首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of the solar magnetic activity in cycle 24 has been analyzed. It has been shown that the significant north–south asymmetry of magnetic activity was accompanied by the asynchronous reorganization of solar magnetic fields in the northern and southern hemispheres. The formation of unipolar magnetic regions after the decay of activity centers has been studied. The meridional transport of unipolar magnetic regions leading to changes in the zonal structure of the solar magnetic field has been shown. Long-lived centers of flare activity have been found to exist during the periods of magnetic field restructuring. The spatiotemporal analysis of the flare ensemble making it possible to diagnose non-stationary processes in the solar atmosphere has been shown.  相似文献   

2.
SOHO-MDI daily magnetic field synoptic data (a 14-year series of daily maps of the solar magnetic field intensity B available at the site ) have been used to analyze the dynamics of the photospheric magnetic field in the vicinity of the solar equator. The standard deviation s B of the field B calculated over areas of tens of square degrees on the solar disk was taken as a basic index. An 11-year variation similar to that observed at higher latitudes is observed in the vicinity of the equator, and is similar for weak and strong fields; i.e., the solar cycle exists in the sunspot-free zone. New qualitative data support the idea that the weak background magnetic field increases toward the solar limb. This angular dependence suggests the existence of a transverse component of the background field. The magnetic fields in the vicinity of the equator were significantly different in the initial phases of Cycles 23 and 24. Annual variations of s B were observed near the center of the solar disk. These variations are due to two factors: the annual variation of the distance from the equator to the disk center and the increase of s B with with distance from the equator. Reliable detection of these variations is an evidence of high accuracy of the s B estimates.  相似文献   

3.
Abstractthe effect of the large-scale magnetic fields generated by the solar dynamo on the radiation flux issuing from the convection zone is studied. A governing equation describing convective heat transfer is obtained in the framework of mean-field magnetohydrodynamics, with account for the influence of magnetic fields and differential rotation on the energy budget of the convection zone. The principal effects are illustrated using a one-dimensional numerical model. Calculations indicate that the influence of large-scale magnetic fields can modulate the solar irradiance with a relative amplitude of ~0.07%.  相似文献   

4.
Analysis of long-term measurements of solar magnetic fields and the flux of UV radiation from the Sun indicates a cause-effect relationship between activity complexs, their residual magnetic fields, and coronal holes. A comparison of the background magnetic fields of the Sun and the evolution of former activity complexes reveals unipolar magnetic regions that form after the decay of these complexes. The latitude and time evolution of unipolar magnetic regions in solar cycles 21–24 is studied. A North-South asymmetry in solar activity is manifest in the distribution of unipolar regions migrating toward higher latitudes. It is shown that, when residual magnetic fields of the opposite polarity reach the polar regions, this leads to a sign change of the polar magnetic field and a decrease in the area of polar coronal holes, or even their complete disappearance. These interactions can explain the triple sign change of the polar magnetic field of the Sun in cycle 21 and the short-term polarity reversals observed in 2010 and 2011.  相似文献   

5.
An experimental study of the source and formation of large-scale streams in the solar wind is presented. Radio-astronomical data from 1998 are compared with optical SOHO observations and solar coronal magnetic fields calculated from Zeeman data obtained at the Wilcox Observatory. A correlation between the geometry of the solar-wind transition region and the strength of coronal magnetic fields is revealed. For the moderate heliolatitudes studied, this correlation divides into three branches corresponding to three types of coronal magnetic-field structures: open structures with field lines escaping into interplanetary space, closed structures with loop-like field lines, and intermediate structures including both open and closed configurations. High-speed streams of solar wind originate in regions with open magnetic structures. These structures are connected with the lateral lobes of streamers at moderate heliolatitudes. Low-speed flows originate above closed magnetic structures, typical of the main bodies of streamers. The lowest-speed solar-wind flows are not associated with coronal streamer structures, and originate in coronal regions with intermediate magnetic configurations simultaneously containing open and closed field lines. In these regions, the white-light corona becomes an extended and amorphous area with high luminosity, which stratifies into a radial structure with narrow stripes at higher resolution.  相似文献   

6.
The distributions of dominant magnetic polarities in synoptic maps of photospheric magnetic fields and their extrapolations to the corona based on Stanford Observatory data are studied. Both dipolar and quadrupolar magnetic patterns are detected in the distributions of dominant polarities in the near-equatorial region of the photosphere for activity cycles 21, 22, and 23. The field in these patterns often has opposite signs on opposite sides of the equator, with this sign changing from cycle to cycle. A longitude-time analysis of variations of the mean solar magnetic field shows that the contribution of the large-scale magnetic patterns to the total field does not exceed 20 µT. The most stable magnetic structures at a quasi-source surface in the solar corona are separated by approximately 180° in heliographic longitude and are close to dipolar. The nature and behavior of these large-scale magnetic patterns are interpreted as a superposition of cyclic dynamo modes and the nonaxially symmetric relic field of the Sun. The contribution of the relic field to the mean solar magnetic field appears as a weak but stable rotational modulation whose amplitude does not exceed 8 µT.  相似文献   

7.
It is shown that a hypothetical relict magnetic field in the solar radiative-transport zone that penetrates into the convective zone would affect the solar dynamo, resulting in radical changes in the butterfly diagrams. This would transform the traveling waves of activity into standing waves. A comparison of our results with the well-known butterfly diagrams for the Sun gives an upper limit of the order of some tens G for the value of relict magnetic field penetrating into the solar convective zone. At the same time, it is not ruled out that such relict magnetic fields in other solar-type stars are strong enough to make the activity waves become standing waves.  相似文献   

8.
Solar filaments (prominences), which suddenly and swiftly ascend, i.e., become eruptive, sometimes decelerate and stop at comparatively low altitudes. Causes of failed eruptions generally remain uncertain. The present study analyzes two eruptive phenomena with very similar initial geometries and configurations of external magnetic fields; one of these eruptions evolves in a coronal mass ejection, but the other breaks off shortly after its start. The tension of curved magnetic field lines is the most probable force causing eruptions to stop. Significant external magnetic fields parallel to rope axes located in failed eruption regions can be a decisive factor. Such an effect has been revealed during laboratory experiments on plasma rope dynamics, which likely plays an important role in solar eruptive phenomena.  相似文献   

9.
We analyze the flare events of October 28 and May 27, 2003 to examine the possible connection of solar flares with singularities in the differential characteristics of solar magnetic fields. The relation between flares and the behavior of F indicators (which describe structural singularities of the magnetic fields) introduced earlier is analyzed. It is shown that the generation of flares can be associated with self-intersections (or reconnection) of the F = 0 curves, where magnetic reconnection can occur. Consequently, the current sheets generated in such regions can be sources of energy release.  相似文献   

10.
Two-dimensional simulations of time-dependent solar magnetogranulation are used to analyze the horizontal magnetic fields and the response of the synthesized Stokes profiles of the IR FeI λ1564.85 nm line to the magnetic fields. The 1.5-h series of MHD models used for the analyses reproduces a region of the magnetic network in the photosphere with an unsigned magnetic flux density of 192 G at the solar surface. According to the magnetic-field distribution obtained, the most probable absolute strength of the horizontal magnetic field at an optical depth of τ 5 = 1(τ 5 denotes τ at λ = 500 nm) is 50 G, while the mean value is 244 G. On average, the horizontal magnetic fields are stronger than the vertical fields to heights of about 400 km in the photosphere due to their higher density and the larger area they occupy. The maximum factor by which the horizontal fields are greater is 1.5. Strong horizontal magnetic flux tubes emerge at the surface as spots with field strengths of more than 500 G. These are smaller than granules in size, and have lifetimes of 3–6 min. They form in the photosphere due to the expulsion of magnetic fields by convective flows coming from deep subphotospheric layers. The data obtained qualitatively agree with observations with the Hinode space observatory.  相似文献   

11.
The magnetic fields of solar active regions are analyzed using a method based on comparing the spatial structures of the reconstructed magnetic field and of the radio emission of the active region. Two approaches are used: comparing the radio size of the active region and the corresponding size calculated using the reconstructed magnetic field, and comparing the radio spectra that are observed and calculated using the reconstructed magnetic field. Overall, the calculated sizes and spectra correspond fairly well to the observational data, making it possible to estimate physical parameters of the emitting region, such as the electron density and temperature.  相似文献   

12.
The large-scale stream structure of the solar wind near the Sun and its evolution during the 11-year solar activity cycle are investigated. The study is based on observations of scattering of the radiation from compact natural radio sources at radial distances R≤14R S (R S is the solar radius). Regular observations were conducted in 1981–1998 on the RT-22 and DKR-1000 radio telescopes of the Russian Academy of Sciences at Pushchino, at λ=1.35 cm and 2.7 m, respectively. The radial dependences of the interplanetary scintillations m(R) and the scattering angle 2?(R) are considered together with the structure of large-scale magnetic fields in the solar corona at R=2.5R S. The entire range of variations in the level of scattering and the associated heliolatitude flow structures in the subsonic solar wind forms over the 11-year solar cycle, as a direct result of the large-scale structure of the evolving magnetic fields at the source of the solar-wind streamlines.  相似文献   

13.
Pipin  V. V. 《Astronomy Reports》2004,48(5):418-432
Astronomy Reports - The effect of large-scale magnetic fields generated by the solar dynamo on the irradiance of the Sun and stratification of the solar convection zone is studied using a numerical...  相似文献   

14.
The stability of a toroidal magnetic field in the rotating radiation zone of a star is analyzed to estimate the maximum possible magnitude of relic fields. Equations for small perturbations are obtained taking into account the finite diffusivity and the stabilizing effect of the subadiabatic stratification. The numerical solution of the eigenvalue problem indicates that the threshold field strength for the onset of instability in the radiation zone of the Sun is about 600 G. This figure sets an upper bound for the strength of the relic field. The assumption that magnetic instabilities are present in the solar radiation zone disagrees with the observed abundance of lithium. Our analysis of joint stability of toroidal field and nonuniform rotation shows that two-dimensional MHD solutions for the solar tachocline are stable against three-dimensional perturbations.  相似文献   

15.
Gnevyshev’s hypothesis of time space organization of sunspot activity over the solar surface like impulses is considered. Using numerical simulation it was shown that complex solar cycle shape can be explained by distribution of impulses in the northern and southern hemispheres. For long solar cycles, impulses at higher latitudes breaking Sp?rer’s law were found. Comparison of the time-latitude diagrams of solar magnetic fields and impulses has shown that each wave of new polarity to the poles is accompanied by impulse of sunspot activity.  相似文献   

16.
17.
Evidence that the distribution of the abundances of admixtures with low first-ionization potentials (FIP < 10 eV) in the lower solar corona could be associated with the typology of the largescale magnetic field is presented. Solar observations show an enhancement in the abundances of elements with low FIPs compared to elements with high FIPs (>10 eV) in active regions and closed magnetic configurations in the lower corona. Observations with the ULYSSES spacecraft and at the Stanford Solar Observatory have revealed strong correlations between the manifestation of the FIP effect in the solar wind, the strength of the open magnetic flux (without regard to sign), and the ratio of the large-scale toroidal and poloidal magnetic fields at the solar surface. Analyses of observations of the Sun as a star show that the enhancement of the abundances of admixtures with low FIPs in the corona compared to their abundances in the photosphere (the FIP effect) is closely related to the solar-activity cycle and also with variations in the topology of the large-scale magnetic field. A possible mechanism for the relationship between the FIP effect and the spectral type of a star is discussed in the framework of solar–stellar analogies.  相似文献   

18.
Regularities have been searched for in the dynamics of characteristics of flare solar radiation during the development of the active region NOAA 0069 in the interval of August 14–24, 2002. The SONG (Solar Neutrons and Gamma rays) instrument onboard the Russian CORONAS-F Solar Observatory recorded hard X-ray and gamma-ray radiation in nine of the 30 flares of class above C5 in this active region within the indicated time interval. It was obtained that, in accordance with the development of the active region, the X- and gamma-ray flux tended to increase at the flare maxima while the hard X-ray spectral index tended to decrease; flares with a harder radiation spectrum occurred in the sunspot umbra, i.e., in the region with the strongest magnetic fields.  相似文献   

19.
The asymmetry of the magnetic field of the Sun and its manifestation in the interplanetary magnetic field (IMF) are studied. The dominant magnetic polarity of the radial component of the IMF alternates from cycle to cycle, but with an overall systematic dominance of polarity directed toward the Sun. The global asymmetry is also manifest in the component of the IMF perpendicular to the plane of the solar equator. The dominance of positive values of B z together with an appreciable linear trend in the cumulative sum of this quantity is interpreted as a manifestation of a relic solar magnetic field. The strength of this relic magnetic field near the Earth is estimated to be 0.048 ± 0.015 nT, based on the growth of the linear component of the cumulative sum of B z . Time intervals, in which negative values of the B z component of the IMF dominate and enhanced geomagnetic activity is observed, are identified. Our analysis of solar and heliospheric magnetic fields in an integrated representation has enabled us to compare various types of measurements and estimate their stability.  相似文献   

20.
Some possibilities for the reconnection of magnetic-field lines of solar filaments that approach when the photospheric polarity inversion lines change their positions, are discussed. The interaction between filaments depends on their internal properties, which are determined by the filament chirality, or the sign of the helicity of the filament magnetic field. In quadrupolar magnetic configurations, filaments with the same chirality can exchange their halves. Filaments with opposite chirality rupture after the reconnection of the polarity inversion lines, since the two fragments of the different filaments cannot be connected continuously. The morphology and connectivity of the filaments are analyzed using daily Hα filtergrams obtained over the period of maximum activity of the 23rd solar cycle. Examples of alterations of the filament connectivity occuring during the evolution of photospheric fields are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号