首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transfer of sediment through a highly regulated large fluvial system (lower Ebro River) was analysed during two consecutive floods by means of sediment sampling. Suspended sediment and bedload transport were measured upstream and downstream of large reservoirs. The dams substantially altered flood timing, particularly the peaks, which were advanced downstream from the dams for flood control purposes. The suspended sediment yield upstream from the dams was 1 700 000 tonnes, which represented nearly 99 per cent of the total solid yield. The mean concentrations were close to 0·5 g l?1. The sediment yield downstream from the dams was an order of magnitude lower (173 000 tonnes), showing a mean concentration of 0·05 g l?1. The dams captured up to 95 per cent of the fine sediment carried in suspension in the river channel, preventing it from reaching the lowermost reaches of the river and the delta plain. Total bedload transport upstream from the dams was estimated to be about 25 000 tonnes, only 1·5 per cent of the total load. The median bedload rate was 100 gms?1. Below the dams, the river carried 178 000 tonnes, around 51 per cent of the total load, at a mean rate of 250 g ms?1. The results of sediment transport upstream and downstream from the large dams illustrate the magnitude of the sediment deficit in the lower Ebro River. The river mobilized a total of 350 000 tonnes in the downstream reaches, which were not replaced by sediment from upstream. Therefore, sediment was necessarily entrained from the riverbed and channel banks, causing a mean incision of 33 mm over the 27 km long study reach, altogether a significant step towards the long‐term degradation of the lower Ebro River. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
It is important to evaluate bedload discharge and temporal changes of the bed surface, and bed deformation can be estimated during floods if the bedload discharge is properly evaluated in an arbitrary cross‐section. With the exception of grain size and its distribution within the bedload, bedload discharge has been measured using both direct and indirect methods. Bedload slot is a direct method but cannot be used to measure bedload during a flood because of volume limitations. Indirect methods require correlation between the signals and sediment volume measured using another method. In the present study, a small, automatically recording bedload sensor with an iron plate and a pair of load cells is developed in order to evaluate not only large particles but also sand particles as bedload. Bedload mass is calculated by integrating with respect to both the velocity of sediment particles and the averaged particle weight as measured by a pair of load cells, and, as an example, the velocity is estimated by the cross‐correlation function of weights measured by load cells. The applicability of the proposed sensor is discussed based on the results of flume tests in the laboratory (2014) and the observation flume of the Hodaka Sedimentation Observatory of Kyoto University in Japan (2015). The system was installed in the observation flume in November of 2012, and flume data were obtained using natural sediment particles. In particular, it was difficult to estimate the velocity of averaged bedload particles, and it was better to apply a cross‐correlation function in the laboratory tests. However, it appears that the previous estimation can estimate these velocities in the observation flume using a connecting tube and submerged load‐cell systems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
This paper provides comprehensive evidence that sediment routing around pools is a key mechanism for pool‐riffle maintenance in sinuous upland gravel‐bed streams. The findings suggest that pools do not require a reversal in energy for them to scour out any accumulated sediments, if little or no sediments are fed into them. A combination of clast tracing using passive integrated transponder (PIT) tagging and bedload traps (positioned along the thalweg on the upstream riffle, pool entrance, pool exit and downstream riffle) are used to provide information on clast pathways and sediment sorting through a single pool‐riffle unit. Computational fluid dynamics (CFD) is also used to explore hydraulic variability and flow pathways. Clast tracing results provide a strong indication that clasts are not fed through pools, rather they are transported across point bar surfaces, or around bar edges (depending upon previous clast position, clast size, and event magnitude). Spatial variations in bedload transport were found throughout the pool‐riffle unit. The pool entrance bedload trap was often found to be empty, when the others had filled, further supporting the notion that little or no sediment was fed into the pool. The pool exit slope trap would occasionally fill with sediment, thought to be sourced from the eroding outer bank. CFD results demonstrate higher pool shear stresses (τ ≈ 140 N m–2) in a localized zone adjacent to an eroding outer bank, compared to the upstream and downstream riffles (τ ≈ 60 N m–2) at flows of 6 · 2 m3 s–1 (≈ 60% of the bankfull discharge) and above. There was marginal evidence for near‐bed velocity reversal. Near‐bed streamlines, produced from velocity vectors indicate that flow paths are diverted over the bar top rather than being fed through the thalweg. Some streamlines appear to brush the outer edge of the pool for the 4 · 9 m3 s–1 to 7 · 8 m3 s–1 (between 50 and 80% of the bankfull discharge) simulations, however complete avoidance was found for discharges greater than this. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The benefits of three simple modifications to the design of a Birkbeck bedload slot‐sampling system that has been continuously operating in Nahal Eshtemoa, Israel, since the early 1990s are demonstrated. The modifications include the deployment of a removable slot cover which delays the accumulation of sediment, so allowing sampling at late stages of a flood and, in conjunction with other samplers, extending the period of sampling during a flood wave; inclusion of a slot the size of which is adjustable so that that the probability of sampling the largest clast sizes in transit as bedload can be increased post‐installation, once knowledge is gained about the bedload grain‐size distribution; and a sampler side‐wall door that allows stratification and textural changes within the accumulated bedload to be identified, so promoting intelligent sampling of the deposit for grain‐size determination. Results from seven flash‐floods are presented and discussed, with recommendations for bedload monitoring, particularly in rivers where sediment flux is high and dynamic sediment records are inevitably short because of instrumental limitations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Sediment loads have been measured in six Swiss mountain torrents over several decades. Most of these torrent catchments are situated in the prealpine belt. They have catchment areas of between 0·5 and 1·7 km2. Bedslopes at the measuring sites vary between 5 and 17 per cent, and peak discharges up to 12 m3 s−1 have been recorded. Geophone sensors installed in the Erlenbach stream allow bedload transport activity to be monitored and sediment volumes associated with each flood event to be determined. A detailed analysis of the measurements in this stream results in an empirical equation in which the sediment load per flood event is expressed as a function of the effective runoff volume (discharges above the threshold for bedload motion) and of the normalized peak discharge. For the total of 143 investigated flood events in the Erlenbach stream, the deviation of the predicted from the measured value is within a factor of two for more than two-thirds of all events. A distinction can be made between summer and winter events in analysing the bedload transport events. The summer events, mainly caused by thunderstorms, transport comparatively larger sediment loads than the winter events. For the other investigated streams, the periods of the deposited sediment volume surveys cover in general several flood events. An analysis is performed analogous to that for the Erlenbach stream. The sediment loads show a similar dependency on the two factors effective runoff volume and normalized peak discharge. However, the exponents of these factors in the power law expressions differ from stream to stream. A comparison of the investigated stream shows that some of the variation can be explained by considering the bedslope above the measuring site. The inclusion of a bedslope factor is in agreement with laboratory investigations on bedload transport. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we present a methodology to construct a sediment budget for meso‐scale catchments. We combine extensive field surveys and expert knowledge of the catchment with a sediment delivery model. The meso‐scale Mediterranean drainage basin of the Dragonja (91 km2), southwest Slovenia, was chosen as case study area. During the field surveys, sheet wash was observed on sloping agricultural fields during numerous rainfall events, which was found to be the main source of sediment. With the sediment yield model WATEM/SEDEM the estimated net erosion on the hillslopes 4·1 t ha–1 y–1 (91% of inputs). The second source, bank erosion (4·2%; 0·25 t ha–1 y–1) was monitored during several years with erosion pins and photogrammetric techniques. The last source, channel incision, was derived from geomorphological mapping and lichenomery and provided 3·8% (0·17 t ha–1 y–1) of the sediment input. The river transports its suspended sediment mainly during high‐flow events (sampled with automated water samplers). About 27% (1·2 t ha–1 y–1) of the sediment delivered to the channel is deposited on floodplains and low terraces downstream (estimated with geomorphological mapping, coring and cesium‐137 measurements). The sediment transported as bedload disintegrates during transport to the outlet due to the softness of the bedrock material. As a result, the river carries no bedload when it reaches the sea. The results imply a build‐up of sediment in the valleys catchment. However, extreme flood events may flush large amounts of sediment stored in the lower parts of the system. Geomorphological evidence exists in the catchment that such high magnitude, low frequency events have happened in the past. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Effects of sediment load on hydraulics of overland flow on steep slopes   总被引:6,自引:0,他引:6  
Eroded sediment may have significant effects on the hydraulics of overland flow, but few studies have been performed to quantify these effects on steep slopes. This study investigated the potential effects of sediment load on Reynolds number, Froude number, flow depth, mean velocity, Darcy–Weisbach friction coefficient, shear stress, stream power, and unit stream power of overland flow in a sand‐glued hydraulic flume under a wide range of hydraulic conditions and sediment loads. Slope gradients were varied from 8·7 to 34·2%, unit flow rates from 0·66 to 5·26×10?3 m2 s?1, and sediment loads from 0 to 6·95 kg m?1 s?1. Both Reynolds number (Re) and Froude number (Fr) decreased as sediment load increased, implying a decrease in flow turbulence. This inverse relationship should be considered in modeling soil erosion processes. Flow depth increased as sediment load increased with a mean value of 1·227 mm, caused by an increase in volume of sediment‐laden flow (contribution 62·4%) and a decrease in mean flow velocity (contribution 37·6%). The mean flow velocity decreased by up to 0·071 m s?1 as sediment load increased. The Darcy–Weisbach friction coefficient (f) increased with sediment load, showing that the total energy consumption increased with sediment load. The effects of sediment load on f depended on flow discharge: as flow discharge increased, the influence of sediment load on f decreased due to increased flow depth and reduced relative roughness. Flow shear stress and stream power increased with sediment load, on average, by 80·5% and 60·2%, respectively; however, unit stream power decreased by an average of 11·1% as sediment load increased. Further studies are needed to extend and apply the insights obtained under these controlled conditions to real‐world overland flow conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The Manning equation is one of the most widely used formulae for calculating the velocity of shallow overland flow in hydrological and erosion models. Precise estimation of the Manning's friction coefficient (n) is critical to determining overland flow and soil erosion processes. Few studies have been conducted to quantify the effects of sediment load on Manning's n on steep slopes. This study was conducted to investigate the potential effects of sediment load on Manning's n in a flume with a fixed bed, under wide ranges of hydraulics and sediment loads. Slope gradient varied from 8·7 to 34·2%, unit flow rate from 0·66 to 5·26 × 10?3 m2 s?1, and sediment load from 0 to 6·95 kg m?1 s?1. The Reynolds number ranged from 350 to 5899. Results showed that Manning's n varied in both sediment‐free and sediment‐laden flows ranging from 0·012 to 0·055. The apparent Manning's coefficients of sediment‐laden flow were much greater than those of sediment‐free flow. The mean Manning coefficient of sediment‐laden flow was 51·27% greater than the mean value of sediment‐free flow. For sediment‐laden flow, Manning's n could be estimated with a power function of unit flow discharge and sediment content. Further studies are needed to quantify the potential effects of sediment load on the Manning's n on erodible beds and in fields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Unpaved roads are believed to be the primary source of terrigenous sediments being delivered to marine ecosystems around the island of St John in the eastern Caribbean. The objectives of this study were to: (1) measure runoff and suspended sediment yields from a road segment; (2) develop and test two event‐based runoff and sediment prediction models; and (3) compare the predicted sediment yields against measured values from an empirical road erosion model and from a sediment trap. The runoff models use the Green–Ampt infiltration equation to predict excess precipitation and then use either an empirically derived unit hydrograph or a kinematic wave to generate runoff hydrographs. Precipitation, runoff, and suspended sediment data were collected from a 230 m long, mostly unpaved road segment over an 8‐month period. Only 3–5 mm of rainfall was sufficient to initiate runoff from the road surface. Both models simulated similar hydrographs. Model performance was poor for storms with less than 1 cm of rainfall, but improved for larger events. The largest source of error was the inability to predict initial infiltration rates. The two runoff models were coupled with empirical sediment rating curves, and the predicted sediment yields were approximately 0·11 kg per square meter of road surface per centimetre of precipitation. The sediment trap data indicated a road erosion rate of 0·27 kg m?2 cm?1. The difference in sediment production between these two methods can be attributed to the fact that the suspended sediment samples were predominantly sand and silt, whereas the sediment trap yielded mostly sand and gravel. The combination of these data sets yields a road surface erosion rate of 0·31 kg m?2 cm?1, or approximately 36 kg m?2 year?1. This is four orders of magnitude higher than the measured erosion rate from undisturbed hillslopes. The results confirm the importance of unpaved roads in altering runoff and erosion rates in a tropical setting, provide insights into the controlling processes, and provide guidance for predicting runoff and sediment yields at the road‐segment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Extreme sedimentation in Swift Creek, located in the Cascades foothills in NW Washington (48°55′N, 122°16′W), results from erosion of the oversteepened, unvegetated toe of a large (55 hectares) active landslide. Deposition of landslide‐derived sediment has necessitated costly mitigation projects in the channel including annual dredging and temporary sediment traps in an attempt to reduce the risk of flooding and damage to man‐made structures downstream. This study attempts to understand the process of sediment production along with the corresponding erosion rates of the sediment source to help with the development of mitigation plans and construction of optimal sediment reservoirs. The bedload and suspended sediment in the creek are a direct result of the weathering process of the serpentinitic bedrock underlying the landslide. The serpentinite does not weather to smectite clay, as previously thought. Instead, it weathers to asbestiform chrysotile with minor amounts of chlorite, illite and hydrotalcite, all of which occur in clay seeps on the unvegetated surface of the landslide. The chrysotile fibers average 2 µm in length and make up at least 50%, by volume, of the suspended load transported in Swift Creek. This study does not address the environmental or health implications of the asbestiform chrysotile transport or deposition. During the sampled time between February 2005 and February 2006, 127 discrete suspended sediment samples were collected and discharge was measured 66 times. The suspended sediment concentrations ranged from 0·02 g L?1 to 41·6 g L?1 and the discharge ranged from 0·0 m3 s?1 to 0·5 m3 s?1. A nonlinear functional model estimated the total suspended sediment flux from detailed precipitation records and discrete suspended sediment concentration and discharge measurements to be 910 t km?2 yr?1. When the suspended sediment flux is coupled with estimates of downstream deposition of coarse sediment, the estimated erosion rate for the entire Swift Creek landslide is 158 mm yr?1. The majority of the material entering Swift Creek is presumed to originate on the unvegetated toe of the landslide, for which the erosion rate is thus approximately 1 m yr?1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8‐yr record of proglacial suspended sediment yield. Non‐glacial lowering rates range from 1·8 ± 0·5 mm yr?1 to 8·5 ± 3·4 mm yr?1 from estimates of rock fall and debris‐flow fan volumes. An average erosion rate of 0·08 ± 0·04 mm yr?1 from eight convex‐up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice‐cover), it was found that nonglacial processes account for an annual sediment flux of 2·3 ± 1·0 × 106 t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2·9 ± 1·0 × 106 t, corresponding to an erosion rate of 1·8 ± 0·6 mm yr?1: nonglacial sources therefore account for 80 ± 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub‐basin (32% ice‐cover) to determine an erosion rate of 12·1 ± 6·9 mm yr?1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ± 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice‐free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Comparatively little is known about the hydrology of desert flash-floods despite the extent of the world's drylands. There is even less known about their sedimentary behaviour and particularly about the movement of coarse material as bedload. The results of an intense field monitoring programme carried out on an ephemeral gravel-bed stream in the northern Negev Desert are presented. In this semi-arid setting, flow duration analysis indicates that the channel is hydrologically active for 2% of the time, or about seven days per year, and that overbank flow can be expected for only 0·03% of the time—about three hours per year. Multipeaked flood hydrographs are the norm, reflecting many factors including the arrival of separate slugs of discharge from contributing subcatchments. The passage of the initial flood bore is surprisingly slow, but the rising limb of the flood hydrograph is rapid with a median time of rise of 10 minutes, in keeping with expected flash-flood behaviour. Bedload flux is high, averaging 2·67 kg s−1 m−1 during the period that the channel carries flow. This gives very high bedload sediment yield despite the infrequent and short duration of flood flows and matches the high yield of suspended sediment. The relationship between bedload flux and boundary shear stress is simple, in contrast with perennial gravel-bed streams, and the exponent of the log–log relationship is 1·52. Of great value is that the behaviour of the Nahal Eshtemoa corroborates a pattern established by the authors previously in a smaller tributary stream. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Tributaries may either ameliorate or exacerbate the geomorphic and ecologic impacts of flow regulation by altering the flux of water and sediment into the flow‐regulated mainstem. To capture the effects of tributary influences on a flow regulated river, long‐term discharge and cross‐sectional data are used to assess the geomorphic and hydrologic impacts of impoundment. In addition, the use of the short‐lived cosmogenic radioisotope 7Be (half‐life 53·4 days) to link sediment transport dynamics to benthic macroinvertebrate community structure is evaluated. It is found that the 7Be activity of transitional bed load sediment is highly seasonal and reflects both variations in activity of sediment sources and limited sediment residence time within the junction. Benthic communities also exhibit a strong seasonal variability. In the spring, neither the 7Be activity of the sediment, nor benthic communities exhibit clear relationships with sample site location. In contrast, during the late summer the ratio of Ephemeroptera (mayflies)/Trichoptera (caddisflies) decreased significantly below tributary junctions. This decrease in benthic community ratio was driven by increases in caddisfly abundance and was strongly correlated with the presence of recently 7Be tagged transitional bedload sediment. These observations are probably associated with the presence of coarse, stable, and unembedded substrate downstream of tributaries and the rapid turnover of sediment that may also be associated with a rapid flux in nutrients or seston. The results show that tributaries are impacting the flow‐regulated mainstem and that these impacts are reflected in the benthic community structure and in the 7Be activity of transitional bed load sediment. Moreover, the observed reduction in competence and capacity of the mainstem following flood control suggests that these spatial discontinuities may be a consequence of impoundment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
This study concerns the problem of water erosion in the Sahel. Surface water and sediment yields (suspended matter and bedload) were monitored for 3 years (1998–2000) at the outlet of a small grazed catchment (1·4 ha) in the northern part of Burkina Faso. The catchment consists of about 64% sandy deposits (DRY soil surface type), which support most of the vegetation, and about 34% of crusted bare soils (ERO soil surface type). The annual solid‐matter export is more than 90% suspended sediment, varying between 4·0 and 8·4 t ha?1. The bedload represents less than 10% of soil losses. In a single flood event (10 year return period), the sediment yield can reach 4·2 t ha?1. During the period studied, a small proportion (20 to 32%) of the floods was thus responsible for a large proportion (80%) of the solid transport. Seasonal variation of the suspended‐matter content was also observed: high mean values (9 g l?1) in June, decreasing in July and stabilizing in August (between 2 and 4 g l?1). This behaviour may be a consequence of a reorganization of the soil surfaces that have been destroyed by trampling animals during the previous long dry season, vegetation growth (increase in the protecting effect of the herbaceous cover) and, to a lesser extent, particle‐supply limitation (exhaustion of dust deposits during July). The particle‐size distribution in the suspended matter collected at the catchment outlet is 60% made up of clay: fraction ≤2 µ m. The contribution of this clay is maximum when the water rises and its kaolinite/quartz ratio is then close to that of the ERO‐type surfaces. This indicates that these surfaces are the main source of clay within the catchment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
In the Erlenbach stream, a pre‐alpine steep channel in Switzerland, sediment transport has been monitored for more than 25 years. Near the confluence with the main valley river, stream flow is monitored and sediment is collected in a retention basin with a capacity of about 2000 m3. The basin is surveyed at regular intervals and after large flood events. In addition, sediment transport has been continuously monitored with piezoelectric bedload impact and geophone sensors since 1986. In 2008–2009, the measuring system in the Erlenbach stream was enhanced by installing an automatic system to obtain bedload samples. Movable metal baskets are mounted on a rail at the downstream wall of the large check dam above the retention basin, and they can be moved automatically into the flow to take bedload transport samples. The wire mesh of the baskets has a spacing of 10 mm to sample all sediment particles coarser than this size (which is about the limiting grain size detected by the geophones). The upgraded measuring system permits to obtain bedload samples over short sampling periods and to measure the grain size distribution of the transported material and its variation over time and with discharge. The analysis of calibration relationships for the geophone measuring system confirms findings from very similar measurements which were performed until 1999 with piezoelectric bedload impact sensors; there is a linear relationship between impulse counts and bedload mass passing over the sensors. Findings from flume experiments are used to discuss the most important factors which affect the calibration of the geophone signal. The bedload transport rates as measured by the moving baskets are among the highest measured in natural streams, with values of the order of several kilograms per meter per second. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The monitoring of bedload flux under flash flood conditions has been successfully achieved since 1992 using slot samplers in the semiarid Nahal Eshtemoa. In the present study, a surrogate bedload monitoring technique - the Japanese plate microphone - has been deployed and calibrated against data from the slot samplers. Since a slot sampler has a sensitivity threshold that becomes especially important when transport rates are low, different averaging periods should be considered for high and low fluxes. In order to overcome the deficiencies of time-based aggregation used hitherto, we have developed a new method involving mass aggregation and commensurably variable intervals, thereby enabling a more accurate analysis and optimizing the bedload sampler's capabilities. The data derived with this new method has then been utilized to calibrate the Japanese plate microphone. The Eshtemoa is an ephemeral gravel bed channel with a high proportion of fine gravel (< 0.02 m); for these conditions, acoustic sensors have not been calibrated as yet. Two multiple linear regression models incorporating the effect of median bedload grain size on pulse rate have been established to predict bedload flux and cumulative transported bedload mass. The coefficients in these models are statistically significant. Good predictions are obtained for bedload flux (adj. r2 = 0.83) and for cumulative bedload mass (adj. r2 = 0.98) during flood recession. Overall, the multiple linear regression models, used in conjunction with the mass aggregation method of estimating bedload flux, suggest that field calibration of acoustic devices is feasible under these conditions for ca. 90% of the duration of bedload transport. © 2020 John Wiley & Sons, Ltd.  相似文献   

17.
The principle that formative events, punctuated by periods of evolution, recovery or temporary periods of steady‐state conditions, control the development of the step–pool morphology, has been applied to the evolution of the Rio Cordon stream bed. The Rio Cordon is a small catchment (5 km2) within the Dolomites wherein hydraulic parameters of floods and the coarse bedload are recorded. Detailed field surveys of the step–pool structures carried out before and after the September 1994 and October 1998 floods have served to illustrate the control on step–pool changes by these floods. Floods were grouped into two categories. The first includes ‘ordinary’ events which are characterized by peak discharges with a return time of one to five years (1·8–5·15 m3 s?1) and by an hourly bedload rate not exceeding 20 m3 h?1. The second refers to ‘exceptional’ events with a return time of 30–50 years. A flood of this latter type occurred on 14 September 1994, with a peak discharge of 10·4 m3 s?1 and average hourly bedload rate of 324 m3 h?1. Step–pool features were characterized primarily by a steepness parameter c = (H/Ls)/S. The evolution of the steepness parameter was measured in the field from 1992 to 1998. The results indicate that maximum resistance conditions are gradually reached at the end of a series of ordinary flood events. During this period, bed armouring dominate the sediment transport response. However, following an extraordinary flood and unlimited sediment supply conditions, the steepness factor can suddenly decrease as a result of sediment trapped in the pools and a lengthening of step spacing. The analogy of step spacing with antidune wavelength and the main destruction and transformation mechanism of the steps are also discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a field investigation on river channel storage of fine sediments in an unglaciated braided river, the Bès River, located in a mountainous region in the southern French Prealps. Braided rivers transport a very large quantity of bedload and suspended sediment load because they are generally located in the vicinity of highly erosive hillslopes. Consequently, these rivers play an important role because they supply and control the sediment load of the entire downstream fluvial network. Field measurements and aerial photograph analyses were considered together to evaluate the variability of fine sediment quantity stored in a 2·5‐km‐long river reach. This study found very large quantities of fine sediment stored in this reach: 1100 t per unit depth (1 dm). Given that this reach accounts for 17% of the braided channel surface area of the river basin, the quantities of fine sediment stored in the river network were found to be approximately 80% of the mean annual suspended sediment yields (SSYs) (66 200 t year?1), comparable to the SSYs at the flood event scale: from 1000 t to 12 000 t depending on the flood event magnitude. These results could explain the clockwise hysteretic relationships between suspended sediment concentrations and discharges for 80% of floods. This pattern is associated with the rapid availability of the fine sediments stored in the river channel. This study shows the need to focus on not only the mechanisms of fine sediment production from hillslope erosion but also the spatiotemporal dynamics of fine sediment transfer in braided rivers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
After the Valley Complex Fire burned 86 000 ha in western Montana in 2000, two studies were conducted to determine the effectiveness of contour‐felled log, straw wattle, and hand‐dug contour trench erosion barriers in mitigating postfire runoff and erosion. Sixteen plots were located across a steep, severely burned slope, with a single barrier installed in 12 plots (four per treatment) and four plots left untreated as controls. In a rainfall‐plus‐inflow simulation, 26 mm h?1 rainfall was applied to each plot for 1 h and 48 L min?1 of overland flow was added for the last 15 min. Total runoff from the contour‐felled log (0·58 mm) and straw wattle (0·40 mm) plots was significantly less than from the control plots (2·0 mm), but the contour trench plots (1·3 mm) showed no difference. The total sediment yield from the straw wattle plots (0·21 Mg ha?1) was significantly less than the control plots (2·2 Mg ha?1); the sediment yields in the contour‐felled log plots (0·58 Mg ha?1) and the contour trench plots (2·5 Mg ha?1) were not significantly different. After the simulations, sediment fences were installed to trap sediment eroded by natural rainfall. During the subsequent 3 years, sediment yields from individual events increased significantly with increasing 10 min maximum intensity and rainfall amounts. High‐intensity rainfall occurred early in the study and the erosion barriers were filled with sediment. There were no significant differences in event or annual sediment yields among treated and control plots. In 2001, the overall mean annual sediment yield was 21 Mg ha?1; this value declined significantly to 0·6 Mg ha?1 in 2002 and 0·2 Mg ha?1 in 2003. The erosion barrier sediment storage used was less than the total available storage capacity; runoff and sediment were observed going over the top and around the ends of the barriers even when the barriers were less than half filled. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

20.
The composition, grain‐size, and flux of stream sediment evolve downstream in response to variations in basin‐scale sediment delivery, channel network structure, and diminution during transport. Here, we document downstream changes in lithology and grain size within two adjacent ~300 km2 catchments in the northern Rocky Mountains, USA, which drain differing mixtures of soft and resistant rock types, and where measured sediment yields differ two‐fold. We use a simple erosion–abrasion mass balance model to predict the downstream evolution of sediment flux and composition using a Monte Carlo approach constrained by measured sediment flux. Results show that the downstream evolution of the bed sediment composition is predictably related to changes in underlying geology, influencing the proportion of sediment carried as bedload or suspended load. In the Big Wood basin, particle abrasion reduces the proportion of fine‐grained sedimentary and volcanic rocks, depressing bedload in favor of suspended load. Reduced bedload transport leads to stronger bed armoring, and coarse granitic rocks are concentrated in the stream bed. By contrast, in the North Fork Big Lost basin, bedload yields are three times higher, the stream bed is less armored, and bed sediment becomes dominated by durable quartzitic sandstones. For both basins, the geology‐based mass balance model can reproduce within ~5% root‐mean‐square error the composition of the bed substrate using realistic erosion and abrasion parameters. As bed sediment evolves downstream, bedload fluxes increase and decrease as a function of the abrasion parameter and the frequency and size of tributary junctions, while suspended load increases steadily. Variable erosion and abrasion rates produce conditions of variable bed‐material transport rates that are sensitive to the distribution of lithologies and channel network structure, and, provided sufficient diversity in bedrock geology, measurements of bed sediment composition allow for an assessment of sediment source areas and yield using a simple modeling approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号