首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 688 毫秒
1.
In the complex structural framework of the Western Mediterranean. Hercynian areas are expected to be thermally preserved from the recent tectonic evolution. The thermal regime of these areas is studied using heat flow, heat production and fission track data. The surface heat flow is significantly higher in Corsica (76 ± 10 mW m−2) than in the Maures and Estérel (58 ± 2 mW m−2). Neither heat production nor erosion subsequent to the Alpine orogeny in Corsica can explain such a difference. It is suggested that a deep thermal source related to the asymmetric evolution of the Provençal basin could explain the higher heat flow in Corsica. A model of thermal structure based on the present day thermal regime of the Maures and Estérei is proposed for the stable Hercynian crust in this area. The mantle heat flow is 20–25 mW m−2 and the temperature at Moho level is 375–500°C, depending on the thermal parameter distribution with depth.  相似文献   

2.
Detailed studies of terrestrial heat flow in southern and central Alberta estimated on the basis of an order of magnitude larger data base than ever used before (33653 bottom-hole temperature data from 18711 wells) and thermal conductivity values based on detailed rock studies and measured rock conductivities show significant regional and local variations and variations with depth. Heat flow values were estimated for each 3 × 3 township/range area (28.8 × 28.8 km). A difference in heat flow exists between Paleozoic and Mesozoic strata. Generally lower heat flow values are observed in the strata above the Paleozoic erosional surface (20–75 mW m−2). Much higher values are estimated for the Younger Paleozoic formations, with large local and regional variations between 40 and 100 mW m−2.Average heat flow values based on heat flow determinations below and above the Paleozoic surface that agree within 20% show an increase from values less than 40 mW m−2 in southern and southwestern Alberta to values as high as 70 mW m−2 in central Alberta. The predominance of regional downward groundwater flows in Mesozoic strata seem to be responsible for the generally observed heat flow increase with depth.The results show that the basin heat flow pattern is influenced by water movement and even careful detailed heat flow measurements will not give correct values of background steady-state heat flow within the sedimentary strata.  相似文献   

3.
Successive temperature logs have been obtained over a period of two years in three closely-spaced boreholes in the Lac du Bonnet batholith of the Superior Province of the Canadian Shield. Two of the boreholes, of depth 450 m and 830 m, intersect a dipping fracture zone at 435–450 m. In both holes water is flowing from near the surface to the fracture zone at approximately 1.5–1.9·10−5 m3 s−1, the flow being inferred from analysis of the temperature logs. Below 25 m, temperatures in these two holes are 0.22–0.28 K lower than those in the third, 145 m, hole.The temperature data have been combined with over 200 thermal conductivity measurements on core samples to produce heat flow values. In the deepest hole heat flow above the fracture zone is 16% higher than that below the zone. This indicates that water is flowing up the fracture zone. The flow rate is approximately 0.3 g s−1 m−1, and the flow has existed for thousands of years.Observation of thermal effects of water flow in massive, relatively unfractured plutons in a region having little topographic relief causes one to be concerned about the reliability of heat flow values measured in similar environments.The regional heat flow is taken to be 50 mW m−2 after correction for glaciation effects. The average value of 24 determinations of radioactive heat generation in granitic core samples is 5.23 ± 1.11 μW m−3, which is more than three times higher than expected for such a heat flow in the Superior Province. This implies that the layer of high radioactive heat generation is thin, being not more than 4 km and probably about 1.3 km thick.  相似文献   

4.
The GALO system is applied to the numerical reconstruction of burial and thermal histories of the West Bashkirian lithosphere from the Riphean to the present. An analysis of the variation in tectonic subsidence of the basin during its development is utilized to estimate approximately the mantle heat flow variations. Our variant of basin evolution suggests that after cooling in the Early Riphean, the rather weak thermal reactivations have not led to considerable heating of the lithosphere in the study region. Surface heat flow decreased from relatively high values in the Early Riphean (60–70 mW/m2 in the eastern area and 40–50 mW/m2 in the western part) to present-day values of 32–40 mW/m2. In spite of the relatively low temperature regime of the basin as a whole, a syn-rifting deposition of more than 10 km of limestone, shale and sandstone in the Riphean resulted in rather high temperatures (180–190 °C) at the base of present-day sedimentary blanket in the eastern area. In agreement with the observed data, computed present-day heat flow through the sediment surface increases slightly from 32 to 34 mW/m2 near the west boundary of the region to 42 mW/m2 near the boundary of the Ural Foldbelt, whereas the heat flow through the basement surface decreases slightly from 28–32 to 24–26 mW/m2 in the same direction. The mantle heat flow is only 11.3–12.7 mW/m2, which is considerable lower than mean heat flow of the Russian Platform (16–18 mW/m2) and comparable with the low heat flow of Precambrian shields.  相似文献   

5.
A detailed study of the subsurface thermal regime at the Upper Stillwater dam site, Uinta Mountains, northeast Utah, has been made. Temperature measurements were made in 36 drillholes located within a 1 km2 area and ranging in depth from 20 to 97 m. Holes less than about 40 m deep were used only to obtain information about spatial variations in mean annual surface temperature. Several holes in or near talus slopes at the sides of the canyons have temperature minima approaching 0°C between 10 and 20 m indicating the presence of year-round ice at the base of the talus. Another set of holes show transient thermal effects of surface warming resulting from clearing of a construction site 3.5 years prior to our measurements. Most of the remaining holes show conductive behavior and have gradients ranging from 13° to 17°C km−1. Measurements made on 44 core samples yield a thermal conductivity of 5.6 (std. dev. 0.35) W m−1 K−1 for the Precambrian quartzite present. Surface heat flow estimates for these holes range from 70 to 100 mW m−2. However, the local disturbance of the thermal field by topography and microclimate is considerable. A finite difference method used to model these effects yielded a locally corrected Upper Stillwater heat flow of about 75 mW m−2. A final correction to account for the effects of refraction of heat from the low conductivity sedimentary rocks in the Uinta Basin into the high conductivity quartzite at the dam site, produced a regionally corrected Upper Stillwater heat flow between 60 and 65 mW m−2. This value is consistent with the observed heat flow of 60 mW m−2 in the Green River Basin to the north and the Uinta Basin to the south.  相似文献   

6.
The Dniepr–Donets Basin (DDB) is a Late Devonian rift structure located within the East-European Craton. Numerical heat flow models for 13 wells calibrated with new maturity data were used to evaluate temporal and lateral heat flow variations in the northwestern part of the basin.The numerical models suggest that heat flow was relatively high during Late Carboniferous and/or Permian times. The relatively high heat flow is probably related to an Early Permian re-activation of tectonic activity. Reconstructed Early Permian heat flow values along the axial zone of the rift are about 60 mW/m2 and increase to 90 mW/m2 along the northern basin margin. These values are higher than those expected from tectonic models considering a single Late Devonian rifting phase. The calibration data are not sensitive to variations in the Devonian/Carboniferous heat flow. Therefore, the models do not allow deciding whether heat flows remained high after the Devonian rifting, or whether the reconstructed Permian heat flows represent a separate heating event.Analysis of the vitrinite reflectance data suggest that the northeastern Dniepr–Donets Basin is characterised by a low Mesozoic heat flow (30–35 mW/m2), whereas the present-day heat flow is about 45 mW/m2.  相似文献   

7.
Six new heat flow determinations are presented for Proterozoic mobile belts of the Churchill Province of the Canadian Shield, an area that was affected by several stages of the Hudsonian orogenic sequence (1.9-1.6 Ga ago). With other, previously published, values the mean of eight determinations considered reliable and representative and corrected for the effects of Pleistocene glaciation is 44 ± 7 mW m−2. Heat generation measurements have also been made; values range from 0.1–1.04 μW m−3.A linear relation between heat flow and heat production is apparent. The heat flow axis intercept is 37 mW m−2, and the scale depth is 11 km, compared with 28 mW m−2 and 13.6 km for the Archaean Superior Province. Approximately 20% of the Churchill heat flow appears to be derived from radioactive decay in the upper crust, compared with 30% for the Superior Province and shields as a whole. The observations imply that the heat flow-heat production relation for the Churchill Province should be written as Q = Qc + Qe + A0b where Qc is equivalent to the reduced heat flow for the Archaean terrain, b is similar for the two, and Qe is an additional component of heat flow in the Proterozoic mobile belts of the Churchill Province.A speculative tectonic model is presented. It is suggested that rifting along two axes of an original craton, which had lateral variations in near surface radiogenic element concentration, followed by erosion of the radiogenic layer and subsequent reconvergence of the cratonic segments, led to widespread redistribution of radioactive elements into the reactivated inter-rift crustal block. One result would be that crustal temperatures are higher in that part of the Churchill Province than in the Superior.  相似文献   

8.
The age of spreading of the Liguro–Provençal Basin is still poorly constrained due to the lack of boreholes penetrating the whole sedimentary sequence above the oceanic crust and the lack of a clear magnetic anomaly pattern. In the past, a consensus developed over a fast (20.5–19 Ma) spreading event, relying on old paleomagnetic data from Oligo–Miocene Sardinian volcanics showing a drift-related 30° counterclockwise (CCW) rotation. Here we report new paleomagnetic data from a 10-m-thick lower–middle Miocene marine sedimentary sequence from southwestern Sardinia. Ar/Ar dating of two volcanoclastic levels in the lower part of the sequence yields ages of 18.94±0.13 and 19.20±0.12 Ma (lower–mid Burdigalian). Sedimentary strata below the upper volcanic level document a 23.3±4.6° CCW rotation with respect to Europe, while younger strata rapidly evolve to null rotation values. A recent magnetic overprint can be excluded by several lines of evidence, particularly by the significant difference between the in situ paleomagnetic and geocentric axial dipole (GAD) field directions. In both the rotated and unrotated part of the section, only normal polarity directions were obtained. As the global magnetic polarity time scale (MPTS) documents several geomagnetic reversals in the Burdigalian, a continuous sedimentary record would imply that (unrealistically) the whole documented rotation occurred in few thousands years only. We conclude that the section contains one (or more) hiatus(es), and that the minimum age of the unrotated sediments above the volcanic levels is unconstrained. Typical back-arc basin spreading rates translate to a duration ≥3 Ma for the opening of the Liguro–Provençal Basin. Thus, spreading and rotation of Corsica–Sardinia ended no earlier than 16 Ma (early Langhian). A 16–19 Ma, spreading is corroborated by other evidences, such as the age of the breakup unconformity in Sardinia, the age of igneous rocks dredged west of Corsica, the heat flow in the Liguro–Provençal Basin, and recent paleomagnetic data from Sardinian sediments and volcanics. Since Corsica was still rotating/drifting eastward at 16 Ma, it presumably induced significant shortening to the east, in the Apennine belt. Therefore, the lower Miocene extensional basins in the northern Tyrrhenian Sea and margins can be interpreted as synorogenic “intra-wedge” basins due to the thickening and collapse of the northern Apennine wedge.  相似文献   

9.
Heat flow and lithospheric thermal regime in the Northeast German Basin   总被引:3,自引:0,他引:3  
New values of surface heat flow are reported for 13 deep borehole locations in the Northeast German Basin (NEGB) ranging from 68 to 91 mW m− 2 with a mean of 77 ± 3 mW m− 2. The values are derived from continuous temperature logs, measured thermal conductivity, and log-derived radiogenic heat production. The heat-flow values are supposed free of effects from surface palaeoclimatic temperature variations, from regional as well as local fluid flow and from thermal refraction in the vicinity of salt structures and thus represent unperturbed crustal heat flow. Two-D numerical lithospheric thermal models are developed for a 500 km section along the DEKORP-BASIN 9601 deep seismic line across the basin with a north-eastward extension across the Tornquist Zone. A detailed conceptual model of crustal structure and composition, thermal conductivity, and heat production distribution is developed. Different boundary conditions for the thickness of thermal lithosphere were used to fit surface heat flow. The best fit is achieved with a thickness of thermal lithosphere of about 75 km beneath the NEGB. This estimate is corroborated by seismological studies and somewhat less than typical for stabilized Phanerozoic lithosphere. Modelled Moho temperatures in the basin are about 800 °C; heat flow from the mantle is about 35 to 40 mW m− 2. In the southernmost part of the section, beneath the Harz Mountains, higher Moho temperatures up to 900 to 1000 °C are shown. While the relatively high level of surface heat flow in the NEGB obviously is of longer wave length and related to lithosphere thickness, changes in crustal structure and composition are responsible for short-wave-length anomalies.  相似文献   

10.
Jeffrey Poort  Jan Klerkx   《Tectonophysics》2004,383(3-4):217-241
Heat flow in active tectonic zones as the Baikal rift is a crucial parameter for evaluating deep anomalous structures and lithosphere evolution. Based on the interpretation of the existing datasets, the Baikal rift has been characterized in the past by either high heat flow, or moderately elevated heat flow, or even lacking a surface heat flow anomaly. We made an attempt to better constrain the geothermal picture by a detailed offshore contouring survey of known anomalies, and to estimate the importance of observed heat flow anomalies within the regional surface heat output. A total of about 200 new and close-spaced heat flow measurements were obtained in several selected study areas in the North Baikal Basin. With an outrigged and a violin-bow designed thermoprobe of 2–3-m length, both the sediment temperature and thermal conductivity were measured. The new data show at all investigated sites that the large heat flow highs are limited to local heat flow anomalies. The maximum measured heat flow reaches values of 300–35000 mW/m2, but the extent of the anomalies is not larger than 2 to 4 km in diameter. Aside of these local anomalies, heat flow variations are restricted to near background values of 50–70 mW/m2, except in the uplifted Academician zone. The extent of the local anomalies excludes a conductive source, and therefore heat transport by fluids must be considered. In a conceptual model where all bottom floor heat flow anomalies are the result of upflowing fluids along a conduit, an extra heat output of 20 MW (including advection) is estimated for all known anomalies in the North Baikal Basin. Relative to a basal heat flow of 55–65 mW/m2, these estimations suggest an extra heat output in the northern Lake Baikal of only 5%, corresponding to a regional heat flow increase of 3 mW/m2. The source of this heat can be fully attributed to a regional heat redistribution by topographically driven ground water flow. Thus, the surface heat flow is not expected to bear a signal of deeper lithospheric thermal anomalies that can be separated from heat flow typical for orogenically altered crust (40–70 mW/m2). The new insights on the geothermal signature in the Baikal rift once more show that continental rifting is not by default characterized by high heat flow.  相似文献   

11.
The central Iberian Peninsula (Spain) is made up of three main tectonic units: a mountain range, the Spanish Central System and two Tertiary basins (those of the rivers Duero and Tajo). These units are the result of widespread foreland deformation of the Iberian plate interior in response to Alpine convergence of European and African plates. The present study was designed to investigate thermal structure and rheological stratification in this region of central Spain. Surface heat flow has been described to range from 80 to 60 mW m−2. Highest surface heat flow values correspond to the Central System and northern part of the Tajo Basin. The relationship between elevation and thermal state was used to construct a one-dimensional thermal model. Mantle heat flow drops from 34 mW m−2 (Duero Basin) to 27 mW m−2 (Tajo Basin), and increases with diminishing surface heat flow. Strength predictions made by extrapolating experimental data indicate varying rheological stratification throughout the area. In general, in compression, ductile fields predominate in the middle and lower crusts and lithospheric mantle. Brittle behaviour is restricted to the first 8 km of the upper crust and to a thin layer at the top of the middle crust. In tension, brittle layers are slightly more extended, while the lower crust and lithospheric mantle remain ductile in the case of a wet peridotite composition. Discontinuities in brittle and ductile layer thickness determine lateral rheological anisotropy. Tectonic units roughly correspond to rheological domains. Brittle layers reach their maximum thickness beneath the Duero Basin and are of least thickness under the Tajo Basin, especially its northern area. Estimated total lithospheric strength shows a range from 2.5×1012 to 8×1012 N m−1 in compression, and from 1.3×1012 to 1.6×1012 N m−1 in tension. Highest values were estimated for the Duero Basin.Depth versus frequency of earthquakes correlates well with strength predictions. Earthquake foci concentrate mainly in the upper crust, showing a peak close to maximum strength depth. Most earthquakes occur in the southern margin of the Central System and southeast Tajo Basin. Seismicity is related to major faults, some bounding rheological domains. The Duero Basin is a relative quiescence zone characterised by higher total lithospheric strength than the remaining units.  相似文献   

12.
The presence of two regional seismic networks in southeastern France provides us high-quality data to investigate upper mantle flow by measuring the splitting of teleseismic shear waves induced by seismic anisotropy. The 10 three-component and broadband stations installed in Corsica, Provence, and western Alps efficiently complete the geographic coverage of anisotropy measurements performed in southern France using temporary experiments deployed on geodynamic targets such as the Pyrenees and the Massif Central. Teleseismic shear waves (mainly SKS and SKKS) are used to determine the splitting parameters: the fast polarization direction and the delay time. Delay times ranging between 1.0 and 1.5 s have been observed at most sites, but some larger delay times, above 2.0 s, have been observed at some stations, such as in northern Alps or Corsica, suggesting the presence of high strain zones in the upper mantle. The azimuths of the fast split shear waves define a simple and smooth pattern, trending homogeneously WNW–ESE in the Nice area and progressively rotating to NW–SE and to NS for stations located further North in the Alps. This pattern is in continuity with the measurements performed in the southern Massif Central and could be related to a large asthenospheric flow induced by the rotation of the Corsica–Sardinia lithospheric block and the retreat of the Apenninic slab. We show that seismic anisotropy nicely maps the route of the slab from the initial rifting phase along the Gulf of Lion (30–22 Ma) to the drifting of the Corsica–Sardinia lithospheric block accompanied by the creation of new oceanic lithosphere in the Liguro–Provençal basin (22–17 Ma). In the external and internal Alps, the pattern of the azimuth of the fast split waves follows the bend of the alpine arc. We propose that the mantle flow beneath this area could be influenced or perhaps controlled by the Alpine deep penetrative structures and that the Alpine lithospheric roots may have deflected part of the horizontal asthenospheric flow around its southernmost tip.  相似文献   

13.
Eleven new estimates of heat flow (q) from the southern Altai-Sayan Folded Area (ASFA) have provided update to the heat flow map of Gorny Altai. Measured heat flow in the area varies from 33 to 90 mW/m2, with abnormal values of >70 mW/mq at four sites. The anomalies may have a deep source only at the Aryskan site in the East Sayan (q = 77 mW/m2) while high heat flows of 75–90 mW/m2 obtained for the Mesozoic Belokurikha and Kalguty plutons appear rather to result from high radiogenic heat production in granite, which adds a 25–30 W/m2 radiogenic component to a deep component of 50–60 mW/m2. The latter value is consistent with heat flow estimates derived from helium isotope ratios (54 mW/m2 in both plutons). Heat flow variations at other sites are in the range from 33 to 60 mW/m2. The new data support the earlier inferences of a generally low heat flow over most of ASFA (average of 45–50 mW/m2) and of a “cold” Cenozoic orogeny in the area (except for southeastern ASFA), possibly driven by shear stresses associated with India indentation into Eurasia.  相似文献   

14.
Transient thermal signals such as Pleistocene surface temperature variations or exhumation of great rock volumes are important for the current thermal regime of the Eastern Alpine crust. In this study transient 1-D forward simulations and an analytical approach were used to estimate the order of magnitude of these effects. A comparison with numerical forward simulations and inverse analyses of steady-state heat conduction yields the following main conclusions with respect to the thermal regime of the Eastern Alps along the TRANSALP profile: (1) The change of surface temperatures in the past affects mainly the uppermost part of the Eastern Alpine crust. It results in a maximum thermal signature of more than − 6 K at a depth of 2 km. The deviations from a steady-state temperature gradient and heat flow in the region of the Tauern Window range from 0.3–4 K km− 1 and 0–6 mW m− 2, respectively, with maximum values at the surface. (2) Exhumation of the Eastern Alpine lithosphere may result in a thermal signature of up to 4 K at a depth of 1 km. The thermal signature increases further with depth to a maximum of approximately 80 K at a depth of 50 km. As the temperature gradient of the exhumation signal is almost zero at the base of the crust, Moho heat flow appears to be not critically perturbed. (3) The combined effect of exhumation and changing surface temperatures at the Tauern Window amounts to less than 15% of the steady-state temperatures at a depth of  8 km and to less than 10% at the base of Eastern Alpine root. The corresponding perturbation in heat flow is less than 20% at a depth of 4 km, approaching zero below 40 km.  相似文献   

15.
We present new heat flow values and other geothermal data in the upper crystalline crust in the immediate vicinity of the 12.4-km deep Kola super-deep borehole, NW Russia. Our results show a systematic vertical increase in geothermal gradient and heat flow density as deep as we could measure (1.6 km). Our results confirm earlier results on vertical heat flow trends of in the uppermost part of the Kola super-deep hole, and imply that the thermal regime is not in steady-state conductive conditions. In an area of 3-km × 5-km measurements were performed in 1–2-km deep boreholes surrounding the Kola super-deep hole and on core samples from these holes. Temperature logs are available from 36 holes. Core data exists from 23 boreholes with a total length of 11.5 km at a vertical resolution of 10 m. We carried out a very detailed study on thermal conductivity with regard to anisotropy, inhomogeneity and temperature dependence. Tensor components of thermal conductivity were determined on 1375 core samples from 21 boreholes in 3400 measurements. Additionally, we measured specific heat capacity, heat generation rate, density, porosity, and permeability on selected subsets of core samples. Heat flow from 19 boreholes varies between 31 and 45 mW m−2 with an average value of 38 mW m−2. In most boreholes the vertical heat flow profiles show a considerable variation with depth. This is consistent with observations in the upper part of the Kola super-deep borehole. We conclude that this variation is not caused by technical operations but reflects a natural process. It is considered to be due to a combination of advective, structural and paleoclimatic effects. Preliminary 3-D numerical modeling of heat and flow in the study area provides an indication of relative contributions of each of these factors: advective heat transfer turns out to have a major influence on the vertical variation of heat flow, although transient changes in surface temperature may also cause a significant variation. Heterogeneity of the rocks in the study area is less important.  相似文献   

16.
This work deals with 2D thermal modeling in order to delineate the crustal thermal structure of central India along two Deep Seismic Sounding (DSS) profiles, namely Khajuriakalan–Pulgaon and Ujjan–Mahan, traversing the Narmada-Son-Lineament (NSL) in an almost north–south direction. Knowledge of the crustal structure and P-wave velocity distribution up to the Moho, obtained from DSS studies, has been used for the development of the thermal model. Numerical results reveal that the Moho temperature in this region of central India varies between 500 and 580 °C. The estimated heat flow density value is found to vary between 46 and 49 mW/m2. The Curie depth varies between 40 and 42 km and is in close agreement with the Curie depth (40±4 km) estimated from the analysis of MAGSAT data. Based on the present work and previous work, it is suggested that the major part of peninsular India consisting of the Wardha–Pranhita Godavari graben/basin, Bastar craton and the adjoining region of the Narmada Son Lineament between profiles I and III towards the north and northwest of the Bastar craton are characterized with a similar mantle heat flow density value equal to 23 mW/m2. Variation in surface heat flow density values in these regions are caused by variation in the radioactive heat production and fluid circulation in the upper crustal layer.  相似文献   

17.
Temperatures have been measured in eight boreholes (ranging from 260 to 800 m in depth) in five Gondwana basins of the Damodar and Son valleys. With the aid of about 250 thermal conductivity determinations on core samples from these holes, heat flow has been evaluated. Measurements of radioactive heat generation have been made on samples of Precambrian gneisses constituting the basement for the Sonhat (Son valley) and Chintalapudi (Godavari valley) basins.Heat-flow values from all of the Damodar valley basins are within the narrow range of 69–79 mW/m2. The value from the Sonhat basin (107 mW/m2) is significantly higher. The generally high heat flows observed in Gondwana basins of India cannot be attributed to the known tectonism or igneous activity associated with these basins. The plots of heat flow vs. heat generation for three Gondwana basins (Jharia, Sonhat and Chintalapudi) are on the same line as those of three regions in the exposed Precambrian crystalline terrains in the northern part of the Indian shield. This indicates that the crust under exposed regions of the Precambrian crystalline rocks as well as the Gondwana basins, form an integral unit as far as the present-day geothermal character is concerned.  相似文献   

18.
A unique attempt is made to understand the genesis of intraplate seismicity in the Latur-Killari and Koyna seismogenic regions of India, through derived crustal structure by synthesizing active and passive seismic, magnetotelluric, gravity and heat flow data. It has indicated presence of relatively high velocity/density intermediate granulite (and amphibolite) facies rocks underneath the Deccan volcanic cover caused mainly due to a continuous geodynamic process of uplift and erosion since Precambrian times. These findings have been independently confirmed by detailed borehole geological, geochemical and mineralogical investigations. The crystalline basement rock is found to contain 2 wt% of carbon-di-oxide fluid components. The presence of geodynamic process, associated with thermal anomalies at subcrustal depths, is supported by a high mantle heat flow (29–36 mW/m2) beneath both regions, although some structural and compositional variations may exist as evidenced by P- and S-wave seismic velocities. We suggest that the stress, caused by ongoing uplift and a high mantle heat flow is continuously accumulating in this denser and rheologically stronger mafic crust within which earthquakes tend to nucleate. These stresses appear to dominate over and above those generated by the India–Eurasia collision. The role of fluids in stress generation, as advocated through earlier studies, appears limited.  相似文献   

19.
Heat flow increases northward along Intermontane Belt in the western Canadian Cordillera, as shown by geothermal differences between Bowser and Nechako sedimentary basins, where geothermal gradients and heat flows are ∼30 mK/m and ∼90 mW/m2 compared to ∼32 mK/m and 70 –80 mW/m2, respectively. Sparse temperature profile data from these two sedimenatary basins are consistent with an isostatic model of elevation and crustal parameters, which indicate that Bowser basin heat flow should be ∼20 mW/m2 greater than Nechako basin heat flow. Paleothermometric indicators record a significant northward increasing Eocene or older erosional denudation, up to ∼7 km. None of the heat generation, tectonic reorganization at the plate margin, or erosional denudation produce thermal effects of the type or magnitude that explain the north–south heat flow differences between Nechako and Bowser basins. The more southerly Nechako basin, where heat flow is lower, has lower mean elevation, is less deeply eroded, and lies opposite the active plate margin. In contrast, Bowser basin, where heat flow is higher, has higher mean elevation, is more deeply eroded, and sits opposite a transform margin that succeeded the active margin ∼40 Ma. Differences between Bowser and Nechako basins contrast with the tectonic history and erosion impacts on thermal state. Tectonic history and eroded sedimentary thickness suggest that Bowser basin lithosphere is cooling and contracting relative to Nechako basin lithosphere. This effect has reduced Bowser basin heat flow by ∼10–20 mW/m2 since ∼40 Ma. Neither can heat generation differences explain the northerly increasing Intermontane Belt heat flow. A lack of extensional structures in the Bowser basin precludes basin and range-like extension. Therefore, another, yet an unspecified mechanism perhaps associated with the Northern Cordilleran Volcanic Province, contributes additional heat. Bowser basin’s paleogeothermal gradients were higher, ∼36 mK/m, before the Eocene and this might affect petroleum and metallogenic systems.  相似文献   

20.
A geothermal model of the hyperthermal zone of the Pannonian basin is constructed. On the basis of results of seismic measurements along five deep seismic sounding profiles on the territory of the basin and the surrounding areas and also of measurements of heat flow, heat production by radioactive elements and thermal conductivity of rocks, the variation of temperature with depth and maps of Mono-temperatures and heat flux through this surface are calculated and constructed, respectively. It is shown by numerical-model calculations that the heat anomaly of the Pannonian basin indicated by a number of surface measurements is mainly of mantle origin. Inhomogeneities of the heat-flow increase with depth down to the upper mantle and the temperature on the Moho-surface below the hyperthermal zone has values on average 400–500°C more than those in the surrounding areas. Heat flux through the Moho under the Pannonian basin is also higher by about 40–50 mW m−2. On the basis of the present calculations, it can be suggested that the upper mantle is probably partially molten beneath the annonian basin. As a most reasonable source mechanism of formation of this heat anomaly, the frictional heating arising in areas of induced secondary convection that probably has proceeded also beneath the basin from the Triassic to the Miocene is suggested here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号