首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the seismic design of a structure, horizontal ground shaking is usually considered in two perpendicular directions, even though real horizontal ground motions are complex two‐dimensional phenomena that impose different demands at different orientations. While the issue of ground motion dependence on the orientation of the recording devices has been the focus of many significant developments during the last decade, the effects of directionality on the characteristics of the structure have received less attention. This work presents a proposal to calculate the probability of exceedance of elastic spectral displacements accounting for structural typology and illustrates its relevance by means of its application to two case‐study buildings. In order to ease its implementation in seismic design codes, a simplification is developed by means of a detailed statistical analysis of the results obtained using four sets of real hazard curves. The framework presented herein is considered to represent an important contribution to the field of performance‐based earthquake engineering, permitting improved treatment of directionality effects within seismic risk design and assessment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Performance‐based seismic design (PBSD) can be considered as the coupling of expected levels of ground motion with desired levels of structural performance, with the objective of achieving greater control over earthquake‐induced losses. Eurocode 8 (EC8) already envisages two design levels of motion, for no collapse and damage limitation performance targets, anchored to recommended return periods of 475 and 95 years, respectively. For PBSD the earthquake actions need to be presented in ways that are appropriate to the estimation of inelastic displacements, since these provide an effective control on damage at different limit states. The adequacy of current earthquake actions in EC8 are reviewed from this perspective and areas requiring additional development are identified. The implications of these representations of the seismic loads, in terms of mapping and zonation, are discussed. The current practice of defining the loading levels on the basis of the pre‐selected return periods is challenged, and ideas are discussed for calibrating the loading‐performance levels for design on the basis of quantitative earthquake loss estimation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Highway bridges in highly seismic regions can sustain considerable residual displacements in their columns following large earthquakes. These residual displacements are an important measure of post‐earthquake functionality, and often determine whether or not a bridge remains usable following an earthquake. In this study, a self‐centering system is considered that makes use of unbonded, post‐tensioned steel tendons to provide a restoring force to bridge columns to mitigate the problem of residual displacements. To evaluate the proposed system, a code‐conforming, case‐study bridge structure is analyzed both with conventional reinforced concrete columns and with self‐centering, post‐tensioned columns using a formalized performance‐based earthquake engineering (PBEE) framework. The PBEE analysis allows for a quantitative comparison of the relative performance of the two systems in terms of engineering parameters such as peak drift ratio as well as more readily understood metrics such as expected repair costs and downtime. The self‐centering column system is found to undergo similar peak displacements to the conventional system, but sustains lower residual displacements under large earthquakes, resulting in similar expected repair costs but significantly lower expected downtimes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates the implications of designing for uniform hazard versus uniform risk for light‐frame wood residential construction subjected to earthquakes in the United States. Using simple structural models of one‐story residences with typical lateral force‐resisting systems (shear walls) found in buildings in western, eastern and central regions of the United States as illustrations, the seismic demands are determined using nonlinear dynamic time‐history analyses, whereas the collapse capacities are determined using incremental dynamic analyses. The probabilities of collapse, conditioned on the occurrence of the maximum considered earthquakes and design earthquakes stipulated in ASCE Standard 7‐05, and the collapse margins of these typical residential structures are compared for typical construction practices in different regions in the United States. The calculated collapse inter‐story drifts are compared with the limits stipulated in FEMA 356/ASCE Standard 41‐06 and observed in the recent experimental testing. The results of this study provide insights into residential building risk assessment and the relation between building seismic performance implied by the current earthquake‐resistant design and construction practices and performance levels in performance‐based engineering of light‐frame wood construction being considered by the SEI/ASCE committee on reliability‐based design of wood structures. Further code developments are necessary to achieve the goal of uniform risk in earthquake‐resistant residential construction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Existing design procedures for determining the separation distance between adjacent buildings subjected to seismic pounding risk are based on approximations of the buildings' peak relative displacement. These procedures are characterized by unknown safety levels and thus are not suitable for use within a performance‐based earthquake engineering framework. This paper introduces an innovative reliability‐based methodology for the design of the separation distance between adjacent buildings. The proposed methodology, which is naturally integrated into modern performance‐based design procedures, provides the value of the separation distance corresponding to a target probability of pounding during the design life of the buildings. It recasts the inverse reliability problem of the determination of the design separation distance as a zero‐finding problem and involves the use of analytical techniques in order to evaluate the statistics of the dynamic response of the buildings. Both uncertainty in the seismic intensity and record‐to‐record variability are taken into account. The proposed methodology is applied to several different buildings modeled as linear elastic single‐degree‐of‐freedom (SDOF) and multi‐degree‐of‐freedom (MDOF) systems, as well as SDOF nonlinear hysteretic systems. The design separation distances obtained are compared with the corresponding estimates that are based on several response combination rules suggested in the seismic design codes and in the literature. In contrast to current seismic code design procedures, the newly proposed methodology provides consistent safety levels for different building properties and different seismic hazard conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Limitations associated with deterministic methods to quantify demands and develop rational acceptance criteria have led to the emergence of probabilistic procedures in performance‐based seismic engineering. The Pacific Earthquake Engineering Research performance‐based methodology is one such approach. In this paper, the impact of certain modelling decisions made at different stages of the evaluation process on the performance assessment of a typical multi‐bent viaduct is examined. Modelling, in the context of this paper, covers hazard modelling, structural modelling and loss modelling. The specific application considered in this study is a section of an existing viaduct in California: the I‐880 interstate highway. Several simulation models of the viaduct are developed, a series of nonlinear time‐history analyses are carried out to predict demands, measures of damage are evaluated and the probability of closure of the viaduct is estimated using the specified hazard for the site. It is concluded that the methodology offers several advantages over existing deterministic performance‐based procedures. Results of the investigation indicate that the assessment methodology is particularly sensitive to the reliability of decisions made by bridge inspectors following a seismic event, and to the dispersion in the demand estimation, which in turn is influenced by several factors including soil–structure interaction effects and ground motion scaling procedures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
The last decade of performance‐based earthquake engineering (PBEE) research has seen a rapidly increasing emphasis placed on the explicit quantification of uncertainties. This paper examines uncertainty consideration in input ground‐motion and numerical seismic response analyses as part of PBEE, with particular attention given to the physical consistency and completeness of uncertainty consideration. It is argued that the use of the commonly adopted incremental dynamic analysis leads to a biased representation of the seismic intensity and that when considering the number of ground motions to be used in seismic response analyses, attention should be given to both reducing parameter estimation uncertainty and also limiting ground‐motion selection bias. Research into uncertainties in system‐specific numerical seismic response analysis models to date has been largely restricted to the consideration of ‘low‐level’ constitutive model parameter uncertainties. However, ‘high‐level’ constitutive model and model methodology uncertainties are likely significant and therefore represent a key research area in the coming years. It is also argued that the common omission of high‐level seismic response analysis modelling uncertainties leads to a fallacy that ground‐motion uncertainty is more significant than numerical modelling uncertainty. The author's opinion of the role of uncertainty analysis in PBEE is also presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
While structural engineers have traditionally focused on individual components (bridges, for example) of transportation networks for design, retrofit, and analysis, it has become increasingly apparent that the economic costs to society after extreme earthquake events are caused at least as much from indirect costs as direct costs due to individual structures. This paper describes an improved methodology for developing probabilistic estimates of repair costs and repair times that can be used for evaluating the performance of new bridge design options and existing bridges in preparation for the next major earthquake. The proposed approach in this paper is an improvement on previous bridge loss modeling studies—it is based on the local linearization of the dependence between repair quantities and damage states so that the resulting model follows a linear relationship between damage states and repair points. The methodology uses the concept of performance groups (PGs) that account for damage and repair of individual bridge components and subassemblies. The method is validated using two simple examples that compare the proposed method to simulation and previous methods based on loss models using a power–law relationship between repair quantities and damage. In addition, an illustration of the method is provided for a complete study on the performance of a common five‐span overpass bridge structure in California. Intensity‐dependent repair cost ratios (RCRs) and repair times are calculated using the proposed approach, as well as plots that show the disaggregation of repair cost by repair quantity and by PG. This provides the decision maker with a higher fidelity of data when evaluating the contribution of different bridge components to the performance of the bridge system, where performance is evaluated in terms of repair costs and repair times rather than traditional engineering quantities such as displacements and stresses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Previous comparison studies on seismic isolation have demonstrated its beneficial and detrimental effects on the structural performance of high‐speed rail bridges during earthquakes. Striking a balance between these 2 competing effects requires proper tuning of the controlling design parameters in the design of the seismic isolation system. This results in a challenging problem for practical design in performance‐based engineering, particularly when the uncertainty in seismic loading needs to be explicitly accounted for. This problem can be tackled using a novel probabilistic performance‐based optimum seismic design (PPBOSD) framework, which has been previously proposed as an extension of the performance‐based earthquake engineering methodology. For this purpose, a parametric probabilistic demand hazard analysis is performed over a grid in the seismic isolator parameter space, using high‐throughput cloud‐computing resources, for a California high‐speed rail (CHSR) prototype bridge. The derived probabilistic structural demand hazard results conditional on a seismic hazard level and unconditional, i.e., accounting for all seismic hazard levels, are used to define 2 families of risk features, respectively. Various risk features are explored as functions of the key isolator parameters and are used to construct probabilistic objective and constraint functions in defining well‐posed optimization problems. These optimization problems are solved using a grid‐based, brute‐force approach as an application of the PPBOSD framework, seeking optimum seismic isolator parameters for the CHSR prototype bridge. This research shows the promising use of seismic isolation for CHSR bridges, as well as the potential of the versatile PPBOSD framework in solving probabilistic performance‐based real‐world design problems.  相似文献   

10.
Hybrid simulation (HS) is a novel technique to combine analytical and experimental sub‐assemblies to examine the dynamic responses of a structure during an earthquake shaking. Traditionally, HS uses displacement‐based control where the finite element program calculates trial displacements and applies them to both the analytical and experimental sub‐assemblies. Displacement‐based HS (DHS) has been proven to work well for most structural sub‐assemblies. However, for specimens with high stiffness, traditional DHS does not work because it is difficult to precisely control hydraulic actuators in small displacement. A small control error in displacement will result in large force response fluctuations for stiff specimens. This paper resolves this challenge by proposing a force‐based HS (FHS) algorithm that directly calculates trial forces instead of trial displacements. The proposed FHS is finite element based and applicable to both linear and nonlinear systems. For specimens with drastic changes in stiffness, such as yielding, a switch‐based HS (SHS) algorithm is proposed. A stiffness‐based switching criterion between the DHS and FHS algorithms is presented in this paper. All the developed algorithms are applied to a simple one‐story one‐bay concentrically braced moment frame. The result shows that SHS outperforms DHS and FHS. SHS is then utilized to validate the seismic performance of an innovative earthquake resilient fused structure. The result shows that SHS works in switching between the DHS and FHS modes for a highly nonlinear and highly indeterminate structural system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Performance assessment implies that the structural, non‐structural, and content systems are given and that decision variables, DVs, (e.g. expected annual loss, mean annual frequency of collapse) are computed and compared to specified performance targets. Performance‐based design (PBD) is different by virtue of the fact that the building and its components and systems first have to be created. Good designs are based on concepts that incorporate performance targets up front in the conceptual design process, so that subsequent performance assessment becomes more of a verification process of an efficient design rather than a design improvement process that may require radical changes of the initial design concept. In short, the design approach could consist of (a) specifying performance targets (e.g. tolerable probability of collapse, acceptable dollar losses) and associated seismic hazards, and (b) deriving engineering parameters for system selection, or perhaps better, using the relatively simple design decision support tools discussed in this paper. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Earthquake early warning systems (EEWS) seem to have potential as tools for real‐time seismic risk management and mitigation. In fact, although the evacuation of buildings requires warning time not available in many urbanized areas threatened by seismic hazard, they may still be used for the real‐time protection of critical facilities using automatic systems in order to reduce the losses subsequent to a catastrophic event. This is possible due to the real‐time seismology, which consists of methods and procedures for the rapid estimation of earthquake features, as magnitude and location, based on measurements made on the first seconds of the P‐waves. An earthquake engineering application of earthquake early warning (EEW) may be intended as a system able to issue the alarm, if some recorded parameter exceeds a given threshold, to activate risk mitigation actions before the quake strikes at a site of interest. Feasibility analysis and design of such EEWS require the assessment of the expected loss reduction due to the security action and set of the alarm threshold. In this paper a procedure to carry out these tasks in the performance‐based earthquake engineering probabilistic framework is proposed. A merely illustrative example refers to a simple structure assumed to be a classroom. Structural damage and non‐structural collapses are considered; the security action is to shelter occupants below the desks. The cost due to a false alarm is assumed to be related to the interruption of didactic activities. Results show how the comparison of the expected losses, for the alarm‐issuance and non‐issuance cases, allows setting the alarm threshold on a quantitative and consistent basis, and how it may be a tool for the design of engineering applications of EEW. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Bridges are crucial to the transportation network in a region struck by an earthquake. Collapse of a bridge determines if a road is passable. Ability of a bridge to carry traffic load after an earthquake determines the weight and speed of vehicles that can cross it. Extent of system and component structural damage in bridges determines the cost and time required for repair. Today, post‐earthquake bridge evaluation is qualitative rather than quantitative. The research presented in this paper aims to provide a quantitative engineering basis for quick and reliable evaluation of the ability of a typical highway overpass bridge to function after an earthquake. The Pacific Earthquake Engineering Research (PEER) Center's probabilistic performance‐based evaluation approach provides the framework for post‐earthquake bridge evaluation. An analytical study was performed that linked engineering demand parameters to earthquake intensity measures. The PEER structural performance database and reliability analysis tools were then used to link demand parameters to damage measures. Finally, decision variables were developed to describe three limit states, repair cost, traffic function, and collapse, in terms of induced damage. This paper presents the analytical models used to evaluate post‐earthquake bridge function, decision variables and their correlation to the considered limit states, and fragility curves that represent the probability of exceeding a bridge function limit state given an earthquake intensity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
This paper addresses two important issues of concern to practicing engineers and researchers alike in application of performance‐based seismic assessment (PBSA) methodology on buildings: (i) the number of ground motion records required to exercise PBSA—current practice (FEMA P‐58‐1) requires eleven or more pairs of motions for this purpose, and (ii) the time and effort associated with performing the number of nonlinear response history analyses required to exercise PBSA. We present a method for exercising of PBSA that employs classical linear modal analysis to develop a first estimate (i.e., a priori) of probability distribution of loss, followed by utilizing Bayesian statistics to update this estimate using estimates of loss obtained by utilizing a small number of nonlinear response history analyses of a detailed model of the building (i.e., posterior). The proposed technique is used to assess the distribution of monetary loss of two case studies, a 4‐story reinforced concrete moment‐resisting frame building and a 20‐story steel moment‐resisting frame building, both located in Los Angeles, for a ground motion hazard with 10% probability of exceedance in 50 years. The efficiency of the proposed PBSA method is demonstrated by showing the similarity between the distribution of monetary loss at each story of case study buildings obtained from the traditional/sophisticated PBSA methodology and the proposed PBSA method in this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The performance‐based seismic design of steel special moment‐resisting frame (SMRF) structures is formulated as a multiobjective optimization problem, in which conflicting design criteria that respectively reflect the present capital investment and the future seismic risk are treated simultaneously as separate objectives other than stringent constraints. Specifically, the initial construction expenses are accounted for by the steel material weight as well as by the number of different standard steel section types, the latter roughly quantifying the degree of design complexity related additional construction cost; the seismic risk is considered in terms of maximum interstory drift demands at two hazard levels with exceedance probabilities being 50% and 2% in 50 years, respectively. The present formulation allows structural engineers to find an optimized design solution by explicitly striving for a desirable compromise between the initial investment and seismic performance. Member sizing for code‐compliant design of a planar five‐story four‐bay SMRF is presented as an application example using the proposed procedure that is automated by a multiobjective genetic algorithm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a new methodology based on structural performance to determine uniform fragility design spectra, i.e., spectra with the same probability of exceedance of a performance level for a given seismic intensity. The design spectra calculated with this methodology provide directly the lateral strength, in terms of yield‐ pseudo‐accelerations, associated with the rate of exceedance of a specific ductility characterizing the performance level for which the structures will be designed. This procedure involves the assessment of the seismic hazard using a large enough number of seismic records of several magnitudes; these records are simulated with an improved empirical Green function method. The statistics of the performance of a single degree of freedom system are obtained using Monte Carlo simulation considering the seismic demand, the fundamental period, and the strength of the structure as uncertain variables. With these results, the conditional probability that a structure exceeds a specific performance level is obtained. The authors consider that the proposed procedure is a significant improvement to others considered in the literature and a useful research tool for the further development of uniform fragility spectra that can be used for the performance‐based seismic design and retrofit of structures.  相似文献   

17.
Major earthquakes (i.e., mainshocks) typically trigger a sequence of lower magnitude events clustered both in time and space. Recent advances of seismic hazard analysis stochastically model aftershock occurrence (given the main event) as a nonhomogeneous Poisson process with rate that decays in time as a negative power law. Risk management in the post‐event emergency phase has to deal with this short‐term seismicity. In fact, because the structural systems of interest might have suffered some damage in the mainshock, possibly worsened by damaging aftershocks, the failure risk may be large until the intensity of the sequence reduces or the structure is repaired. At the state‐of‐the‐art, the quantitative assessment of aftershock risk is aimed at building tagging, that is, to regulate occupancy. The study, on the basis of age‐dependent stochastic processes, derived closed‐form approximations for the aftershock reliability of simple nonevolutionary elastic‐perfectly‐plastic damage‐cumulating systems, conditional on different information about the structure. Results show that, in the case hypotheses apply, the developed models may represent a basis for handy tools enabling risk‐informed tagging by stakeholders and decision makers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A probabilistic approach to estimate maximum inelastic displacement demands of single‐degree‐of‐freedom (SDOF) systems is presented. By making use of the probability of exceedance of maximum inelastic displacement demands for given maximum elastic spectral displacement and the mean annual frequency of exceedance of elastic spectral ordinates, a simplified procedure is proposed to estimate mean annual frequencies of exceedance of maximum inelastic displacement demands. Simplifying assumptions are thoroughly examined and discussed. Using readily available elastic seismic hazard curves the procedure can be used to compute maximum inelastic displacement seismic hazard curves and uniform hazard spectra of maximum inelastic displacement demands. The resulting maximum inelastic displacement demand spectra provide a more rational way of establishing seismic demands for new and existing structures when performance‐based approaches are used. The proposed procedure is illustrated for elastoplastic SDOF systems having known‐lateral strength located in a region of high seismicity in California. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Performance‐based design methodology is based on reaching performance objectives that are associated to certain damage conditions. These performance objectives are related to the seismic hazard and to the performance levels. In actual application, reliable tools are required for capturing the evolution of the damage condition as well as for measuring and locating it. Moreover, it is essential to accurately establish the relationship between the damage and the performance levels. This paper shows the application of damage mechanics to performance‐based design. A layered damage mechanics‐based finite element program is presented with a discussion on modeling for prediction of the response of normal‐strength and high‐strength concrete columns subjected to cyclic flexural loading and various axial load levels. The damage indices derived from these analyses were used to elaborate several damage charts expressed as a function of drift and displacement ductility. This makes it possible to establish a relationship between the damage state and the performance levels. Results have demonstrated the ability of the damage mechanics modeling to accurately predict the behavior of the specimens tested. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
On 22 February 2011, Christchurch City experienced a destructive magnitude (Mw) 6.2 aftershock following the main event of magnitude (Mw) 7.1 on the 4 September 2010. Severe damage was inflicted on the building stock, particularly within the central business district (CBD) of Christchurch. The strong motion stations around the CBD region and extensive building damage survey information from the Christchurch City Council provided a unique opportunity to calibrate a theoretical regional vulnerability assessment model developed and refined to be applicable for New Zealand (NZ) buildings. In this study, data from the building safety evaluation survey conducted by Christchurch City Council are synthesised and processed to extract details on building typologies in the CBD region and the colour tagging assigned to each building depending on the degree of damage. A displacement‐based framework is used to carry out vulnerability assessment for Christchurch buildings to estimate damage sustained under the recorded ground motions in the February event. As the damage survey indicators were ‘colour tags’, a mapping scheme has been explored to link the observed colour tagging damage statistics with ‘drift‐based damage limit states’ adopted in the theoretical approach. A sensitivity analysis is carried out to calibrate the mapping scheme, which can provide estimates of proportions of buildings likely to fall in different colour regimes when used in conjunction with the proposed vulnerability assessment methodology. It is shown that the methodology is reasonably robust, thereby increasing the confidence in using this approach to predict seismic vulnerability of building stock in NZ. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号