首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 241 毫秒
1.
According to a widespread point of view, intensive electrostatic structures in the E‐region of the auroral ionosphere can be a consequence of the excitation of the modified two‐stream or Farley‐Buneman (FB) plasma turbulence. But in spite of the successes of the theoretical and experimental research of the auroral radar scattering, it is impossible to explain the existence of auroral echoes with large aspect angles (> 2 deg.), the wave propagation perpendicular to the electron drift velocity and wave scales less than 1 m. In this paper the coherent nonlinear interactions of three and four electrostatic FB‐waves are considered analytically and numerically. The evolution of the nonlinear waves is described by a system of magnetohydrodynamic equations. 1) It is shown that the interaction of three and four coherent waves is the main physical mechanism which leads to the saturation of the FB‐instability. 2) If no dissipative and dispersive effects occur, an explosive instability may be excited. 3) The main result of the interaction of coherent waves is the generation of nonlinear waves and nonlinear structures when the waves are damped linearly and propagate perpendicular to the electron drift velocity. This region corresponds to large aspect angles of the small‐scale waves. 4) Further, the wave interaction causes a nonlinear stabilization of the growth of the high‐frequency waves and a formation of local density structures of the charged particles. The results of the numerical models allow to analyse the possibility of scenarios of the two‐stream plasma instability in the collisional auroral E‐region.  相似文献   

2.
We present first results of three‐dimensional numerical simulations of the non‐magnetic solar chromosphere, computed with the radiation hydrodynamics code CO5BOLD. Acoustic waves which are excited at the top of the convection zone propagate upwards into the chromosphere where the waves steepen into shocks. The interaction of the waves leads to the formation of complex structures which evolve on short time scales. Consequently, the model chromosphere is highly dynamical, inhomogeneous, and thermally bifurcated.  相似文献   

3.
In May 2002, the solar chromosphere was observed with a two‐dimensional spectrometer which is mounted in the German Vacuum Tower Telescope (VTT) at the Observatorio del Teide/Tenerife. The aim of this observation was to investigate the fine structure of the solar chromosphere seen in Hα. We took narrow‐band filtergrams (Δλ ≈ 72 mÅ) by scanning through this line. Broad‐band images taken strictly simultaneously with the narrow‐band filtergrams were restored by speckle methods. The instantaneous optical transfer function from this restoration procedure was used for the reconstruction of the narrow‐band images. Some results of this high spatial resolution observation are presented below.  相似文献   

4.
Solar p modes are one of the dominant types of coherent signals in Doppler velocity in the solar photosphere, with periods showing a power peak at five minutes. The propagation (or leakage) of these p-mode signals into the higher solar atmosphere is one of the key drivers of oscillatory motions in the higher solar chromosphere and corona. This paper examines numerically the direct propagation of acoustic waves driven harmonically at the photosphere, into the nonmagnetic solar atmosphere. Erdélyi et al. (Astron. Astrophys. 467, 1299, 2007) investigated the acoustic response to a single point-source driver. In the follow-up work here we generalise this previous study to more structured, coherent, photospheric drivers mimicking solar global oscillations. When our atmosphere is driven with a pair of point drivers separated in space, reflection at the transition region causes cavity oscillations in the lower chromosphere, and amplification and cavity resonance of waves at the transition region generate strong surface oscillations. When driven with a widely horizontally coherent velocity signal, cavity modes are caused in the chromosphere, surface waves occur at the transition region, and fine structures are generated extending from a dynamic transition region into the lower corona, even in the absence of a magnetic field.  相似文献   

5.
The instrument SUMER - Solar Ultraviolet Measurements of Emitted Radiation is designed to investigate structures and associated dynamical processes occurring in the solar atmosphere, from the chromosphere through the transition region to the inner corona, over a temperature range from 104 to 2 × 106 K and above. These observations will permit detailed spectroscopic diagnostics of plasma densities and temperatures in many solar features, and will support penetrating studies of underlying physical processes, including plasma flows, turbulence and wave motions, diffusion transport processes, events associated with solar magnetic activity, atmospheric heating, and solar wind acceleration in the inner corona. Specifically, SUMER will measure profiles and intensities of EUV lines; determine Doppler shifts and line broadenings with high accuracy; provide stigmatic images of the Sun in the EUV with high spatial, spectral, and temporal resolution; and obtain monochromatic maps of the full Sun and the inner corona or selected areas thereof. SUMER will be flown on the Solar and Heliospheric Observatory (SOHO), scheduled for launch in November, 1995. This paper has been written to familiarize solar physicists with SUMER and to demonstrate some command procedures for achieving certain scientific observations.  相似文献   

6.
Abstract— We have measured the titanium isotopic compositions of 23 silicon carbide grains from the Orgueil (CI) carbonaceous chondrites for which isotopic compositions of silicon, carbon, and nitrogen and aluminum‐magnesium systematics had been measured previously. Using the 16 most‐precise measurements, we estimate the relative contributions of stellar nucleosynthesis during the asymptotic giant branch (AGB) phase and the initial compositions of the parent stars to the compositions of the grains. To do this, we compare our data to the results of several published stellar models that employ different values for some important parameters. Our analysis confirms that s‐process synthesis during the AGB phase only slightly modified the titanium compositions in the envelopes of the stars where mainstream silicon carbide grains formed, as it did for silicon. Our analysis suggests that the parent stars of the >1 μm silicon carbide grains that we measured were generally somewhat more massive than the Sun (2–3 M) and had metallicities similar to or slightly higher than solar. Here we differ slightly from results of previous studies, which indicated masses at the lower end of the range 1.5–3 M and metallicities near solar. We also conclude that models using a standard 13C pocket, which produces a good match for the main component of s‐process elements in the solar system, overestimate the contribution of the 13C pocket to s‐process nucleosynthesis of titanium found in silicon carbide grains. Although previous studies have suggested that the solar system has a significantly different titanium isotopic composition than the parent stars of silicon carbide grains, we find no compelling evidence that the Sun falls off of the array defined by those stars. We also conclude that the Sun does lie on the low‐metallicity end of the silicon and titanium arrays defined by mainstream silicon carbide grains.  相似文献   

7.
Observations indicate that in plage areas (i.e. in active regions outside sunspots) acoustic waves travel faster than in the quiet Sun, leading to shortened travel times and higher p-mode frequencies. Coupled with the 11-year variation of solar activity, this may also explain the solar cycle variation of oscillation frequencies. While it is clear that the ultimate cause of any difference between the quiet Sun and plage is the presence of magnetic fields of order 100 G in the latter, the mechanism by which the magnetic field exerts its influence has not yet been conclusively identified. One possible such mechanism is suggested by the observation that granular motions in plage areas tend to be slightly “abnormal”, dampened compared to the quiet Sun. In this paper we consider the effect that abnormal granulation observed in active regions should have on the propagation of acoustic waves. Any such effect is found to be limited to a shallow surface layer where sound waves propagate nearly vertically. The magnetically suppressed turbulence implies higher sound speeds, leading to shorter travel times. This time shift Δ τ is independent of the travel distance, while it shows a characteristic dependence on the assumed plage field strength. As a consequence of the variation of the acoustic cutoff with height, Δ τ is expected to be significantly higher for higher frequency waves within the observed regime of 3 – 5 mHz. The lower group velocity near the upper reflection point further leads to an increased envelope time shift, as compared to the phase shift. p-mode frequencies in plage areas are increased by a corresponding amount, Δ ν/ν=ν Δ τ. These characteristics of the time and frequency shifts are in accordance with observations. The calculated overall amplitudes of the time and frequency shifts are comparable to, but still significantly less than (by a factor of 2 to 5), those suggested by measurements.  相似文献   

8.
The Coudé feed of the vacuum telescope (aperture D = 65 cm) at the Big Bear Solar Observatory (BBSO) is currently completely remodelled to accommodate a correlation tracker and a high‐order Adaptive Optics (AO) system. The AO system serves two imaging magnetograph systems located at a new optical laboratory on the observatory's 2nd floor. The InfraRed Imaging Magnetograph (IRIM) is an innovative magnetograph system for near‐infrared (NIR) observations in the wavelength region from 1.0 μm to 1.6 μm. The Visible‐light Imaging Magnetograph (VIM) is basically a twin of IRIM for observations in the wavelength range from 550 nm to 700 nm. Both instruments were designed for high spatial and high temporal observations of the solar photosphere and chromosphere. Real‐time data processing is an integral part of the instruments and will enhance BBSO's capabilities in monitoring solar activity and predicting and forecasting space weather.  相似文献   

9.
The adiabatic theory of interaction between high and low frequency waves has been studied for the case of electron plasma oscillations and ion acoustic waves and the results are applied to the solar wind. The modified dispersion relation for ion acoustic waves has been derived, taking a Gaussian distribution for plasmons. Two limiting cases of the spectrum are studied. For a broad spectrum, the plasma turbulence has a destabilising effect by introducing a growth rate denoted by turbulence, which is positive for k 0 > (m e/ m i )1/2 De –1 , k 0 being the central wave numger of the spectrum, De the electron Debye length. Also, even for v d(drift velocity between electrons and ions) < c s, we arrive at unstable ion acoustic modes. For narrow spectrum, the plasma turbulence has a stabilising effect.  相似文献   

10.
Julius Feit 《Solar physics》1973,28(1):211-231
It has been recently suggested by several investigators that the accelerated charged particles provide the energy of the optical flare by the ionization loss process. We have examined this mechanism assuming different forms of the spectrum of the accelerated protons at lower chromosphere. The flux and the energy spectrum of protons of energy 0.1–100 MeV have been calculated at successive heights, from 103 to 40 × 103 km from the solar surface taking into account the ionization loss, pitch angle distribution and density distribution of the neutral and ionized hydrogen in the chromosphere and lower corona. Hence the energy spectrum of the protons escaping from the Sun and the amount of energy dissipated in the solar chromosphere are computed. Comparing the calculated results with the observational data on the solar event of September 28, 1961 it is found that the ionization loss of the accelerated protons and heavier nuclei in the solar atmosphere may supply a significant part of the energy of the optical flare assuming that the fraction, f, of magnetic tubes of force extending out of the solar atmosphere is about 1 %. The accelerated proton spectrum in the form of power law in kinetic energy seems to be the most appropriate form. In the event of September 28, 1961 best estimates are made on this basis of the total number and the energy spectrum of protons at injection, the flux and energy spectrum of escaping protons and the energy dissipated in the solar atmosphere by the accelerated ions. It is found that the possible range of variation of the height of injection level hardly affects the total energy dissipated. The high variability of the intensity of protons released by the Sun is interpreted in terms of the variations of the parameter, f, determined by the configurations of the magnetic field lines.Preliminary results were presented at the International Symposium on Solar-Terrestrial Physics, Leningrad, May, 1970.Presently at NASA/Goddard Space Flight Center, Greenbelt, Maryland, U.S.A., on leave from T.I.F.R., Bombay.  相似文献   

11.
We explore the conditions for resonance between cometary pick-up ions and parallel propagating electromagnetic waves. A model ring—beam distribution for the pick-up H2O+ ions is adopted which allows a direct comparison of the source of free energy for growth from either the beam or the gyrating ring in the limit near marginal stability. Under average solar wind conditions in the inner solar system, the gyrating ring provides the dominant contribution to wave growth. The presence of a field-aligned beam is only important to allow resonance with R-mode waves which occur in two distinct frequency bands either well above or below the pick-up ion gyrofrequency. The most unstable mode is the low frequency R-mode or fast MHD wave, though higher frequency whistlers or low frequency L-mode waves may also be excited by the same source of free energy. The nature of the unstable waves is strongly influenced by the inclination of the interplanetary field. For 3° the rate of the low frequency R-mode growth is dramatically reduced and resonant L-mode waves should experience net ion beam damping. Conversely for 75°, the ion beam velocity will be insufficient to allow resonant R-mode instability; L-mode waves should therefore predominate. The low frequency fast MHD mode should experience the most rapid amplification for intermediate inclination; 30° 75°. In the frame of the solar wind such waves must propagate along the field in the direction upstream towards the Sun with a phase speed lower than the beaming velocity of the pick-up ions. The waves are consequently blown back away from the Sun and would thus be detected with a left-hand polarization by an observer in the cometary frame. We consider this the most likely mechanism to account for the interior MHD waves observed by satellites over an extended spatial region surrounding comets Giacobini-Zinner and Halley.  相似文献   

12.
Important results on the structure and dynamics of the nonmagnetic solar chromosphere are based on hydrodynamic models that oversimplify either the geometry of the atmosphere or the interaction of radiation and matter. Although the observed granulation pattern is well reproduced by the three-dimensional (3D) models, oversimplification of radiative relaxation leads to the prediction of temperature fluctuations that are too high (by a factor of 10 to 100) and result in a monotonic decrease with height in the chromosphere of the horizontally and temporally averaged temperature, and hence in the prediction of absorption lines at wavelengths where only emission lines are observed on the Sun. New values of solar abundances of oxygen and other metals are based on 3D hydrodynamic models with temporal and spatial fluctuations that are far greater than those observed. These new abundances destroy the previous agreement of observed modes with acoustic eigenmodes that had been predicted for the old abundances from a solar model for which the sound speed throughout most of the Sun was determined to an accuracy of a few parts in 104. One expects that, when radiative relaxation is properly accounted for, 3D models will reproduce the essential characteristics of the solar atmosphere, among them a positive temperature gradient in the outward direction and hence exclusively emission lines in the extreme ultraviolet at all times and positions in the nonmagnetic chromosphere. A?minimum characteristic length of 0.1?arcsec is identified for the solar atmosphere, below which there is no significant structure in the actual Sun, only in wave models of the Sun. This criticism does not detract from the notable success of hydrodynamic modeling to explain the mechanism by which chromospheric H2V and K2V bright points are formed.  相似文献   

13.
Comparison of computed radiative energy losses of several new empirical chromospheric models with heating by shock wave dissipation gives information on the frequency and strength of shock waves in the solar chromosphere. A mechanical flux of around 2.5 × 106 erg/cm2 sec is found for the base of the chromosphere. The shocks are weak and the wave period is around 10 sec.  相似文献   

14.
The manifestation of convection in deep layers of the Sun has been found in the dynamics of solar surface activity (Arkhypov, Antonov, and Khodachenko in Solar Phys. 270, 1, 2011). Some chromospheric phenomena could be connected with deep convection, too. We justify this hypothesis with sunspot, Ca ii, Hα, and millimeter-wave radio data. It is argued that large-scale (20 to 25 deg) bright regions in the chromosphere, surrounded by dark halos with diameters of 40° to 50°, can be manifestations of giant convection cells. The ascending and descending flows in such cells modulate the emergence of magnetic tubes generating the high-temperature regions and low-temperature halo in the chromosphere. Our estimates of the rotation rate of such features confirm their association with deep (≳ 35 Mm) layers of the solar convection zone.  相似文献   

15.
Wittmann  A. 《Solar physics》1974,36(1):65-68

The method of computer controlled photoelectric drift scans has been improved by virtue of a new timing technique, allowing for an accuracy of 4 ms or equivalently 50 km on the Sun. With this technique, our previous result for the solar semidiameter has been confirmed: R = 960.277″. The extreme solar limb intensity profile at 5012 Å has been derived from drift scans. A comparison with the computed profile has been made, and parameters for the base of the chromosphere have been derived.

  相似文献   

16.
The calcium‐aluminum‐rich inclusions (CAIs) found in chondritic meteorites are probably the oldest solar system solids, dating back to 4567.30 ± 0.16 million years ago. They are thought to have formed in the protosolar nebula within a few astronomical units of the Sun, and at a temperature of around 1300 K. The Stardust mission found evidence of CAI‐like material in samples recovered from comet Wild 2. The appearance of CAIs in comets, which are thought to be formed at lower temperatures and larger distances from the Sun, is only explicable if some mechanism allows the efficient transfer of such objects from the inner solar nebula to the outer solar nebula. Such mechanisms have been proposed such as an X‐wind or turbulence. In this work, particles collected from within the coma of comet 67P/Churyumov–Gerasimenko are examined for compositional evidence of the presence of CAIs. COSIMA (the Cometary Secondary Ion Mass Analyzer) uses secondary ion mass spectrometry to analyze the composition of cometary dust captured on metal targets. While CAIs can have a radius of centimeters, they are more typically a few hundred microns in size, and can be smaller than 1 μm, so it is conceivable that particles visible on COSIMA targets (ranging in size from about 10 μm to hundreds of microns) could contain CAIs. Using a peak fitting technique, the composition of a set of 13 particles was studied, looking for material rich in both calcium and aluminum. One such particle was found.  相似文献   

17.
The GREGOR Fabry‐Pérot Interferometer (GFPI) is one of three first‐light instruments of the German 1.5‐meter GREGOR solar telescope at the Observatorio del Teide, Tenerife, Spain. The GFPI uses two tunable etalons in collimated mounting. Thanks to its large‐format, high‐cadence CCD detectors with sophisticated computer hard‐ and software it is capable of scanning spectral lines with a cadence that is sufficient to capture the dynamic evolution of the solar atmosphere. The field‐of‐view (FOV) of 50″×38″is well suited for quiet Sun and sunspot observations. However, in the vector spectropolarimetric mode the FOV reduces to 25″×38″. The spectral coverage in the spectroscopic mode extends from 530–860 nm with a theoretical spectral resolution of R ≈250 000, whereas in the vector spectropolarimetric mode the wavelength range is at present limited to 580–660 nm. The combination of fast narrow‐band imaging and post‐factum image restoration has the potential for discovery science concerning the dynamic Sun and its magnetic field at spatial scales down to ∼50 km on the solar surface (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Effects of plasma turbulence on the stability of electrostatic ion loss-cone waves are examined. The turbulence is assumed to be electrostatic with frequencies near 1.5 times the electron gyrofrequency and the frequencies of the generated waves are below the ion plasma frequency ωpi>. A nonlinear growth rate of the order of 10?2ωpi may be obtained, when the amplitude of the turbulence is 20 mV/m. This is comparable to previously found growth rates of the linear ion loss-cone instability, in a plasma with large pitch angle anisotropy. Bounce averaged pitch angle diffusion coefficients are also presented for different models of the ion loss-cone wave spectrum.  相似文献   

19.
3He is an intermediate product in the proton-proton chain, and standard models of the Sun predict a large bulge of enhanced 3He abundance near M r /M 0 = 0.6 in the contemporary Sun. The relatively low abundance of 3He at the solar surface, which is derived from solar wind observations, poses severe constraints to non-standard solar models.Direct measurements of the 3He abundance in the solar atmosphere are extremely difficult, whereas indirect measurements, e.g., in the solar wind, have been performed with considerable precision. The interpretation of solar wind observations with respect to solar surface abundances has been greatly improved in recent years. Abundance measurements have been performed under a large variety of solar wind conditions and refined models have been developed for the transport processes in the chromosphere and the transition region and for the processes occurring in the solar corona. From these measurements we estimate the present isotopic number ratio 3He/4He to be (4.1 ± 1.0) × 10–4 at the solar surface, corresponding to the weight abundance X 3 = (9.0 ± 2.4) × 10–5. The zero-age Main-Sequence abundance of 3He (after burning of D) might have been slightly lower (by about 10 to 20%) than the present-day value.Non-standard solar models involving mild turbulent diffusion (Lebreton and Maeder, 1987) could account for a slow secular increase of the 3He/4He ratio in the solar atmosphere. On the other hand it is difficult to reconcile models with severe mass loss as proposed by Guzik, Willson, and Brunish (1987) with this constraint. The slowing down of the solar rotation during the early Main-Sequence evolution was accompanied by stronger differential rotation probably implying a more effective mixing of the inner parts. Again, the surface abundance of 3He imposes severe limits on the evolution of the distribution of momentum within the early Sun.  相似文献   

20.
This series of high quality elemental abundance analyses of mostly main‐sequence band normal and peculiar B, A, and F stars defines their properties and provides data for the comparison with the analyses of somewhat similar stars and with theoretical predictions. Most use high dispersion and high S/N (≥ 200) spectrograms obtained with CCD detectors at the long camera of the Coudé spectrograph of the 1.22‐m Dominion Astrophysical Observatory telescope. Here we reanalyze 21 Aql with better quality spectra and increase the number of stars consistently analyzed in the spectral range B5 to A2 by analyzing three new stars for this series. In the early A stars the normal and non‐mCP stars have abundances with overlapping ranges. But more stars are needed especially in the B5 to B9 range. ξ2 Cet on average has a solar composition with a few abundances outside the solar range while both 21 Aql and ι Aql have abundances marginally less than solar. The abundances of ι Del are greater than solar with a few elements such as Ca being less than solar. It is an Am star (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号