首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We study the peculiar velocity field inferred from the Mark III spirals using a new method of analysis. We estimate optimal values of Tully–Fisher scatter and zero-point offset, and we derive the three-dimensional rms peculiar velocity ( σ v ) of the galaxies in the samples analysed. We check our statistical analysis using mock catalogues derived from numerical simulations of cold dark matter (CDM) models considering measurement uncertainties and sampling variations. Our best determination for the observations is σ v =(660±50) km s−1. We use the linear theory relation between σ v , the density parameter Ω, and the galaxy correlation function ξ ( r ) to infer the quantity     , where b is the linear bias parameter of optical galaxies and the uncertainties correspond to bootstrap resampling and an estimated cosmic variance added in quadrature. Our findings are consistent with the results of cluster abundances and redshift-space distortion of the two-point correlation function. These statistical measurements suggest a low value of the density parameter Ω∼0.4 if optical galaxies are not strongly biased tracers of mass.  相似文献   

2.
We present and test a new method for the reconstruction of cosmological initial conditions from a full-sky galaxy catalogue. This method, called ZTRACE, is based on a self-consistent solution of the growing mode of gravitational instabilities according to the Zel'dovich approximation and higher order in Lagrangian perturbation theory. Given the evolved redshift-space density field, smoothed on some scale, ZTRACE finds, via an iterative procedure, an approximation to the initial density field for any given set of cosmological parameters; real-space densities and peculiar velocities are also reconstructed. The method is tested by applying it to N -body simulations of an Einstein–de Sitter and an open cold dark matter universe. It is shown that errors in the estimate of the density contrast dominate the noise of the reconstruction. As a consequence, the reconstruction of real-space density and peculiar velocity fields using non-linear algorithms is little improved over those based on linear theory. The use of a mass-preserving adaptive smoothing, equivalent to a smoothing in Lagrangian space, allows an unbiased (although noisy) reconstruction of initial conditions, as long as the (linearly extrapolated) density contrast does not exceed unity. The probability distribution function of the initial conditions is recovered to high precision, even for Gaussian smoothing scales of ∼5  h −1 Mpc, except for the tail at δ ≥1. This result is insensitive to the assumptions of the background cosmology.  相似文献   

3.
We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space probability distribution function (PDF), as well as the p -order hierarchical amplitudes S p , in both real and redshift space. We compare our results with numerical simulations, focusing on the     standard CDM model, where redshift distortions are strongest. We find good agreement between the SC predictions and the numerical PDF in real space even for     , where σ L is the linearly evolved rms fluctuation on the smoothing scale. In redshift space, reasonable agreement is possible only for     . Numerical simulations also yield a simple empirical relation between the real-space PDF and the redshift-space PDF: we find that for     , the redshift-space PDF, [ P δ ( z )], is, to a good approximation, a simple rescaling of the real-space PDF, P [ δ ], i.e.,     where σ and σ ( z ) are the real-space and redshift-space rms fluctuations, respectively. This result applies well beyond the validity of linear perturbation theory, and it is a good fit for both the standard CDM model and the ΛCDM model. It breaks down for SCDM at     , but provides a good fit to the ΛCDM models for σ L as large as 0.8.  相似文献   

4.
We have investigated the redshift-space distortions in the optically selected Durham/UKST Galaxy Redshift Survey using the two-point galaxy correlation function perpendicular and parallel to the observer's line of sight, ξ(σ, π). On small, non-linear scales we observe an elongation of the constant ξ(σ, π) contours in the line-of-sight direction. This is a result of the galaxy velocity dispersion and is the common 'Finger of God' effect seen in redshift surveys. Our result for the one-dimensional pairwise rms velocity dispersion is 〈 w 21/2=416±36 km s−1, which is consistent with those from recent redshift surveys and canonical values, but inconsistent with SCDM or LCDM models. On larger, linear scales we observe a compression of the ξ(σ, π) contours in the line-of-sight direction. This is caused by the infall of galaxies into overdense regions, and the Durham/UKST data favours a value of (Ω0.6/ b )∼0.5, where Ω is the mean mass density of the Universe and b is the linear bias factor that relates the galaxy and mass distributions. Comparison with other optical estimates yields consistent results, with the conclusion that the data do not favour an unbiased critical-density universe.  相似文献   

5.
We present a simple model for the shape of the distribution function of galaxy peculiar velocities. We show how both non-linear and linear theory terms combine to produce a distribution which has an approximately Gaussian core with exponential wings. The model is easily extended to study how the statistic depends on the type of particle used to trace the velocity field (dark matter particles, dark matter haloes, galaxies), and on the density of the environment in which the test particles are located. Comparisons with simulations suggest that our model is accurate. We also show that the evolution of the peculiar velocities depends on the local, rather than the global, density. Since clusters populate denser regions on average, using cluster velocities with the linear theory scaling may lead to an overestimate of the global value of Ω0. Conversely, using linear theory with the global value of Ω0 to scale cluster velocities from the initial to the present time results in an underestimate of their true velocities. In general, however, the directions of motions of haloes are rather well described by linear theory. Our results help to simplify models of redshift-space distortions considerably.  相似文献   

6.
7.
8.
9.
10.
We analyse the two-point correlation function (2PCF) of galaxy groups identified from the 2-degree Field Galaxy Redshift Survey with the halo-based group finder recently developed by Yang et al. With this group catalogue we are able to estimate the 2PCFs for systems ranging from isolated galaxies to rich clusters of galaxies. The real-space correlation length obtained for these systems ranges from ∼4 to ∼15  h −1 Mpc, respectively. The observed correlation amplitude (and the corresponding bias factor) as a function of group abundance is well reproduced by associating galaxy groups with dark matter haloes in the standard Λ-cold dark matter model. Redshift distortions are clearly detected in the redshift-space correlation function, the degree of which is consistent with the assumption of gravitational clustering and halo bias in the cosmic density field. In agreement with previous studies we find a strong increase of the correlation length with the mean intergroup separation. Although well-determined observationally, we show that current theoretical predictions are not yet accurate enough to allow for stringent constraints on cosmological parameters. Finally, we use our results to explore the power-law nature of the 2PCF of galaxies. We split the 2PCF into one- and two-group terms, equivalent to the one- and two-halo terms in halo occupation models, and show that the power-law form of the 2PCF is broken, when only including galaxies in the more massive systems.  相似文献   

11.
We have investigated the statistical clustering properties of galaxies by calculating the two-point galaxy correlation function from the optically selected Durham/UKST Galaxy Redshift Survey. This survey is magnitude-limited to b J∼17, contains ∼2500 galaxies sampled at a rate of one-in-three and surveys a ∼4×106 ( h −1 Mpc)3 volume of space. We have empirically determined the optimal method of estimating the two-point correlation function from just such a magnitude-limited survey. Applying our methods to this survey, we find that our redshift-space results agree well with those from previous optical surveys. In particular, we confirm the previously claimed detections of large-scale power out to ∼40 h −1 Mpc scales. We compare with two common models of cosmological structure formation and find that our two-point correlation function has power significantly in excess of the standard cold dark matter model in the 10–30 h −1 Mpc region. We therefore support the observational results of the APM galaxy survey. Given that only the redshift-space clustering can be measured directly, we use standard modelling methods and indirectly estimate the real-space two-point correlation function from the projected two-point correlation function. We then invert this projected correlation function to obtain an estimate of the spatial two-point correlation function in real space. This correlation function in real space has a lower amplitude than that in redshift space, but a steeper slope.  相似文献   

12.
The determination of the density parameter Ω0 from the large-scale distribution of galaxies is one of the major goals of modern cosmology. However, if galaxies are biased tracers of the underlying mass distribution, linear perturbation theory leads to a degeneracy between Ω0 and the linear bias parameter b , and the density parameter cannot be estimated. In Matarrese, Verde &38; Heavens we developed a method based on second-order perturbation theory to use the bispectrum to lift this degeneracy by measuring the bias parameter in an Ω0-independent way. The formalism was developed assuming that one has perfect information on the positions of galaxies in three dimensions. In galaxy redshift surveys, the three-dimensional information is imperfect, because of the contaminating effects of peculiar velocities, and the resulting clustering pattern in redshift space is distorted. In this paper we combine second-order perturbation theory with a model for collapsed, virialized structures, to extend the method to redshift space, and demonstrate that the method should be successful in determining with reasonable accuracy the bias parameter from state-of-the-art surveys such as the Anglo-Australian 2 degree Field Survey and the Sloan Digital Sky Survey.  相似文献   

13.
This is the third paper in a series which combines N -body simulations and semi-analytic modelling to provide a fully spatially resolved simulation of the galaxy formation and clustering processes. Here we extract mock redshift surveys from our simulations: a cold dark matter model with either Ω0=1 ( τ CDM) or Ω0=0.3 and Λ=0.7 (ΛCDM). We compare the mock catalogues with the northern region (CfA2N) of the Center for Astrophysics (CfA) Redshift Surveys. We study the properties of galaxy groups and clusters identified using standard observational techniques, and also the relation of these groups to real virialized systems. Most features of CfA2N groups are reproduced quite well by both models with no obvious dependence on Ω0. Redshift‐space correlations and pairwise velocities are also similar in the two cosmologies. The luminosity functions predicted by our galaxy formation models depend sensitively on the treatment of star formation and feedback. For the particular choices of Paper I they agree poorly with the CfA survey. To isolate the effect of this discrepancy on our mock redshift surveys, we modify galaxy luminosities in our simulations to reproduce the CfA luminosity function exactly. This adjustment improves agreement with the observed abundance of groups, which depends primarily on the galaxy luminosity density, but other statistics, connected more closely with the underlying mass distribution, remain unaffected. Regardless of the luminosity function adopted, modest differences with observation remain. These can be attributed to the presence of the 'Great Wall' in the CfA2N. It is unclear whether the greater coherence of the real structure is a result of cosmic variance, given the relatively small region studied, or reflects a physical deficiency of the models.  相似文献   

14.
We study the possibility of correctly identifying, from the smooth galaxy density field of the PSC z flux-limited catalogue, high-density regions (superclusters) and recovering their true shapes in the presence of a bias introduced by the coupling between the selection function and the constant radius smoothing. We quantify such systematic biases in the smoothed PSC z density field and after applying the necessary corrections we study supercluster multiplicity and morphologies using a differential geometry definition of shape. Our results strongly suggest that filamentary morphology is the dominant feature of PSC z superclusters. Finally, we compare our results with those expected in three different cosmological models and find that the Λ cold dark matter (CDM) model (ΩΛ=1−Ωm=0.7) performs better than Ωm=1 CDM models.  相似文献   

15.
We apply the ztrace algorithm to the optical NOG and infrared PSC z galaxy catalogues to reconstruct the pattern of primordial fluctuations that have generated our local Universe. We check that the density fields traced by the two catalogues are well correlated, and consistent with a linear relation [either in δ or in  log (1 +δ)  ] with relative bias (of NOG with respect to PSC z )   b rel= 1.1 ± 0.1  . The relative bias relation is used to fill the optical zone of avoidance at  | b | < 20°  using the PSC z galaxy density field.
We perform extensive testing on simulated galaxy catalogues to optimize the reconstruction. The quality of the reconstruction is predicted to be good at large scales, up to a limiting wavenumber   k lim≃ 0.4 h Mpc−1  beyond which all information is lost. We find that the improvement arising from the denser sampling of the optical catalogue is compensated by the uncertainties connected to the larger zone of avoidance.
The initial conditions reconstructed from the NOG catalogue are found (analogously to those from the PSC z ) to be consistent with a Gaussian paradigm. We use the reconstructions to produce sets of initial conditions ready to be used for constrained simulations of our local Universe.  相似文献   

16.
17.
We perform a series of comparisons between distance-independent photometric and spectroscopic properties used in the surface brightness fluctuation (SBF) and fundamental plane (FP) methods of early-type galaxy distance estimation. The data are taken from two recent surveys: the SBF Survey of Galaxy Distances and the Streaming Motions of Abell Clusters (SMAC) FP survey. We derive a relation between     colour and Mg2 index using nearly 200 galaxies and discuss implications for Galactic extinction estimates and early-type galaxy stellar populations. We find that the reddenings from Schlegel et al. for galaxies with     appear to be overestimated by     per cent, but we do not find significant evidence for large-scale dipole errors in the extinction map. In comparison with stellar population models having solar elemental abundance ratios, the galaxies in our sample are generally too blue at a given Mg2; we ascribe this to the well-known enhancement of the α -elements in luminous early-type galaxies. We confirm a tight relation between stellar velocity dispersion σ and the SBF 'fluctuation count' parameter N¯ , which is a luminosity-weighted measure of the total number of stars in a galaxy. The correlation between N¯ and σ is even tighter than that between Mg2 and σ . Finally, we derive FP photometric parameters for 280 galaxies from the SBF survey data set. Comparisons with external sources allow us to estimate the errors on these parameters and derive the correction necessary to bring them on to the SMAC system. The data are used in a forthcoming paper, which compares the distances derived from the FP and SBF methods.  相似文献   

18.
We present a theoretical and exact analysis of the bispectrum of projected galaxy catalogues. The result can be generalized to evaluate the projection in spherical harmonics of any 3D bispectrum and therefore has applications to cosmic microwave background and gravitational lensing studies.
By expanding the 2D distribution of galaxies on the sky in spherical harmonics, we show how the three-point function of the coefficients can be used in principle to determine the bias parameter of the galaxy sample. If this can be achieved, it would allow a lifting of the degeneracy between the bias and the matter density parameter of the Universe, which occurs in linear analysis of 3D galaxy catalogues. In previous papers, we have shown how a similar analysis can be done in three dimensions, and we show here through an error analysis and by implementing the method on a simulated projected catalogue that ongoing three-dimensional galaxy redshift surveys (even with all the additional uncertainties introduced by partial sky coverage, redshift-space distortions and smaller numbers) will do far better than all-sky projected catalogues with similar selection function.  相似文献   

19.
We have studied the velocity field of the blue compact dwarf galaxy Mrk 86 (NGC 2537) using data provided by 14 long-slit optical spectra obtained in 10 different orientations and positions. This kinematical information is complemented with narrow-band ([O  iii ]5007 Å and H α ) and broad-band ( B , V , Gunn r and K ) imaging. The analysis of the galaxy global velocity field suggests that the ionized gas could be distributed in a rotating inclined disc, with projected central angular velocity of Ω=34 km s−1 kpc−1. The comparison between the stellar, H  i and modelled dark matter density profile indicates that the total mass within its optical radius is dominated by the stellar component. Peculiarities observed in its velocity field can be explained by irregularities in the ionized gas distribution or local motions induced by star formation.
Kinematical evidences for two expanding bubbles, Mrk 86–B and Mrk 86–C, are given. They show expanding velocities of 34 and 17 km s−1, H α luminosities of 3×1038 and 1.7×1039 erg s−1, and physical radii of 374 and 120 pc, respectively. The change in the [S  ii ]/H α , [N  ii ]/H α , [O  ii ]/[O  iii ] and [O  iii ]/H β line ratios with the distance to the bubble precursor suggests a diminution in the ionization parameter and, in the case of Mrk 86–B, an enhancement of the shock-excited gas emission. The optical–near-infrared colours of the bubble precursors are characteristic of low‐metallicity star‐forming regions (∼0.2 Z) with burst strengths of about 1 per cent in mass.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号