonic framework of Turkey introduced new tectonic elements necessitating the reconstruction of Turkey's seismic hazard map. In this regard, 14 seismic source zones were delineated. Maximum earthquake magnitudes for each seismic zones were determined using the fault rupture length approximation. Regression coefficients of the earthquake magnitude–frequency relationships for the seismic zones were compiled mostly from earlier works. Along with these data, a strong ground motion attenuation relationship developed by Joyner and Boore [Joyner, W.B., Boore, D.M., 1988. Measurement, characterization, and prediction of strong ground motion. Earthquake Engineering and Soil Dynamics, 2. Recent Advances Ground Motion Evaluation, pp. 43–102.] was utilized to model the seismic hazard for Turkey using the probabilistic approach. For the modeling, the “earthquake location uncertainty” concept was employed. A grid of 5106 points with 0.2° intervals was constituted for the area encompassed by the 25–46°E longitudes and 35–43°N latitudes. For the return periods of 100 and 475 years, the peak horizontal ground acceleration (pga) in bedrock was computed for each grid point. Isoacceleration maps for the return periods of 100 and 475 years were constructed by contouring the pga values at each node.  相似文献   

7.
8.
Yoon  Sungsik  Lee  Young-Joo  Jung  Hyung-Jo 《Natural Hazards》2021,105(2):1231-1254
Natural Hazards - In this study, a seismic risk assessment model was proposed to evaluate the seismic reliability of a water transmission network. The proposed risk assessment model involves...  相似文献   

9.
Davoudi  Nader  Tavakoli  Hamid Reza  Zare  Mehdi  Jalilian  Abdollah 《Natural Hazards》2020,100(3):1159-1170
Natural Hazards - Aftershock probabilistic seismic hazard analysis (APSHA) has a key role in risk management after a major earthquake. The main goal of the current study is to assess aftershock...  相似文献   

10.
Some Bayesian methods of dealing with inaccurate or vague data are introduced in the framework of seismic hazard assessment. Inaccurate data affected by heterogeneous errors are modeled by a probability distribution instead of the usual value plus a random error representation; these data are generically called imprecise. The earthquake size and the number of events in a certain time are modeled as imprecise data. Imprecise data allow us to introduce into the estimation procedures the uncertainty inherent in the inaccuracy and heterogeneity of the measuring systems from which the data were obtained. The problem of estimating the parameter of a Poisson process is shown to be feasible by the use of Bayesian techniques and imprecise data. This background technique can be applied to a general problem of seismic hazard estimation. Initially, data in a regional earthquake catalog are assumed imprecise both in size and location (i.e errors in the epicenter or spreading over a given source). By means of scattered attenuation laws, the regional catalog can be translated into a so-called site catalog of imprecise events. The site catalog is then used to estimate return periods or occurrence probabilities, taking into account all sources of uncertainty. Special attention is paid to priors in the Bayesian estimation. They can be used to introduce additional information as well as scattered frequency-size laws for local events. A simple example is presented to illustrate the capabilities of this methodology.  相似文献   

11.
Mezcua  Julio  Rueda  Juan 《Natural Hazards》2021,108(2):1609-1628
Natural Hazards - This study consists of a seismicity revision and the assessment of the probabilistic seismic hazard of the Canary Islands. In order to analyze its seismotectonics and associated...  相似文献   

12.
Nearly 108-km lengths of Mersin shores are composed of natural beaches. The region is located between major tourist centers. In the future, this region is thought to be built with a great number of tourist facilities. Turkey’s largest seaport, Ata? refinery (Mersin International Port) is located in Mersin. Recently, Mersin is becoming of great importance to Turkey as the latter plans to construct its second nuclear power plant in the region. Therefore, as nuclear power plants are built to withstand environmental hazards, it is very important to analyze the seismic risk of the areas where the nuclear power plant will be constructed. The region is located between the East Anatolian Fault Zone and Center Anatolian Fault Zone. Based on the Turkey Earthquake Regions Map, Mersin is divided into second-, third-, and fourth-degree earthquake regions. In this study, we sampled earthquakes of magnitude of 4.0 or greater between 01 Jan 1900 and 31 Dec 2010 in the area; seismic hazard of Mersin province was estimated with probabilistic and statistical methods. The study area was selected as the coordinates between 36.03° and 37.42° North and 32.57° and 35.16° East. On the study area, different scaled magnitude values in the last 110 years converted to a common scale (Mw) and earthquake catalog was re-compiled and also seismic sources that may affect the area was determined. In this study, the seismic hazards of the region were obtained using the methods of probability and statistics. This study used three different attenuation relationships. Using the attenuation relationships suggested by Boore et al. (Seismol Res Lett 68(1):128–153, 1997) and Kalkan and Gülkan (Earthquake Spectra 20:1111–1138, 2004), the largest ground acceleration which corresponds to a recurrence period of 475 years was found as 0.08–0.09 g and Akkar and Ça?nan (Bull Seismol Soc Am 100 6:2978–2995, 2010), 0.04 g for bedrock at the central district. When computing for seismic hazard curves, Mut district appears to have a greater seismic hazard compared with other districts. Moreover, according to the attenuation relationships, seismic hazard curves corresponding to a recurrence period of 475 years were obtained for the Mersin Central, Mut, Erdemli, Çaml?yayla, and Tarsus districts.  相似文献   

13.
Using 4.0 and greater magnitude earthquakes which occurred between 1 January 1900 and 31 Dec 2008 in the Sinop province of Turkey this study presents a seismic hazard analysis based on the probabilistic and statistical methods. According to the earthquake zonation map, Sinop is divided into first, second, third and fourth-degree earthquake regions. Our study area covered the coordinates between 40.66°– 42.82°N and 32.20°– 36.55°E. The different magnitudes of the earthquakes during the last 108 years recorded on varied scales were converted to a common scale (Mw). The earthquake catalog was then recompiled to evaluate the potential seismic sources in the aforesaid province. Using the attenuation relationships given by Boore et al. (1997) and Kalkan and Gülkan (2004), the largest ground accelerations corresponding to a recurrence period of 475 years are found to be 0.14 g for bedrock at the central district. Comparing the seismic hazard curves, we show the spatial variations of seismic hazard potential in this province, enumerating the recurrence period in the order of 475 years.  相似文献   

14.
We performed a probabilistic analysis of earthquake hazard input parameters, NW Turkey covers Gelibolu and Biga Peninsulas, and its vicinity based on four seismic sub-zones. The number of earthquakes with magnitude M ≥ 3.0 occurred in this region for the period between 1912 and 2007 is around 5130. Four seismic source sub-zones were defined with respect to seismotectonic framework, seismicity and fault geometry. The hazard perceptibility characterization was examined for each seismic source zone and for the whole region. The probabilities of earthquake recurrences were obtained by using Poisson statistical distribution models. In order to determine the source zones where strong and destructive earthquakes may occur, distribution maps for a, b and a/b values were calculated. The hazard scaling parameters (generally known as a and b values) in the computed magnitude–frequency relations vary in the intervals 4.28–6.58 and 0.59–1.13, respectively, with a RMS error percentage below 10 %. The lowest b value is computed for sub-zone three indicating the predominance of large earthquakes mostly at Gelibolu (Gallipoli) and north of Biga Peninsula (southern Marmara region), and the highest b value is computed for sub-zone two Edremit Bay (SW Marmara region). According to the analysis of each seismic sub-zone, the greatest risk of earthquake occurrence is determined for the triangle of Gelibolu–Tekirda? western part of Marmara Sea. Earthquake occurrence of the largest magnitude with 7.3 within a 100-year period was determined to be 46 % according to the Poisson distribution, and the estimated recurrence period of years for this region is 50 ± 12. The seismic hazard is pronounced high in the region extending in a NW–SE direction, north of Edremit Bay, west of Saros Bay and Yenice Gönen (southern Marmara region) in the south. High b values are generally calculated at depths of 5–20 km that can be expressed as low seismic energy release and evaluated as the seismogenic zone.  相似文献   

15.
Natural Hazards - The probabilistic seismic hazard analysis (PSHA) has been performed for Bangladesh using background seismicity, crustal fault, and subduction zone source models. The latest ground...  相似文献   

16.
Saudi Arabia is characterized as largely aseismic; however, the tectonic plate boundaries that surround it are very active. To improve characterization of seismicity and ground motion hazard, the Saudi Arabian Digital Seismic Network (SANDSN) was installed in 1998 and continues to be operated by the Saudi Geological Survey (SGS) and King Abdulaziz City for Science and Technology (KACST). This article describes research performed to improve seismic hazard parameters using earthquake location and magnitude calibration of the high-quality SANDSN data. The SANDSN consists of 38 seismic stations, 27 broadband, and 11 short period. All data are telemetered in real time to a central facility at KACST in Riyadh. The SANDSN stations show low background noise levels and have good signal detection capabilities; however, some stations show cultural noise at frequencies above 1.0 Hz. We assessed the SANDSN event location capabilities by comparing KACST locations with well-determined locations derived from ground truth or global observations. While a clear location bias exists when using the global average iasp91 earth model, the locations can be improved by using regional models optimized for different tectonic source regions. The article presents detailed analysis of some events and Dead Sea explosions where we found gross errors in estimated locations. New velocity models we calculated that should improve estimated locations of regional events in three specific regions include (1) Gulf of Aqabah—Dead Sea region, (2) Arabian Shield, and (3) Arabian Platform. Recently, these models were applied to the SANDSN to improve local and teleseismic event locations and to develop an accurate magnitude scale for Saudi Arabia. The Zagros Thrust presents the most seismic hazard to eastern Saudi Arabia because of the frequent occurrence of earthquakes. Although these events are 200 km or further from the Arabian coast, wave propagation through sedimentary structure of the Gulf causes long-duration ground motions for periods between 3 and 10 s. Such ground motions could excite response in large engineered structures (e.g., tall buildings and long bridges) such as was experienced after the November 22, 2005 Qeshm Island earthquake off the southern coast of Iran.  相似文献   

17.
18.
Mumbai city, the economical capital of India, is located on the west coast of stable intra-plate continental region of Peninsular India which has an experience of significant historical earthquakes in the past. The city stood as the fourth most populous city in the world. Recent seismo-tectonic studies of this city highlighted the presence of active West coast fault and Chiplun fault beneath the Deccan basalt. In the present study, spatial variability of probabilistic seismic hazard for Mumbai region (latitudes of 18.85–19.35°N and longitudes of 72.80–73.15°E at a grid spacing of 0.05°) which includes Mumbai city, Suburban, part of Thane district and Navi Mumbai, in terms of ground motion parameters; peak horizontal acceleration and spectral acceleration at 1.0-s period for 2 and 10 % probability of exceedance in 50 years are generated. The epistemic uncertainty in hazard estimation is accounted by employing seven different ground motion prediction equations developed for worldwide shallow crustal intra-plate environments. Further, the seismic hazard results are deaggregated for Mumbai (latitude 18.94°N, longitude 72.84°E) to understand the relative contributions of earthquake sources in terms of magnitude and distance. The generated hazard maps are compared with the zoning specified by Indian seismic code (IS1893: Part 1 in Indian standard criteria for earthquake-resistant design of structures, Part 1—General provisions and buildings. Bureau of Indian Standards, New Delhi, India, 2002) for rocky site. Present results show an underestimation of potential seismic hazard in the entire study region by non-probabilistic zoning prescribed by IS1893: Part 1 with significantly higher seismic hazard values in the southern part of Navi Mumbai.  相似文献   

19.
Natural Hazards - The Kazerun fault system (KFS) is located in the central part of the Zagros, the most seismically active orogenic belt in the Iranian plateau. The city of Yasouj is located in the...  相似文献   

20.
A significant proportion of the urban areas in Turkey is subject to high seismic risk. An important step for seismic risk mitigation is to define the hazard and damage after an earthquake. This paper proposes an integrated seismic hazard assessment and disaster management processes for Turkey. The proposed methodology utilizes information technologies in its seismic assessment component that provides fast results for assessment. First, image process methodology by using satellite images was implemented in the seismic assessment process for fast evaluation right after an earthquake. Second, the seismic assessment process was integrated with disaster management process. As a result, through integrated seismic hazard evaluation and disaster management procedure, an effective, fast and dependable estimation of loss for Turkey was planned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号