首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SANICLAY is a new simple anisotropic clay plasticity model that builds on a modification of an earlier model with an associated flow rule, in order to include simulations of softening response under undrained compression following Ko consolidation. Non‐associativity is introduced by adopting a yield surface different than the plastic potential surface. Besides, the isotropic hardening of the yield surface both surfaces evolve according to a combined distortional and rotational hardening rule, simulating the evolving anisotropy. Although built on the general premises of critical state soil mechanics, the model induces a critical state line in the void ratio–mean effective stress space, which is a function of anisotropy. To ease interpretation, the model formulation is presented firstly in the triaxial stress space and subsequently, its multiaxial generalization is developed systematically, in a form appropriate for implementation in numerical codes. The SANICLAY is shown to provide successful simulation of both undrained and drained rate‐independent behaviour of normally consolidated sensitive clays, and to a satisfactory degree of accuracy of overconsolidated clays. The new model requires merely three constants more than those of the modified Cam clay model, all of which are easily calibrated from well‐established laboratory tests following a meticulously presented procedure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The paper describes and evaluates an incremental plasticity constitutive model for unsaturated, anisotropic, nonexpansive soils (CMUA). It is based on the modified Cam-Clay (MCC) model for saturated soils and enhances it by introducing anisotropy (via rotation of the MCC yield surface) and an unsaturated compressibility framework describing a double dependence of compressibility on suction and on the degree of saturation of macroporosity. As the anisotropic and unsaturated features can be activated independently, the model is downwards compatible with the MCC model. The CMUA model can simulate effectively: the dependence of compressibility on the level of developed anisotropy, uniqueness of critical state independent of the initial anisotropy, an evolving compressibility during constant suction compression, and a maximum of collapse. The model uses Bishop's average skeleton stress as its first constitutive variable, favouring its numerical implementation in commercial numerical analysis codes (eg, finite element codes) and a unified treatment of saturated and unsaturated material states.  相似文献   

3.
4.
5.
A compiled database of shear wave velocity measurements in a variety of clays, silts and sands shows directional hierarchies between downhole (VsVH), standard crosshole (VsHV), and rotary crosshole (VsHH) tests. The special in situ database has been collected from 33 well-documented geotechnical test sites. Expressions relating the small-strain shear modulus in terms of effective confining stress level, stress history and void ratio are explored for each of these three modes of directional shear wave velocity. The relationships are separated initially into soil groups (intact clays, fissured clays, sands and silts), and then generalised to consider all soil types together.  相似文献   

6.
The main focus in this work is on modeling of mechanical response of granular materials that display inherent anisotropy. Both the experimental and numerical investigations are described. First, the results of direct shear as well as drained/undrained triaxial tests that involve crushed limestone with elongated angular‐shaped particles are reviewed. Afterward, a mathematical framework is presented for modeling of elastic/ inelastic deformation that incorporates the multi‐laminate approach. The deformation is monitored on a set of randomly oriented planes, and the formulation incorporates the thickness of the shear band that is associated with sliding/separation process. A systematic procedure for identification of material functions/ parameters is outlined that is based on the results of direct shear tests, and the framework is later applied to simulate the behavior under triaxial conditions. The results of numerical simulations are compared with the experimental data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
On the one hand, it has been observed that liquefaction‐induced shear deformation of soils accumulates in a cycle‐by‐cycle pattern. On the other hand, it is known that heating could induce plastic hardening. This study deals with the constitutive modelling of the effect that heat may have on the cyclic mechanical properties of cohesive soils, a relatively new area of interest in soil mechanics. In this paper, after a presentation of the thermo‐mechanical framework, a non‐isothermal plasticity cyclic model formulation is presented and discussed. The model calibration is described based on data from laboratory sample tests. It includes numerical simulations of triaxial shear tests at various constant temperatures. Then, the model predictions are compared with experimental results and discussed in the final section. Both drained and undrained loading conditions are considered. The proposed constitutive model shows good ability to capture the characteristic features of behaviour. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
从室内试验与现场试验两方面对土体小应变试验研究现状进行了综述与评价,指出最近应力历史对小应变刚度门槛值及小应变范围内刚度变化的重要性,值得进一步系统研究。同时也指出小应变试验研究对指导我国工程实践也具有重要的现实意义。  相似文献   

9.
Soil models based on kinematic hardening together with elements of bounding surface plasticity, provide a means of introducing some memory of recent history and stiffness variation in the predicted response of soils. Such models provide an improvement on simple elasto‐plastic models in describing soil behaviour under non‐monotonic loading. Routine use of such models requires robust numerical integration schemes. Explicit integration of highly non‐linear models requires extremely small steps in order to guarantee convergence. Here, a fully implicit scheme is presented for a simple kinematic hardening extension of the Cam clay soil model. The algorithm is based on the operator split methodology and the implicit Euler backward integration scheme is proposed to integrate the rate form of the constitutive relations. This algorithm maintains a quadratic rate of asymptotic convergence when used with a Newton–Raphson iterative procedure. Various strain‐driven axisymmetric triaxial paths are simulated in order to demonstrate the efficiency and good performance of the proposed algorithm. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Granular soils subjected to seepage flow may suffer suffusion, ie, a selective internal erosion. Extending the classical approach of poromechanics, we deduce a new form of the Clausius-Duhem inequality accounting for dissipation due to suffusion, and we deduce restrictions on the constitutive laws of the soil. We suggest (a) a possible coupling between the seepage forces and the suffusion kinetics and (b) an extension of an existing elastoplastic model for the skeleton mechanical behaviour. Numerical integrations of the elastoplastic model are carried out under drained axisymmetric triaxial and oedometric conditions. As a result, we prove that the extended model is able to qualitatively reproduce the suffusion induced strains and the strength reduction experimentally observed. Predictions on the oedometric behaviour of suffusive soils are also provided.  相似文献   

11.
A destructuration theory and its application to SANICLAY model   总被引:1,自引:0,他引:1  
Many natural clays have an undisturbed shear strength in excess of the remoulded strength. Destructuration modeling provides a means to account for such sensitivity in a constitutive model. This paper extends the SANICLAY model to include destructuration. Two distinct types of destructuration are considered: isotropic and frictional. The former is a concept already presented in relation to other models and in essence constitutes a mechanism of isotropic softening of the yield surface with destructuration. The latter refers to the reduction of the critical stress ratio reflecting the effect of destructuration on the friction angle, and is believed to be a novel proposition. Both the types depend on a measure of destructuration rate expressed in terms of combined plastic volumetric and deviatoric strain rates. The SANICLAY model itself is generalized from its previous form by additional dependence of the yield surface on the third isotropic stress invariant. Such a generalization allows to obtain as particular cases simplified model versions of lower complexity including one with a single surface and associative flow rule, by simply setting accordingly parameters of the generalized version. A detailed calibration procedure of the relatively few model constants is presented, and the performance of three versions of the model, in descending order of complexity, is validated by comparison of simulations to various data for oedometric consolidation followed by triaxial undrained compression and extension tests on two structured clays. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A delayed plastic model, based on the theory of plasticity, is proposed to represent the time‐dependent behaviour of materials. It is assumed in this model that the stress can lie outside the yield surface and the conjugate stress called static stress is defined on the yield surface. The stress–strain relation is calculated based on the plastic theory embedding the static stress. Thus, the stress–strain relation of the model practically corresponds to that of the inviscid elastoplastic model under fairly low rate deformation. The delayed plastic model is coupled with the Cam‐clay model for normally consolidated clays. The performance of the model is then examined by comparing the model predictions with reported time‐dependent behaviour of clays under undrained triaxial conditions. It is shown that the model is capable of predicting the effect of strain rate during undrained shear and the undrained creep behaviour including creep rupture. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
14.
15.
16.
At present, several of the existing elastoplastic constitutive models are adapted for describing the stress–strain behavior of unsaturated soils. However, most of them present certain limitations in this field. These limitations can be related to the basic model and/or added unsaturated state variables and formulations. In this regard, inability to model the hydro‐mechanical behavior in constant water (CW) conditions is an example of these limitations. In this paper, an advanced version of CJS model is selected for adaptation to the unsaturated states. Adaptation to unsaturated states is achieved in the framework of effective stress approach. Effective stress equation and unsaturated state variables are selected based on the recent research existing in the literature. The developed model is capable of describing the complex behavior of unsaturated soil in the CW condition in addition to predicting the behavior at failure and post–failure, nonlinear elastoplastic behavior at low levels of stress and strain (by selecting a very small elastic domain), as well as wetting and collapse behaviors. In order to validate the model, results of triaxial tests in CD and CW conditions are used. The validation results indicate the good capability of the proposed model. Behavior of the unsaturated soils during wetting is an important issue. For this reason, the model is also evaluated based on the results of wetting and collapse triaxial tests. A comparison between the tests and simulation results shows that the model is able to predict the soil behavior under the wetting path. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Results of numerical analyses of boundary value problems in geomechanics include output of three‐dimensional stress and strain states. Two‐dimensional plots of stress–stress or stress–strain quantities, often used to represent such output, do not fully communicate the evolution of stress and strain states. This paper describes the use of glyphs and hyperstreamlines for the visual representation of three dimensional stress and strain tensors in geomechanics applications. Glyphs can be used to represent principal stress states as well as normal stresses at a point. The application of these glyphs is extended in this paper to represent strain states. The paper introduces a new glyph, called HWY glyph for the representation of shear tensor components. A load step‐based hyperstreamline is developed to show the evolution of a stress or strain tensor under a general state of loading. The evolution of stress–strain states from simulated laboratory tests and a general boundary value problem of a deep braced excavation are represented using these advanced visual techniques. These visual representations facilitate the understanding of complex multidimensional stress–strain soil constitutive relationships. The visual objects introduced in this paper can be applied to stress and strain tensors from general boundary value problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
田雨  姚仰平  罗汀 《岩土力学》2018,39(6):2035-2042
从发挥面的角度出发,分析论证各向异性是引起岩土材料出现非共轴现象的根本原因,得到与材料力学一致的结论。当共轭的两发挥面与沉积面的夹角不相等时,主应力面上将出现塑性应变增量的切向分量,所以塑性应变增量的主方向与应力的主方向非共轴。按照这一结论,对非共轴的数值模拟,也应当根据各向异性本构模型进行。为考虑各向异性影响新近提出的各向异性变换应力法,改变了各应力分量的相对大小,得到的各向异性变换应力张量与真实应力张量的主方向不一致,因此也能反映非共轴。利用各向异性变换应力法,能够在现有的弹塑性本构模型的框架下,描述土的非共轴现象。以各向异性UH模型为例,预测各种加载条件下的非共轴变形,验证了该方法的有效性。  相似文献   

19.
基于硬化土模型的小应变本构模型研究   总被引:3,自引:0,他引:3  
大量的工程现场监测结果表明,城市中强支护隧道施工过程中其周围大部分土体仍处于小应变状态,小应变情况下土体具有显著的高模量和非线性特性。土体小应变刚度特征和应力路径相关性是准确分析土与隧道相互作用的重要因素。虽然采用双刚度的硬化土模型(hardening soil model)能够基本反映应力路径的影响,但其卸载再加载模量并没有与应力-应变水平相关,不能模拟小应变情况下土体模量的高度非线性。为此,结合小应变刚度理论对硬化土模型的卸载再加载模量进行了改进,使之与应力-应变水平相关,并且考虑了土体卸载抗剪强度指标的变化以及侧向卸荷应力路径下不同的模量。通过与土体的应力路径试验结果进行对比,证明了模型的合理性。  相似文献   

20.
The behavior of granular materials is known to depend on its loose or dense nature, which in turns depends both on density and confining pressure. Many models developed in the past require the use of different sets of constitutive parameters for the same material under different confining pressures. The purpose of this paper is to extend a basic generalized plasticity model for sands proposed by Pastor, Zienkiewicz and Chan by modifying the main ingredients of the model flow—rule, loading–unloading discriminating direction and plastic modulus—to include a dependency on the state parameter. The proposed model is tested against the available experimental data on three different sands, using for each of them a single set of material parameters, finding a reasonably good agreement between experiments and predictions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号