首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bogdan Enescu  Kiyoshi Ito   《Tectonophysics》2005,409(1-4):147-157
By using the double-difference relocation technique, we have determined the fine structure of seismicity during the 1998 Hida Mountain earthquake swarm. The distribution of seismic activity defines two main directions (N–S and E–W) that probably correspond to the regional stress pattern. The detailed structure of seismicity reveals intense spatio-temporal clustering and earthquake lineations. Each cluster of events contains a mainshock and subsequent aftershock activity that decays according to the Omori law. The seismicity and the b-value temporal and spatial patterns reflect the evolution of the static stress changes during the earthquake swarm. About 80% of the swarm's best-relocated events occur in regions of increased ΔCFF. The smaller value of b found in the northern part of the swarm region and a larger b-value observed to the south, for the same period of time, could be well explained by the static stress changes caused by the larger events of the sequence. We argue that the state of stress in the crust is the main factor that controls the variation of b-value.  相似文献   

2.
Some 455 events (mb  4.5) in the Indo-Myanmar subduction zone are compiled using the ISC/EHB/NEIC catalogues (1964–2011) for a systematic study of seismic precursors, b-value and swarm activity. Temporal variation of b-value is studied using the maximum likelihood method beside CUSUM algorithm. The b-values vary from 0.95 to 1.4 for the deeper (depth ⩾60 km) earthquakes, and from 0.85 to 1.3 for the shallower (depth <60 km) earthquakes. A sudden drop in the b-value, from 1.4 to 0.9, prior to the occurrence of larger earthquake(s) at the deeper depth is observed. It is also noted that the CUSUM gradient reversed before the occurrence of larger earthquakes. We further examined the seismicity pattern for the period 1988–1995 within a radius of 150 km around the epicentre (latitude: 24.96°N; longitude: 95.30°E) of a deeper event M 6.3 of May 6, 1995 in this subduction zone. A precursory swarm during January 1989 to July 1992 and quiescence during August 1992 to April 1995 are identified before this large earthquake. These observations are encouraging to monitor seismic precursors for the deeper events in this subduction zone.  相似文献   

3.
Anomalous movements were detected simultaneously in both the seismic and the GPS observations in the Tokai area, the central part of the Japanese islands from the late 1990s to 2000. The anomalies are of great concern since the pending risk of a large megathrust earthquake in this area has been predicted for more than 20 years. The GPS data revealed that a slow-slip on the plate interface had commenced beneath Lake Hamana, the center of which is positioned around the edge of the assumed focal zone. On the other hand, the seismic data indicated that a delicate but clear quiescence appeared over a wide area that spreads into the main focal zone. Analyses of the seismicity changes in space and time confirmed that the contrast in the seismicity rate is distinct inside the focal zone. While the integrated seismicity indicated quiescence, some locations were distinguished as activated zones, possibly indicating the appearance of asperities. The rise of the seismicity rate in a quasi-stationary manner suggests an increase in the stress rate at that location. The following hypothesis is proposed based on the simultaneously detected evidences. The slow-slip progressing beneath Lake Hamana will induce a stress shift that invades the interior of the main locked zone, which will increase the contrast of the seismicity rate, possibly reflecting inhomogeneity in the locking strength. Even in this stage, the activated zones still maintain a locked state to prevent overall breakage. Investigations of the b-value changes and of tidal dependence in seismicity that reveal the stress-concentrated state also support the hypothesis. If this is the case, the observed change in seismicity would indicate the process of stress redistribution in the locking state, which represents the preparatory process toward final breakage. Tracking such seismicity changes would yield valid information for predictions of the next Tokai earthquake.  相似文献   

4.
This paper analyses geodetic data including the results of short baseline and short levelling surveys across active faults, and of relevellings over a wide area collected at Tangshan and in its vicinity during the several years before the 1976 Tangshan earthquake of magnitude 7.8. Using a theoretical model for slip on a fault plane with an arbitrary dip in a viscoelastic half-space, the parameters of the aseismic fault slip prior to the shock are obtained, and the stress changes caused in the area of Tangshan by such slip are estimated. The results are comparable with the seismic activity and the changes in time and space of the b-value in the relation N = exp(a - bM) observed in the same period. It is demonstrated that during 1968–1975 the Cangdong fault, the main NNE-trending active fault in the southwest of the seismic region, had gradually started aseismic right-lateral strike-slip and that the occurrence of the Tangshan earthquake was related to the stress field produced by the slip. Finally, two sequences of periodic earthquake migration that took place in North China during 1966–1976 are discussed in connection with the Tangshan earthquake.  相似文献   

5.
Short term spatial and temporal variations in seismicity prior to the three sequences of earthquakes of mb 5.8 of the Burma—Szechwan region are studied. Six years (1971–1976) of ISC seismicity data, as reported in the Regional Catalogue of Earthquakes, are considered. During the period, six earthquakes of body wave magnitude mb 5.8 occurred in four sequences. Of these, three sequences are preceded by swarm activity in the epicentral regions. Evison (1977b) suggested that the swarm before the sequences of large shocks is a possible long-term precursor. He derived the conclusion by analyzing earthquakes in New Zealand and California. The analysis of the seismicity data for the region under investigation supports Evison's view and suggests that a relation between swarms and sequences of large events exists. The precursory time period (i.e. the time from beginning of the swarm to the main shock) for the Szechwan earthquakes of mb = 5.9 (Feb. 6, 1973) and mb = 5.8 (May 10, 1974) and the Burma earthquake of mb = 6.2 (Aug. 12, 1976) are 305, 317 and 440 days, respectively.  相似文献   

6.
Seismic quiescence and accelerating seismic energy release are considered as possible spatio-temporal patterns of the preparation process of the 6 September 2002 Palermo, Italy, earthquake (M 5.8). The detailed properties of the quiescence are analyzed applying the RTL algorithm. The RTL algorithm is based on the analysis of the RTL prognostic parameter, which is designed in such a way that it has a negative value if, in comparison with long-term background, there is a deficiency of events in the time–space vicinity of the tested point. The RTL parameter increases if activation of seismicity takes place. The RTL algorithm identified that a seismic quiescence started from the beginning of November 2001 and reached its minimum at the end of May 2002. The Palermo 2002 earthquake occurred 2 months after the RTL parameter restored its long-term background level. The application of a log-periodic time-to-failure model gives a “predicted” (in retrospect) magnitude M=6.2 main shock on 5 May 2002.  相似文献   

7.
The maximum magnitude, the activity rate, and the Gutenberg-Richterb parameter as earthquake hazard parameters, have been evaluated for Sweden. The maximum likelihood method permits the combination of historical and instrumental data. The catalog used consists of 1100 earthquakes in the time interval 1375–1989. The extreme part of the catalog contains only the strongest historical earthquakes, whereas the complete part is divided into several subcatalogs, each assumed complete above a specified threshold magnitude. The uncertainty in magnitude determination was taken into account. For southern Sweden, the calculations giveb-values of 1.04 (0.05) for the whole area south of 60° N and 0.98 (0.06) for a subregion of enhanced seismicity in the Lake Vänern area. For the whole area north of 60° N, theb-value is 1.35 (0.06) and for the seismicity zone along the Gulf of Bothnia 1.26 (0.06). The number of annually expected earthquakes with magnitude equal to or larger than 2.4 [ML(UPP) or MM(UPP)] is 1.8 for the whole southern Sweden, 1.3 for the Lake Vänern region, 3.7 for northern Sweden, and 2.4 for the region along the Gulf of Bothnia. The maximum expected regional magnitude is calculated to 4.9 (0.5) for a time span of 615 years for southern Sweden and the Lake Vänern subregion, and 4.3 (0.5) for a time span of 331 years for northern Sweden and the Gulf of Bothnia subregion. However, several historical earthquakes with magnitude above 5 in nearby areas of Norway indicate that the seismic potential may be higher.  相似文献   

8.
We present the seismic energy, strain energy, frequency–magnitude relation (b-value) and decay rate of aftershocks (p-value) for the aftershock sequences of the Andaman–Sumatra earthquakes of December 26, 2004 (M w 9.3) and March 28, 2005 (M w 8.7). The energy released in aftershocks of 2004 and 2005 earthquake was 0.135 and 0.365% of the energy of the respective mainshocks, while the strain release in aftershocks was 39 and 71% for the two earthquakes, respectively. The b-value and p-value indicate normal value of about 1. All these parameters are in normal range and indicate normal stress patterns and mechanical properties of the medium. Only the strain release in aftershocks was considerable. The fourth largest earthquake in this region since 2004 occurred in September 2007 off the southern coast of Island of Sumatra, generating a relatively minor tsunami as indicated by sea level gauges. The maximum wave amplitude as registered by the Padang, tide gauge, north of the earthquake epicenter was about 60 cm. TUNAMI-N2 model was used to investigate ability of the model to capture the minor tsunami and its effect on the eastern Indian Coast. A close comparison of the observed and simulated tsunami generation, propagation and wave height at tide gauge locations showed that the model was able to capture the minor tsunami phases. The directivity map shows that the maximum tsunami energy was in the southwest direction from the strike of the fault. Since the path of the tsunami for Indian coastlines is oblique, there were no impacts along the Indian coastlines except near the coast of epicentral region.  相似文献   

9.
Yih-Min Wu  Chien-chih Chen   《Tectonophysics》2007,429(1-2):125-132
We in this study have calculated the standard normal deviate Z-value to investigate the variations in seismicity patterns in the Taiwan region before and after the Chi-Chi earthquake. We have found that the areas with relatively high seismicity in the eastern Taiwan became abnormally quiet before the Chi-Chi earthquake while the area in the central Taiwan with relatively low seismicity showed unusually active. Such a spatially changing pattern in seismicity strikingly demonstrates the phenomenon of “seismic reversal,” and we here thus present a complete, representative cycle of “seismic reversal” embedding in the changes of seismicity patterns before and after the Chi-Chi earthquake.  相似文献   

10.
We investigate spatial clustering of 2414 aftershocks along the Izmit Mw = 7.4 August 17, 1999 earthquake rupture zone. 25 days prior to the Düzce earthquake Mw = 7.2 (November 12, 1999), we analyze two spatial clusters, namely Sakarya (SC) and Karadere–Düzce (KDC). We determine the earthquake frequency–magnitude distribution (b-value) for both clusters. We find two high b-value zones in SC and one high b-value zone in KDC which are in agreement with large coseismic surface displacements along the Izmit rupture. The b-values are significantly lower at the eastern end of the Izmit rupture where the Düzce mainshock occurred. These low b-values at depth are correlated with low postseismic slip rate and positive Coloumb stress change along KDC. Since low b-values are hypothesized with high stress levels, we propose that at the depth of the Düzce hypocenter (12.5 km), earthquakes are triggered at higher stresses compared to shallower crustal earthquake. The decrease in b-value from the Karadere segment towards the Düzce Basin supports this low b-value high stress hypothesis at the eastern end of the Izmit rupture. Consequently, we detect three asperity regions which are correlated with high b-value zones along the Izmit rupture. According to aftershock distribution the half of the Düzce fault segment was active before the 12 November 1999 Düzce mainshock. This part is correlated with low b-values which mean high stress concentration in the Düzce Basin. This high density aftershock activity presumably helped to trigger the Düzce event (Mw = 7.2) after the Izmit Mw 7.4 mainshock.  相似文献   

11.
The b-value of the Gutenberg–Richter’s frequency–magnitude relation and the p-value of the modified Omori law, which describes the decay rate of aftershock activity, were investigated for more than 500 aftershocks in the Aksehir-Afyon graben (AAG) following the 15 December 2000 Sultandagi–Aksehir and the 3 February 2002 Çay–Eber and Çobanlar earthquakes. We used the Kandilli Observatory’s catalog, which contains records of aftershocks with magnitudes ≥2.5. For the Çobanlar earthquake, the estimated b-values for three aftershock sequences are in the range 0.34 ≤  b ≤ 2.85, with the exception of the one that occurred during the first hour (4.77), while the obtained p-values are in the range 0.44 ≤ p ≤ 1.77. The aftershocks of the Sultandagi earthquake have a high p-value, indicating fast decay of the aftershock activity. A regular increase of b can be observed, with b < 1.0 after 0.208 days for the Çay–Eber earthquake. A systematic and similar increase and decrease pattern exists for the b- and p-values of the Çobanlar earthquakes during the first 5 days.  相似文献   

12.
The b value of the Gutenberg-Richter relation and the standard deviate, Z, were calculated to investigate the temporal and spatial variations in seismicity patterns associated with the September 10th, 2008 (Mw?=?6.1) Qeshm earthquake. The temporal variations of b value illustrate a distinct dramatic drop preceding the Qeshm earthquake, and the spatial changes in b value highlight a zone with an abnormally low b value around the epicenter of this event. The cumulative number and Z value as a function of time show a precursory seismic quiescence preceding the 2008 Qeshm earthquake that observed for 1?year in a circle with R?=?50?km around its epicenter. The spatial distribution map of the standard deviate, Z, also exhibits an obvious precursory seismic quiescence region before the 2008 Qeshm event around the epicenter of this event. Interestingly, the precursory seismic quiescence region is approximately consistent with low b value anomaly region, and both have E–W to NE–SW trend. These two precursory anomalies took place in relatively large regions, which were possibly relevant to the preparation zone of the 2008 Qeshm event.  相似文献   

13.
Seismic hazard in mega city Kolkata, India   总被引:2,自引:1,他引:1  
The damages caused by recent earthquakes in India have been a wake up call for people to take proper mitigation measures, especially the major cities that lie in the high seismic hazard zones. Kolkata City, with thick sediment deposit (∼12 km), one of the earliest cities of India, is an area of great concern as it lies over the Bengal Basin and lies at the boundary of the seismic zones III and IV of the zonation map of India. Kolkata has been affected by the 1897 Shillong earthquake, the 1906 Calcutta earthquake, and the 1964 Calcutta earthquake. An analysis on the maximum magnitude and b-value for Kolkata City region is carried out after the preparation of earthquake catalog from various sources. Based on the tectonic set-up and seismicity of the region, five seismic zones are delineated, which can pose a threat to Kolkata in the event of an earthquake. They are broadly classified as Zone 1: Arakan-Yoma Zone (AYZ), Zone 2: Himalayan Zone (HZ), Zone 3: Shillong Plateau Zone (SPZ), Zone 4: Bay of Bengal Zone (BBZ), and Zone 5: Shield Zone (SZ). The maximum magnitude (m max) for Zones 1, 2, 3, 4, and 5 are 8.30 ± 0.51, 9.09 ± 0.58, 9.20 ± 0.51, 6.62 ± 0.43 and 6.61 ± 0.43, respectively. A probability of 10% exceedance value in 50 years is used for each zone. The probabilities of occurrences of earthquakes of different magnitudes for return periods of 50 and 100 years are computed for the five seismic zones. The Peak Ground Acceleration (PGA) obtained for Kolkata City varies from 0.34 to 0.10 g.  相似文献   

14.
Ali. O. Oncel  Tom Wilson   《Tectonophysics》2006,418(3-4):205-218
Seismotectonic parameters including the Gutenberg-Richter b-value and multifractal dimensions D2 and D15 of seismicity patterns (both spatial and temporal) were compared to GPS-derived maximum shear and dilatation strains measured in the Marmara Sea region of western Turkey along the Northern Anatolian Fault Zone (NAFZ). Comparisons of seismotectonic parameters and GPS-derived maximum shear and dilatation strain along the NAFZ in the vicinity of the 1999 M7.4 Izmit earthquake reveal a positive correlation (r = 0.5, p = 0.05) between average dilatation and the Gutenberg-Richter b-value. Significant negative correlation (r = − 0.56, p = 0.03 and r = − 0.56, p = 0.02) was also observed between the spatial fractal dimension D2 and GPS-derived maximum geodetic and shear strain. This relationship suggests that, as maximum geodetic and shear strains increase, seismicity becomes increasingly clustered.Anomalous interrelationships are observed in the Marmara Sea region prior to the Izmit event along a bend in the NAFZ near the eastern end of the Marmara Sea known as the Northern Boundary Fault (NBF). An asperity is located near the northwest end of the NBF. Along the 50-km length of the NBF, GPS strains become slightly compressive. The correlation between b-value and GPS-derived dilatation suggests that regions in compression have increased probability of larger magnitude rupture. The NBF appears to serve as an impediment to the transfer of strain from east to west along the NAFZ. Recurrence times for large earthquakes along the NBF are larger than in surrounding areas. Temporal clustering of seismicity in the vicinity of the NBF may represent foreshocks of an impending rupture.  相似文献   

15.
The frequency–magnitude distributions of earthquakes are used in this study to estimate the earthquake hazard parameters for individual earthquake source zones within the Mainland Southeast Asia. For this purpose, 13 earthquake source zones are newly defined based on the most recent geological, tectonic, and seismicity data. A homogeneous and complete seismicity database covering the period from 1964 to 2010 is prepared for this region and then used for the estimation of the constants, a and b, of the frequency–magnitude distributions. These constants are then applied to evaluate the most probable largest magnitude, the mean return period, and the probability of earthquake of different magnitudes in different time spans. The results clearly show that zones A, B, and E have the high probability for the earthquake occurrence comparing with the other seismic zones. All seismic source zones have 100 % probability that the earthquake with magnitude ≤6.0 generates in the next 25 years. For the Sagaing Fault Zone (zones C), the next Mw 7.2–7.5 earthquake may generate in this zone within the next two decades and should be aware of the prospective Mw 8.0 earthquake. Meanwhile, in Sumatra-Andaman Interplate (zone A), an earthquake with a magnitude of Mw 9.0 can possibly occur in every 50 years. Since an earthquake of magnitude Mw 9.0 was recorded in this region in 2004, there is a possibility of another Mw 9.0 earthquake within the next 50 years.  相似文献   

16.
Hamdache  M.  Pel&#;ez  J. A.  Kijko  A.  Smit  A. 《Natural Hazards》2016,86(2):273-293

We estimate the energetic and spatial characteristics of seismicity in the Algeria–Morocco region using a variety of seismic and statistical parameters, as a first step in a detailed investigation of regional seismic hazard. We divide the region into five seismotectonic regions, comprising the most important tectonic domains in the studied area: the Moroccan Meseta, the Rif, the Tell, the High Plateau, and the Atlas. Characteristic seismic hazard parameters, including the Gutenberg–Richter b-value, mean seismic activity rate, and maximum possible earthquake magnitude, were computed using an extension of the Aki–Utsu procedure for incomplete earthquake catalogs for each domain, based on recent earthquake catalogs compiled for northern Morocco and northern Algeria. Gutenberg–Richter b-values for each zone were initially estimated using the approach of Weichert (Bull Seismol Soc Am 70:1337–1346, 1980): the estimated b-values are 1.04 ± 0.04, 0.93 ± 0.10, 0.72 ± 0.03, 0.87 ± 0.02, and 0.77 ± 0.02 for the Atlas, Meseta, High Plateau, Rif, and Tell seismogenic zones, respectively. The fractal dimension D 2 was also estimated for each zone. From the ratio D 2/b, it appears that the Tell and Rif zones, with ratios of 2.09 and 2.12, respectively, have the highest potential earthquake hazard in the region. The Gutenberg–Richter relationship analysis allows us to derive that in the Tell and Rif, the number of earthquake with magnitude above Mw 4.0, since 1925 normalized to decade and to square cell with 100-km sides is equal to 2.6 and 1.91, respectively. This study provides the first detailed information about the potential seismicity of these large domains, including maximum regional magnitudes, characteristics of spatial clustering, and distribution of seismic energy release.

  相似文献   

17.
The status of Reservoir Induced Seismicity (RIS) has been reviewed periodically (Rothé, 1968, 1973; Gupta and Rastogi, 1976; Simpson, 1976; Packer et al., 1979). In the present paper, the significant work carried out during the last three years on RIS is reviewed.An earthquake of magnitude occurred on November 14, 1981 in the vicinity of Aswan Lake, Egypt, 17 years after the filling started in 1964. This event occurred 4 days after the seasonal maximum in the reservoir water level and was followed by a long sequence of aftershocks. Another event of magnitude occurred in the vicinity of Aswan Lake on August 20, 1982. Results of preliminary investigations indicate that this seismic activity is reservoir induced. Recent analyses of induced seismic events at Nurek Reservoir U.S.S.R., show that the second stage of filling during August to December 1976, increasing the maximum depth from 120 m to 200 m, was accompanied by an intense burst of shallow seismic activity. An outward migration from the centre of the reservoir, possibly associated with diffusion of pore pressure, is revealed by the temporal distribution of earthquake foci. A variety of investigations including the in situ measurement of tectonic stress, pore pressure, permeability, distribution of faults, etc., in addition to monitoring seismicity, have been undertaken in the vicinity of the Monticello Reservoir, South Carolina. The largest reservoir induced earthquake is predicted not to exceed magnitude 5.The Koyna Reservoir, India, continues to be the most outstanding example of RIS. Three earthquakes of magnitude 5 occurred in September 1980. Earthquakes of magnitude 4 occur frequently in the vicinity of Koyna, the latest being on February 5, 1983. Events that occurred during the period 1967–1973 have been relocated using better procedures and are found to be much shallower and the epicentres less diffused. Location of 12 earthquakes of Ms 4.0, their foreshocks and aftershocks, that occurred during 1973–1976, composite focal mechanism solutions and related studies are consistent with the delineation of a N-S trending fault through the reservoir area. In a couple of interesting studies it has been demonstrated that earthquakes of magnitude 5.0 in the Koyna region are usually preceded by several magnitude 4 earthquakes in the preceding fortnight. Also, a rate of loading of Koyna reservoir of at least 40 ft/week appears to be a necessary, although not sufficient, condition for the occurrence of magnitude 5 earthquakes. Smooth filling/emptying appears to be the key to reduce the hazard of RIS.A map and a table of the reported cases of reservoir induced changes in seismicity through 1982 have been compiled.  相似文献   

18.
We have analysed three recent earthquake sequences in the northern part of the Taupo Volcanic Zone. A 1998 sequence at Haroharo with a largest event of ML 4.8, and a 2004 sequence near Lake Rotoehu (largest event ML 5.4), had normal b-values, and displayed an aftershock decay pattern, with most of the activity within the first few days. In contrast, a 2005 sequence a few tens of kilometres away at Matata (largest event ML 4.1), had very different characteristics, with a slow development and decay, no tendency for enhanced seismicity after the larger events, and a very high b-value.The focal mechanisms of the Rotoehu and Matata events are normal, and have stress patterns consistent with the geodetically observed extension of the Taupo Volcanic Zone in a northwest–southeast direction. The extensive recent volcanism in the Okataina Volcanic Centre does not seem to have affected the stress pattern in this area.The Rotoehu sequence showed a strong resemblance, particularly in the time distribution of events, to the well-known swarm activity in the Vogtland region on the German/Czech border, in which larger events were followed by a burst of seismicity, as in a normal aftershock sequence. Some of the arguments that have been advanced to explain the Vogtland swarm as seismicity induced by fluid injection apply to Rotoehu, but there is no direct evidence of fluid involvement. The Matata sequence appears to have a continuing trigger mechanism, either a slow injection of fluid, or a slow slip event, in an environment in which opening pore spaces prevent high overpressures developing. The Matata sequence occurred close to the area of the 1987 ML 6.3 Edgecumbe Earthquake, so exhibiting two extremes of seismic temporal pattern, namely mainshock–aftershock and a swarm with many events of similar magnitude, within a small area.  相似文献   

19.
The earthquake (Ms= 5.3) of 20 March 1992 and its aftershocks, which occurred near the volcanic island complex of Milos, South Aegean, Greece, are studied on the basis of filed observations and instrumental data. The mainshock caused some building damage, the maximum intensity of VI+ (MM) being assigned to Triovasalos, Milos. Ground cracks, liquefaction in soil, landslides and rockfalls were observed in Milos. Liquefaction took place at an apparently anomalously long epicentral distance (D= 12 km) and is associated with unusually small earthquake magnitude. Abnormal animal behaviour was reported no longer than twelve hours before the mainshock. The b-value (= 1.02) of the G–R relation for the aftershock sequence, the exponentially decreasing number of aftershocks with time, and the difference (= 0.5) in magnitude between the mainshock and its largest aftershock imply that the origin of these earthquakes is tectonic and not associated with the volcanic field of Milos.  相似文献   

20.
There have been instances of premonitory variations in tilts, displacements, strains, telluric current, seismomagnetic effects, seismic velocities ( Vp, Vs) and their ratio (Vp/Vs), b-values, radon emission, etc. preceding large and moderate earthquakes, especially in areas near epicentres and along faults and other weak zones. Intensity and duration (T) of these premonitory quantities are very much dependent on magnitude (M) of the seismic event. Hence, these quantities may be utilised for prediction of an incoming seismic event well in advance of the actual earthquake. In the recent past, tilts, strain in deep underground rock and crustal displacements have been observed in the Koyna earthquake region over a decade covering pre- and postearthquake periods; and these observations confirm their reliability for qualitative as well as quantitative premonitory indices. Tilt began to change significantly one to two years before the Koyna earthquake of December 10, 1967, of magnitude 7.0. Sudden changes in ground tilt measured in a watertube tiltmeter accompanied an earthquake of magnitude 5.2 on October 17, 1973 and in other smaller earthquakes in the Koyna region, though premonitory changes in tilt preceding smaller earthquakes were not so much in evidence. However, changes in strains in deep underground rock were observed in smaller earthquakes of magnitude 4.0 and above. Furthermore, as a very large number of earthquakes (M = 1–7.0) were recorded in the extensive seismic net in the Koyna earthquake region during 1963–1975, precise b-value variations as computed from the above data, could reveal indirectly the state of crustal (tectonic) strain variations in the earthquake focal region and consequently act as a powerful premonitory index, especially for the significant Koyna earthquakes of December 10, 1967 (M = 7.0) and October 17, 1973 (M = 5.2). The widespread geodetic and magnetic levelling observations covering the pre- and postearthquake periods indicate significant vertical and horizontal crustal displacements, possibly accompanied by large-scale migration of underground magma during the large seismic event of December 10, 1967 in the Koyna region (M = 7.0). Duration (T) of premonitory changes in tilt, strains, etc., is generally governed by the equation of the type logT = A + BM (A and B are statistically determined coefficients). Similar other instances of premonitory evidences are also observed in micro-earthquakes (M = − 1 to 2) due to activation of a fault caused by nearby reservoir water-level fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号