首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
There is increasing concern that avoiding climate change impacts will require proactive adaptation, particularly for infrastructure systems with long lifespans. However, one challenge in adaptation is the uncertainty surrounding climate change projections generated by general circulation models (GCMs). This uncertainty has been addressed in different ways. For example, some researchers use ensembles of GCMs to generate probabilistic climate change projections, but these projections can be highly sensitive to assumptions about model independence and weighting schemes. Because of these issues, others argue that robustness-based approaches to climate adaptation are more appropriate, since they do not rely on a precise probabilistic representation of uncertainty. In this research, we present a new approach for characterizing climate change risks that leverages robust decision frameworks and probabilistic GCM ensembles. The scenario discovery process is used to search across a multi-dimensional space and identify climate scenarios most associated with system failure, and a Bayesian statistical model informed by GCM projections is then developed to estimate the probability of those scenarios. This provides an important advancement in that it can incorporate decision-relevant climate variables beyond mean temperature and precipitation and account for uncertainty in probabilistic estimates in a straightforward way. We also suggest several advancements building on prior approaches to Bayesian modeling of climate change projections to make them more broadly applicable. We demonstrate the methodology using proposed water resources infrastructure in Lake Tana, Ethiopia, where GCM disagreement on changes in future rainfall presents a major challenge for infrastructure planning.  相似文献   

3.
The North American Laurentian Great Lakes hold nearly 20 % of the earth’s unfrozen fresh surface water and have a length of coastline, and a coastal population, comparable to frequently-studied marine coasts. The surface water elevations of the Great Lakes, in particular, are an ideal metric for understanding impacts of climate change on large hydrologic systems, and for assessing adaption measures for absorbing those impacts. In light of the importance of the Great Lakes to the North American and global economies, the Great Lakes and the surrounding region also serve as an important benchmark for hydroclimate research, and offer an example of successful adaptive management under changing climate conditions. Here, we communicate some of the important lessons to be learned from the Great Lakes by examining how the coastline, water level, and water budget dynamics of the Great Lakes relate to other large coastal systems, along with implications for water resource management strategies and climate scenario-derived projections of future conditions. This improved understanding fills a critical gap in freshwater and marine global coastal research.  相似文献   

4.
Effective climate policy will consist of mitigation and adaptation implemented simultaneously in a policy portfolio to reduce the risks of climate change. Previous studies of the tradeoffs between mitigation and adaptation have implicitly framed the problem deterministically, choosing the optimal paths for all time. Because climate change is a long-term problem with significant uncertainties and opportunities to learn and revise, critical tradeoffs between mitigation and adaptation in the near-term have not been considered. We propose a new framework for considering the portfolio of mitigation and adaptation that explicitly treats the problem as a multi-stage decision under uncertainty. In this context, there are additional benefits to near-term investments if they reduce uncertainty and lead to improved future decisions. Two particular features are fundamental to understanding the relevant tradeoffs between mitigation and adaptation: (1) strategy dynamics over time in reducing climate damages, and (2) strategy dynamics under uncertainty and potential for learning. Our framework strengthens the argument for disaggregating adaption as has been proposed by others. We present three stylized classes of adaptation investment types as a conceptual framework: short-lived “flow” spending, committed “stock” investment, and lower capacity “option” stock with the capability of future upgrading. In the context of sequential decision under uncertainty, these subtypes of adaptation have important tradeoffs among them and with mitigation. We argue that given the large policy uncertainty that we face currently, explicitly considering adaptation “option” investments is a valuable component of a near-term policy response that can balance between the flexible flow and committed stock approaches, as it allows for the delay of costly stock investments while at the same time allowing for lower-cost risk management of future damages.  相似文献   

5.
Regional climate modelling represents an appealing approach to projecting Great Lakes water supplies under a changing climate. In this study, we investigate the response of the Great Lakes Basin to increasing greenhouse gas and aerosols emissions using an ensemble of sixteen climate change simulations generated by three different Regional Climate Models (RCMs): CRCM4, HadRM3 and WRFG. Annual and monthly means of simulated hydro-meteorological variables that affect Great Lakes levels are first compared to observation-based estimates. The climate change signal is then assessed by computing differences between simulated future (2041–2070) and present (1971–1999) climates. Finally, an analysis of the annual minima and maxima of the Net Basin Supply (NBS), derived from the simulated NBS components, is conducted using Generalized Extreme Value distribution. Results reveal notable model differences in simulated water budget components throughout the year, especially for the lake evaporation component. These differences are reflected in the resulting NBS. Although uncertainties in observation-based estimates are quite large, our analysis indicates that all three RCMs tend to underestimate NBS in late summer and fall, which is related to biases in simulated runoff, lake evaporation, and over-lake precipitation. The climate change signal derived from the total ensemble mean indicates no change in future mean annual NBS. However, our analysis suggests an amplification of the NBS annual cycle and an intensification of the annual NBS minima in future climate. This emphasizes the need for an adaptive management of water to minimize potential negative implications associated with more severe and frequent NBS minima.  相似文献   

6.
Climate change impacts on Laurentian Great Lakes levels   总被引:1,自引:1,他引:1  
Scenarios of water supplies reflecting CO2-induced climatic change are used to determine potential impacts on levels of the Laurentian Great Lakes and likely water management policy implications. The water supplies are based on conceptual models that link climate change scenarios from general circulation models to estimates of basin runoff, overlake precipitation, and lake evaporation. The water supply components are used in conjunction with operational regulation plans and hydraulic routing models of outlet and connecting channel flows to estimate water levels on Lakes Superior, Michigan, Huron, St. Clair, Erie, and Ontario. Three steady-state climate change scenarios, corresponding to modeling a doubling of atmospheric CO2, are compared to a steady-state simulation obtained with historical data representing an unchanged atmosphere. One transient climate change scenario, representing a modeled transition from present conditions to doubled CO2 concentrations, is compared to a transient simulation with historical data. The environmental, socioeconomic, and policy implications of the climate change effects modeled herein suggest that new paradigms in water management will be required to address the prospective increased allocation conflicts between users of the Great Lakes.GLERL Contribution No. 645.  相似文献   

7.
Assessing Climate Change Implications for Water Resources Planning   总被引:3,自引:0,他引:3  
Numerous recent studies have shown that existing water supply systems are sensitive to climate change. One apparent implication is that water resources planning methods should be modified accordingly. Few of these studies, however, have attempted to account for either the chain of uncertainty in projecting water resources system vulnerability to climate change, or the adaptability of system operation resulting from existing planning strategies. Major uncertainties in water resources climate change assessments lie in a) climate modeling skill; b) errors in regional downscaling of climate model predictions; and c) uncertainties in future water demands. A simulation study was designed to provide insight into some aspects of these uncertainties. Specifically, the question that is addressed is whether a different decision would be made in a reservoir reallocation decision if knowledge about future climate were incorporated (i.e., would planning based on climate change information be justified?). The case study is possible reallocation of flood storage to conservation (municipal water supply) on the Green River, WA. We conclude that, for the case study, reservoir reallocation decisions and system performance would not differ significantly if climate change information were incorporated in the planning process.  相似文献   

8.
We carry out a structured review of the peer-reviewed literature to assess the factors that constrain and enable the uptake of long-term climate information in a wide range of sectoral investment and planning decisions. Common applications of long-term climate information are shown to relate to urban planning and infrastructure, as well as flood and coastal management. Analysis of the identified literature highlights five categories of constraints: disconnection between users and producers of climate information, limitations of climate information, financial and technical constraints, political economy and institutional constraints and finally psycho-social constraints. Five categories of enablers to the uptake of long-term climate information in decision-making are also identified: collaboration and bridge work, increased accessibility of climate information, improvement in the underlying science, institutional reform and windows of opportunity for building trust.

Policy relevance

Our review suggests that stand-alone interventions aimed at promoting the uptake of climate information into decision-making are unlikely to succeed without genuine and sustained relationships between producers and users. We also highlight that not every decision requires consideration of long-term climate information for successful outcomes to be achieved. This is particularly the case in the context of developing countries, where the immediacy of development challenges means that decision makers often prioritize short-term interventions. Care should therefore be taken to ensure that information is targeted towards investments and planning decisions that are relevant to longer-term timescales.  相似文献   

9.
Hydrological models of the Great Lakes basin were used to study the sensitivity of Great Lakes water supplies to climate warming by driving them with meteorological data from four U.S. climate zones that were transposed to the basin. Widely different existing climates were selected for transposition in order to identify thresholds of change where major impacts on water supplies begin to occur and whether there are non-linear responses in the system. The climate zones each consist of 43 years of daily temperature and precipitation data for 1,000 or more stations and daily evaporation-related variables (temperature, wind speed, humidity, cloud cover) for approximately 20–35 stations. A key characteristic of these selected climates was much larger variability in inter-annual precipitation than currently experienced over the Great Lakes. Climate data were adjusted to simulate lake effects; however, a comparison of hydrologic results with and without lake effects showed that there was only minor effects on water supplies.  相似文献   

10.
Frank Millerd 《Climatic change》2011,104(3-4):629-652
The higher temperatures of climate change may result in a fall in Great Lakes water levels. For vessels carrying imports into and exports out of the Great Lakes lower lake levels will lead to restrictions on vessel drafts and reductions in vessel cargos, increasing the number of trips and the cost of moving cargo. Estimates of these impacts are derived from simulations of a recent year??s international cargo movements, comparing a base case with no climate change to various climate change scenarios. The impacts vary from a 5% increase in vessel variable operating costs for a climate change scenario representing the possible climate in 2030 to over 22% for a scenario representing a doubling of atmospheric carbon dioxide. Impacts vary by commodity and route. For years of naturally occurring low water the impacts are up to 13% higher for even the most moderate climate change scenario. Climate change may also result in a shorter time of ice cover leading to an extension of the navigation season. Climate change is also expected to increase the threat of damage from aquatic invasive species, possibly leading to further requirements for ships to undertake preventive measures.  相似文献   

11.
Projections of future climate change are plagued with uncertainties, causing difficulties for planners taking decisions on adaptation measures. This paper presents an assessment framework that allows the identification of adaptation strategies that are robust (i.e. insensitive) to climate change uncertainties. The framework is applied to a case study of water resources management in the East of England, more specifically to the Anglian Water Services’ 25 year Water Resource Plan (WRP). The paper presents a local sensitivity analysis (a ‘one-at-a-time’ experiment) of the various elements of the modelling framework (e.g., emissions of greenhouse gases, climate sensitivity and global climate models) in order to determine whether or not a decision to adapt to climate change is sensitive to uncertainty in those elements.Water resources are found to be sensitive to uncertainties in regional climate response (from general circulation models and dynamical downscaling), in climate sensitivity and in climate impacts. Aerosol forcing and greenhouse gas emissions uncertainties are also important, whereas uncertainties from ocean mixing and the carbon cycle are not. Despite these large uncertainties, Anglian Water Services’ WRP remains robust to the climate change uncertainties sampled because of the adaptation options being considered (e.g. extension of water treatment works), because the climate model used for their planning (HadCM3) predicts drier conditions than other models, and because ‘one-at-a-time’ experiments do not sample the combination of different extremes in the uncertainty range of parameters. This research raises the question of how much certainty is required in climate change projections to justify investment in adaptation measures, and whether such certainty can be delivered.  相似文献   

12.
Assessing the Impact of Climate Change on the Great Lakes Shoreline Wetlands   总被引:11,自引:1,他引:11  
Great Lakes shoreline wetlands are adapted to a variable water supply. They require the disturbance of water level fluctuations to maintain their productivity. However, the magnitude and rate of climate change could alter the hydrology of the Great Lakes and affect wetland ecosystems. Wetlands would have to adjust to a new pattern of water level fluctuations; the timing, duration, and range of these fluctuations are critical to the wetland ecosystem response. Two "what if" scenarios: (1) an increased frequency and duration of low water levels and (2) a changed temporal distribution and amplitude of seasonal water levels were developed to assess the sensitivity of shoreline wetlands to climate change. Wetland functions and values such as wildlife, waterfowl and fish habitat, water quality, areal extent, and vegetation diversity are affected by these scenarios. Key wetlands are at risk, particularly those that are impeded from adapting to the new water level conditions by man-made structures or geomorphic conditions. Wetland remediation, protection and enhancement policies and programs must consider climate change as an additional stressor of wetlands.  相似文献   

13.
Water managers always have had to cope with climate variability. All water management practices are, to some extent, a response to natural hydrologic variability. Climate change poses a different kind of problem. Adaptation to climate change in water resource management will involve using the kinds of practices and activities currently being used. However, it remains unclear whether or not practices and activities designed with historical climate variability will be able to cope with future variability caused by atmospheric warming. This paper examines the question of adaptation to climate change in the context of Canadian water resources management, emphasizing issues in the context of the Great Lakes, an important binational water resource.  相似文献   

14.
The importance of climate services, i.e. providing targeted, tailored, and timely weather and climate information, has gained momentum, but requires improved understanding of user needs. This article identifies the opportunities and barriers to the use of climate services for planning in Malawi, to identify the types of information that can better inform future adaptation decisions in sub-Saharan Africa. From policy analysis, stakeholder interviews, and a national workshop utilizing serious games, it is determined that only 5–10 day and seasonal forecasts are currently being used in government decision making. Impediments to greater integration of climate services include spatial and temporal scale, accessibility, timing, credibility and the mismatch in timeframes between planning cycles (1–5 years) and climate projections (over 20 years). Information that could more usefully inform planning decisions includes rainfall distribution within a season, forecasts with 2–3 week lead times, likely timing and location of extreme events in the short term (1–5 years), and projections (e.g. rainfall and temperature change) in the medium term (6–20 years). Development of a national set of scenarios would also make climate information more accessible to decision makers, and capacity building around such scenarios would enable its improved use in short- to medium-term planning. Improved climate science and its integration with impact models offer exciting opportunities for integrated climate-resilient planning across sub-Saharan Africa. Accrual of positive impacts requires enhanced national capacity to interpret climate information and implement communication strategies across sectors.

Policy relevance

For climate services to achieve their goal of improving adaptation decision making, it is necessary to understand the decision making process and how and when various types of weather and climate information can be incorporated. Through a case study of public sector planning in Malawi, this article highlights relevant planning and policy-making processes. The current use of weather and climate information and needs, over various timescales – sub-annual to short term (1–5 years) to medium term (6–20 years) – is outlined. If climate scientists working with boundary organizations are able to address these issues in a more targeted, sector-facing manner they will improve the uptake of climate services and the likelihood of climate-resilient decisions across sub-Saharan Africa.  相似文献   

15.
In 1900 the city of Chicago began diverting sizable amounts of water from Lake Michigan to move its sewage down the Illinois River. This diversion launched a series of continuing legal controversies involving Illinois as a defendant against claims by the federal government, various lake states, and Canada who wanted the diversion stopped or drastically reduced. During the past 96 years extended dry periods have lowered the lake levels. Using these dry periods as surrogates for future conditions, their effects on the past controversies were examined as analogs for what might occur as a result of climate change from an enhanced Greenhouse effect. The results reveal that changing socioeconomic factors including population growth will likely cause increased water use, and Chicago will seek additional water from the Great Lakes. New priorities for water use will emerge as in the past. Drier future conditions will likely lead to enhanced diversions from the Great Lakes to serve interests in and outside the basin. Future lower lake levels (reflecting a drier climate) will lead to conflicts related to existing and proposed diversions, and these conflicts would be exacerbated by the consequences of global warming. In any event, a warmer, drier climatic regime will challenge existing laws and institutions for dealing with Great Lakes water issues.  相似文献   

16.
Climate change presents clear risks to natural resources, which carry potential economic costs. The limited nature of physical, financial, human and natural resources means that governments, as managers of natural resources, must make careful decisions regarding trade-offs and the potential future value of investments in climate change adaptation. This paper presents cost-benefit analysis of scenarios to characterise economic benefits of adaptation from the perspective of a public institution (the provincial government) and private agents (forest licensees). The example provided is the context of assisted migration strategies for regenerating forests that are currently being implemented in British Columbia to reduce future impacts of climate change on forests. The analysis revealed positive net present value of public investment in assisted migration across all scenarios under a range of conditions; however, private sector agents face disincentives to adopt these strategies. Uncertainty about how the costs, benefits and risks associated with climate change impacts will be distributed among public institutions and private actors influences incentives to adapt to climate change (the “principal-agent problem”) and further complicates adaptation. Absent development of risk-sharing mechanisms or re-alignment of incentives, uptake of assisted migration strategies by private agents is likely to be limited, creating longer-term risks for public institutions. Analyzing incentives and disincentives facing principals and agents using a well-known tool (cost-benefit analysis) can help decision-makers to identify and address underlying barriers to climate change adaptation in the context of public lands management.  相似文献   

17.
Adapting California’s water management to climate change   总被引:1,自引:0,他引:1  
California faces significant water management challenges from climate change, affecting water supply, aquatic ecosystems, and flood risks. Fortunately, the state also possesses adaptation tools and institutional capabilities that can limit vulnerability to changing conditions. Water supply managers have begun using underground storage, water transfers, conservation, recycling, and desalination to meet changing demands. These same tools are promising options for responding to a wide range of climate changes. Likewise, many staples of flood management—including reservoir operations, levees, bypasses, insurance, and land-use regulation—are available for the challenges of increased floods. Yet actions are also needed to improve response capacity. For water supply, a central issue is the management of the Sacramento-San Joaquin Delta, where new conveyance, habitat investments, and regulations are needed to sustain water supplies and protect endangered fish species. For flood management, among the least-examined aspects of water management with climate change, needed reforms include forward-looking reservoir operation planning and floodplain mapping, less restrictive rules for raising local funds, and improved public information on flood risks. For water quality, an urgent priority is better science. Although local agencies are central players, adaptation will require strong-willed state leadership to shape institutions, incentives, and regulations capable of responding to change. Federal cooperation often will be essential.  相似文献   

18.
19.
Engineering Design and Uncertainties Related to Climate Change   总被引:2,自引:0,他引:2  
To explore how uncertain climate events might affect investment decisions that need to be made in the near future, this paper examines (1) the relative magnitude of the uncertainties arising from climate change on engineering design in water resources planning and (2) a restricted set of water resource planning techniques that deal with the repeated choice of investment decisions over time. The classical capacity-expansion model of operations research is exploited to show the relative impacts upon engineering design choices for variations in future demand attributable to changes in the climate or other factors and the possible shortfall of supply due to climate change. The type of engineering decisions considered in the paper are sequential, enabling adjustments to revealed uncertainty in subsequent decisions. The range of possible impacts analyzed in the paper lead to similar engineering design decisions. This result means that engineers must be on their guard with respect to under-design or over-design of systems with and without the threat of climate change, but that the sequential nature of the decision-making does not call for drastic action in the early time periods.  相似文献   

20.
When is it time to adopt different technologies, management strategies, and resource use practices as underlying climate change occurs? We apply risk and decision analysis to test hypotheses about the timing and pace of adaption in response to different profiles of climate change and extremes expressed as yield and income variation for a simulated dryland wheat farm in the United States Great Plains. Climate scenarios include gradual change with typical or increased noise (standard deviation), rapid and large change, and gradual change with extreme events stepped through the simulation. We test decision strategies that might logically be utilized by farmers facing a climate trend that worsens crop enterprise outcomes. Adaptation quickens with the rate of change, especially for decision strategies based on performance thresholds, but is delayed by larger climate variability, especially for decision strategies based on recognizing growing differential between adaptive and non-adaptive performance. Extreme events evoke adaptation sooner than gradual change alone, and in some scenarios extremes evoke premature, inefficient, adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号