首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of large‐scale real‐time hybrid simulations (RTHSs) are conducted on a 0.6‐scale 3‐story steel frame building with magneto‐rheological (MR) dampers. The lateral force resisting system of the prototype building for the study consists of moment resisting frames and damped brace frames (DBFs). The experimental substructure for the RTHS is the DBF with the MR dampers, whereas the remaining structural components of the building including the moment resisting frame and gravity frames are modeled via a nonlinear analytical substructure. Performing RTHS with an experimental substructure that consists of the complete DBF enables the effects of member and connection component deformations on system and damper performance to be accurately accounted for. Data from these tests enable numerical simulation models to be calibrated, provide an understanding and validation of the in‐situ performance of MR dampers, and a means of experimentally validating performance‐based seismic design procedures for real structures. The details of the RTHS procedure are given, including the test setup, the integration algorithm, and actuator control. The results from a series of RTHS are presented that includes actuator control, damper behavior, and the structural response for different MR control laws. The use of the MR dampers is experimentally demonstrated to reduce the response of the structure to strong ground motions. Comparisons of the RTHS results are made with numerical simulations. Based on the results of the study, it is concluded that RTHS can be conducted on realistic structural systems with dampers to enable advancements in resilient earthquake resistant design to be achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Because of many advantages over other control systems, semi‐active control devices have received considerable attention for applications to civil infrastructures. A variety of different semi‐active control devices have been studied for applications to buildings and bridges subject to strong winds and earthquakes. Recently, a new semi‐active control device, referred to as the resetable semi‐active stiffness damper (RSASD), has been proposed and studied at the University of California, Irvine (UCI). It has been demonstrated by simulation results that such a RSASD is quite effective in protecting civil engineering structures against earthquakes, including detrimental near‐field earthquakes. In this paper, full‐scale hardware for RSASD is designed and manufactured using pressurized gas. Experimental tests on full‐scale RSASDs have been conducted to verify the hysteretic behaviours (energy dissipation characteristics) and the relation between the damper stiffness and the gas pressure. The correlation between the experimental results of the hysteresis loops of RASADs and that of the theoretical ones has been assessed qualitatively. Experimental results further show the linear relation between the gas pressure and the stiffness of the RSASD as theoretically predicted. Finally, shake table tests have also been conducted using an almost full‐scale 3‐storey steel frame model equipped with full‐scale RSASDs at the National Center for Research on Earthquake Engineering (NCREE), Taipei, Taiwan, and the results are presented. Experimental results demonstrate the performance of RSASDs in reducing the responses of the large‐scale building model subject to several near‐field earthquakes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A semi‐active hydraulic damper (SHD) for a semi‐active damper system, which is useful for practical structural control especially for large earthquakes, has been developed. Its maximum damping force is set to 1 or 2 MN, and it is controlled by only 70 W of electric power. An SHD with a maximum damping force of 1 MN was applied to an actual building in 1998. This paper first presents the results of a dynamic loading test to confirm the control performance of the SHD. Next, an analytical model of SHDs (SHD model) is constructed with the same concept for two kinds of SHDs based on the test results. Through simulation analyses of the test results using the proposed SHD model, the dynamic characteristics of the SHD can be well represented within practical conditions. Simulation analyses are also carried out using a simple structure model with the SHD model. It is shown that this SHD model can be used to precisely evaluate the control effect of the semi‐active damper system and is useful in practical SHD design under the applied conditions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents an experimental study to explore the possibility of using a hybrid platform to ensure the functionality of high‐tech equipment against microvibration and to protect high‐tech equipment from damage when an earthquake occurs. A three‐storey building model and a hybrid platform model were designed and manufactured. The two‐layer hybrid platform, on which the high‐tech equipment is placed, was installed on the first floor of the building to work as a passive platform aiming at abating acceleration response of the equipment during an earthquake and functioning as an actively controlled platform that intends to reduce velocity response of the equipment under a normal working condition. For the hybrid platform working as a passive platform, it was designed in such a way that its stiffness and damping ratio could be changed, whereas for the hybrid platform functioning as an active platform, a piezoelectric actuator with a sub‐optimal velocity feedback control algorithm was used. A series of shaking table tests, traffic‐induced vibration tests and impact tests were performed on the building with and without the platform to examine the performance of the hybrid platform. The experimental results demonstrate that the hybrid platform is feasible and effective for high‐tech equipment protection against earthquake and microvibration. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents an experimental study, while a companion paper addresses an analytical study, to explore the possibility of using a hybrid platform to mitigate vibration of a batch of high‐tech equipment installed in a building subject to nearby traffic‐induced ground motion. A three‐storey building model and a hybrid platform model are designed and manufactured. The hybrid platform is mounted on the building floor through passive mounts composed of leaf springs and oil dampers and controlled actively by an electromagnetic actuator with velocity feedback control strategy. The passive mounts are designed in such a way that the stiffness and damping ratio of the platform can be changed. A series of shaking table tests are then performed on the building model without the platform, with the passive platform of different parameters, and with the hybrid platform. The experimental results demonstrate that the hybrid platform is very effective in reducing the velocity response of a batch of high‐tech equipment in the building subject to nearby traffic‐induced ground motion if dynamic properties of the platform and control feedback gain are selected appropriately. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the performance of active interaction control (AIC) algorithms is assessed within the context of two realistic building models. The AIC control approach is proposed as a semi‐active means of mitigating the structural response during large earthquakes. To implement the AIC control algorithms into MDOF systems, the modal control (MC) approach that directs the control effort to certain dominant response modes is formulated and utilized herein. Two structures, a 3‐storey building and a 9‐storey steel‐framed benchmark building controlled by the AIC algorithms are analysed for two historical earthquake records. The results of numerical simulation verify the efficacy of the AIC control algorithms in controlling vibration of building structures during large earthquakes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Passive and semi‐active tuned mass damper (PTMD and SATMD) building systems are proposed to mitigate structural response due to seismic loads. The structure's upper portion self plays a role either as a tuned mass passive damper or a semi‐active resetable device is adopted as a control feature for the PTMD, creating a SATMD system. Two‐degree‐of‐freedom analytical studies are employed to design the prototype structural system, specify its element characteristics and effectiveness for seismic responses, including defining the resetable device dynamics. The optimal parameters are derived for the large mass ratio by numerical analysis. For the SATMD building system the stiffness of the resetable device design is combined with rubber bearing stiffness. From parametric studies, effective practical control schemes can be derived for the SATMD system. To verify the principal efficacy of the conceptual system, the controlled system response is compared with the response spectrum of the earthquake suites used. The control ability of the SATMD scheme is compared with that of an uncontrolled (No TMD) and an ideal PTMD building systems for multi‐level seismic intensity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A magnetorheological (MR) damper has been manufactured and tested and a non‐linear model is discussed. The parameters for the model are identified from an identification set of experimental data; these parameters are then used to reconstruct the force vs. displacement and the force vs. velocity hysteresis cycles of the MR damper for the hysteretic model. Then experiments are conducted on a three‐storey frame model using impact excitation, which identifies dynamic parameters of the model equipped with and without the MR damper. Natural frequencies, damping ratios and mode shapes, as well as structural properties, such as the mass, stiffness and damping matrices, are obtained. A semi‐active control method such as a variable structure controller is studied. Based on the ‘reaching law’ method, a feedback controller is presented. In order to evaluate the efficiency of the control system and the effect of earthquake ground motions, both numerical analysis and shaking table tests of the model, with and without the MR damper, have been carried out under three different ground motions: El Centro 1940, Taft 1952, and Ninghe 1976 (Tangshan Earthquake in Chinese). It is found from both the numerical analysis and the shaking table tests that the maximum accelerations and relative displacements for all floors are significantly reduced with the MR damper. A reasonable agreement between the results obtained from the numerical analysis and those from the shaking table tests is also observed. On the other hand, tests conducted at different earthquake excitations and various excitation levels demonstrate the ability of the MR damper to surpass the performance of a comparable passive system in a variety of situations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
This paper summarizes the relevant results of the design, construction, testing, and implementation of a nominal 120 kN magnetorheological damper developed to control a free‐plan tall building in Santiago, Chile, equipped with two 160‐ton tuned masses. Cyclic as well as hybrid simulation tests were performed on the prototype damper. Global building responses using measured MR properties showed good correlation with analytical estimations. Also, a proposed physical controller for the MR damper was validated through hybrid and building pull‐back tests. Its performance is essentially equivalent to that of an LQR controller, but the information needed in its implementation is considerably less. Pull‐back tests of 10 cm amplitude were performed on one mass along the flexible edge of the building and its response controlled using the passive and controlled modes of the MR damper. The MR damper was capable of controlling the TM displacements very effectively, as well as the simulated building response for different ground motions and harmonic excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The seismic performance tests of a full‐scale five‐story passively controlled steel building were conducted on the E‐Defense shaking table in Japan in March 2009. Before the tests, a blind prediction contest was held to allow researchers and practitioners from all over the world to construct analytical models and predict the dynamic responses of the steel frame specimen equipped with buckling‐restrained braces (BRBs) or viscous dampers (VDs). This paper presents the details of two refined prediction models made and results obtained before the tests. When the proposed analytical modeling techniques are adopted as in the two refined prediction models, the overall prediction accuracy is about 90%. Sensitivity studies conducted after the tests are also presented in this paper. The effects of varying each modeling feature on the response simulation accuracy have been investigated. The analytical results suggest that considering concrete full‐composite actions for beam members could improve prediction accuracy by about 20% against using the simplified bare steel beam model. Adopting refined BRB stiffness computed from incorporating finite‐element gusset stiffness only improves the overall prediction accuracy by 0.9%. Considering the BRB dynamic loading test results for analytical BRB strength reduces the error by 1.9%. For the VD frame, incorporating the brace and VD stiffness could improve the overall prediction accuracy by about 15%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The experimental results of using a hybrid platform to mitigate vibration of a batch of high‐tech equipment installed in a building subject to nearby traffic‐induced ground motion have been presented and discussed in the companion paper. Based on the identified dynamic properties of both the building and the platform, this paper first establishes an analytical model for hybrid control of the building‐platform system subject to ground motion in terms of the absolute co‐ordinate to facilitate the absolute velocity feedback control strategy used in the experiment. The traffic‐induced ground motion used in the experiment is then employed as input to the analytical model to compute the dynamic response of the building‐platform system. The computed results are compared with the measured results, and the comparison is found to be satisfactory. Based on the verified analytical model, coupling effects between the building and platform are then investigated. A parametric study is finally conducted to further assess the performance of both passive and hybrid platforms at microvibration level. The analytical study shows that the dynamic interaction between the building and platform should be taken into consideration. The hybrid control is effective in reducing both velocity response and drift of the platform/high‐tech equipment at microvibration level with reasonable control force. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Generally, the active structural control system belongs to the discrete‐time control system, and the sampling period is one of the most important factors that would directly affect the performance of the control system. In this paper, active control approaches by using the discrete‐time variable structure control theory are studied for reducing the dynamic responses of seismically excited building structures. Based on the discrete reaching law method, a feedback controller which includes the sampling period is presented. The controller is extended by introducing the saturated control method to avoid the adverse effect when the actuators are saturated due to unexpected extreme earthquakes. The simulation results are obtained for a single‐degree‐of‐freedom (SDOF) system and a MDOF shear building equipped with active brace system (ABS) under seismic excitations. It is found that the discrete variable structure control approach and its saturated control method presented in this paper are quite effective. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Vibration mitigation using smart, reliable and cost‐effective mechanisms that requires small activation power is the primary objective of this paper. A semi‐active controller‐based neural network for base‐isolation structure equipped with a magnetorheological (MR) damper is presented and evaluated. An inverse neural network model (INV‐MR) is constructed to replicate the inverse dynamics of the MR damper. Next, linear quadratic Gaussian (LQG) controller is designed to produce the optimal control force. Thereafter, the LQG controller and the INV‐MR models are linked to control the structure. The coupled LQG and INV‐MR system was used to train a semi‐active neuro‐controller, designated as SA‐NC, which produces the necessary control voltage that actuates the MR damper. To evaluate the proposed method, the SA‐NC is compared to passive lead–rubber bearing isolation systems (LRBs). Results revealed that the SA‐NC was quite effective in seismic response reduction for wide range of motions from moderate to severe seismic events compared to the passive systems. In addition, the semi‐active MR damper enjoys many desirable features, such as its inherent stability, practicality and small power requirements. The effectiveness of the SA‐NC is illustrated and verified using simulated response of a six‐degree‐of‐freedom model of a base‐isolated building excited by several historical earthquake records. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The seismic performance of a test structure fitted with semi‐active resetable devices is experimentally investigated. Shaking table tests are conducted on a ?th scale four‐storey building using 27 earthquake records at different intensity scalings. Different resetable device control laws result in unique hysteretic responses from the devices and thus the structure. This device adaptability enables manipulation or sculpting of the overall hysteresis response of the structure to address specific structural cases and types. The response metrics are presented as maximum 3rd floor acceleration and displacement, and the total base shear. The devices reduce all the response metrics compared with the uncontrolled case and a fail‐safe surrogate. Cumulative probability functions allow comparison between different control laws and additionally allow tradeoffs in design to be rapidly assessed. Ease of changing the control law in real‐time during an earthquake record further improves the adaptability of the system to obtain the optimum device response for the input motion and structural type. The findings are an important step to realizing full‐scale structural control with customized semi‐active hysteretic behaviour using these novel resetable device designs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
To limit the response of structures during external disturbances such as strong winds or large seismic events, structural control systems can be used. In the structural engineering field, attention has been shifted from active control to semi‐active control systems. Unlike active control system devices, semi‐active devices are compact, have efficient power consumption characteristics and are less expensive. As a result, an environment of a large number of actuators and sensors will result, rendering a complex large‐scale dynamic system. Such a system is best controlled by a decentralized approach such as market‐based control (MBC). In MBC, the system is modelled as a market place of buyers and sellers that leads to an efficient allocation of control power. The resulting MBC solution is shown to be locally Pareto optimal. This novel control approach is applied to three linear structural systems ranging from a one‐storey structure to a 20‐storey structure, all controlled by semi‐active hydraulic dampers. It is shown that MBC is competitive in the reduction of structural responses during large seismic loadings as compared to the centralized control approach of the linear quadratic regulation controller. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
A semi‐active fuzzy control strategy for seismic response reduction using a magnetorheological (MR) damper is presented. When a control method based on fuzzy set theory for a structure with a MR damper is used for vibration reduction of a structure, it has an inherent robustness, and easiness to treat the uncertainties of input data from the ground motion and structural vibration sensors, and the ability to handle the non‐linear behavior of the structure because there is no longer the need for an exact mathematical model of the structure. For a clipped‐optimal control algorithm, the command voltage of a MR damper is set at either zero or the maximum level. However, a semi‐active fuzzy control system has benefit to produce the required voltage to be input to the damper so that a desirable damper force can be produced and thus decrease the control force to reduce the structural response. Moreover, the proposed control strategy is fail‐safe in that the bounded‐input, bounded‐output stability of the controlled structure is guaranteed. The results of the numerical simulations show that the proposed semi‐active control system consisting of a fuzzy controller and a MR damper can be beneficial in reducing seismic responses of structures. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
A magneto‐rheological (MR) damper is a semi‐active device where the damper force capacity is controlled by varying the input current into the damper. In this paper, the dynamics of MR dampers associated with variable current input is studied. Electromagnetic theory is used to model the dynamics of an MR damper including the eddy current effect and the nonlinear hysteretic behavior of damper material magnetization. A nonlinear differential equation that relates the input current to the damper with a constant equivalent current is proposed. The nonlinear differential equation is combined with the Maxwell Nonlinear Slider (MNS) model to create the variable current MNS model to predict the damper force under variable input current and random damper displacement loading. The model is evaluated by comparing the predicted response of a large‐scale MR damper to the measured damper response from experiments. The experiments include a real‐time hybrid simulation of a 3‐story building structure with a large‐scale MR damper subjected to the design earthquake. The exceptional agreement observed between the predicted and experimental results illustrate the robustness and the accuracy of the variable current MNS model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Floor isolation is an alternative to base isolation for protecting a specific group of equipment installed on a single floor or room in a fixed‐base structure. The acceleration of the isolated floor should be mitigated to protect the equipment, and the displacement needs to be suppressed, especially under long‐period motions, to save more space for the floor to place equipment. To design floor isolation systems that reduce acceleration and displacement for both short‐period and long‐period motions, semi‐active control with a newly proposed method using the linear quadratic regulator (LQR) control with frequency‐dependent scheduled gain (LQRSG) is adopted. The LQRSG method is developed to account for the frequency characteristics of the input motion. It updates the control gain calculated by the LQR control based on the relationship between the control gain and dominant frequency of the input motion. The dominant frequency is detected in real time using a window method. To verify the effectiveness of the LQRSG method, a series of shake table tests is performed for a semi‐active floor isolation system with rolling pendulum isolators and a magnetic‐rheological damper. The test results show that the LQRSG method is significantly more effective than the LQR control over a range of short‐period and long‐period motions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号