首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Explosive volcanic eruptions can cause long-term landscape change, leading to increased sediment discharge that continues after the cessation of the eruptions. During the period 1990–1995, eruptions of Mount Unzen, Japan, generated large amounts of pyroclastic material, resulting in 57 debris-flow events during 1991–2018. To investigate changes in the relationships between rainfall characteristics and debris-flow occurrence, we conducted the following: geometric analysis of two gullies (i.e., debris-flow initiation zones) using LiDAR (light detection and ranging)-generated 1 m DEMs (digital elevation models); rainfall analysis, based on the relationship between rainfall duration and mean intensity (i.e., considering the intensity–duration, or ID, threshold); and debris-flow monitoring during 2016–2018. Since 1991, rainfall runoff has caused erosion of the supplied pyroclastic material, generating a channel network consisting of incised gullies. With sufficient rainfall, debris flows formed, accompanied by further gully erosion; this resulted in both vertical and lateral adjustments of the cross-sectional geometry. In the two decades since the eruptions ceased, readily mobilized pyroclastic material has become scarce as the gullies have adjusted to local hydrographic conditions. At the same time, the infiltration capacity of the volcanic flank has increased, reducing the capacity for overland flow. As a result, since 2000, rainfall events with intensities above the ID threshold have occurred; however, the lack of sediment supplied by the gullies appears to have hindered the occurrence and development of debris flows. This suggests that debris flows in volcanically perturbed landscapes may occur at lower rainfall thresholds as long as the corresponding upland channels are evolving as a result of intense overland flow. However, as such channels evolve towards equilibrium geometries, the frequency of debris flows decreases in response to the reduction in sediment availability.  相似文献   

2.
Intensive agricultural land use in the 18th to early 20th centuries on the southeastern Piedmont resulted in substantial soil erosion and gully development. Today, many historically farmed areas have been abandoned and afforested, and such landscapes are an opportunity to study channel network recovery from disturbance by gullying. Channel initiation mapping, watershed area–slope relationships, and field monitoring of flow generation processes are used to identify channel network extent and place it in hydrologic, historical and landscape evolution context. In six study areas in the North Carolina Piedmont, 100 channel heads were mapped in fully‐forested watersheds, revealing a channel initiation relationship of 380 = AS1.27, where A is contributing area (m2) and S is local slope (m/m). Flow in these channels is generated by subsurface and overland flow. The measured relative slope exponent is lower than expected based on literature values of ~2 for forested watersheds with subsurface and overland flow, suggesting that the channel network extent may reflect a former hydrological regime. However, geomorphic evidence of recovery in channel heads within fully forested watersheds is greater than those with present day pasture. Present day channel heads lie within hollows or downslope of unchanneled valleys, which may be remnants of historical gullies, and area–slope relationships provide evidence of colluvial aggradation within the valleys. Channel network extent appears to be sensitive to land use change, with recovery beginning within decades of afforestation. Channel initiation mapping and area–slope relationships are shown to be useful tools for interpreting geomorphic effects of land use change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Sequential aerial photographs of a small headwater catchment in the Waiapu basin, East Coast Region, North Island, New Zealand, were interpreted to measure and analyse temporal changes in active area of gullies and gully complexes for a longer time span (1939–2003) and with higher temporal resolution compared to previous studies. We focus on the conditions leading to the development of gullies and gully complexes under pasture and forest by using topographic thresholds (slope–area relationships) of catchments for the initiation of gullies and gully complexes. In addition, the influence of two different lithologies as well as the occurrence of major rainfall events was related to gully activity. Twenty gullies and four gully complexes (occupying 62·5 ha or 12·5 per cent of the catchment area) occurred in the study catchment between 1939 and 2003. However, the majority of these were not active at all of the dates studied. Gullies developed in the sandstone‐dominated Tapuwaeroa Formation tended to attain their maximum size by 1957 with a mean catchment area of 2·1 ha. Gullies developed in mudstone of the Whangai Formation attained their maximum size in 1939 with a mean catchment area of 4·31 ha. Exceptions are gullies which developed into mass movement deposits or into an earth flow deposit as well as gullies developed under indigenous forest. Topographic threshold values for gullies under pasture and indigenous forest show that values for gullies under forest plot far above the threshold line of gullies under pasture, indicating that the topographical threshold for gully development under forest is higher compared to under pasture. A threshold value of 9·4 ha in catchment area is needed for the development of gully complexes under pasture, all located in the Whangai Formation and with the same orientation as the strike of the mudstones. Gully‐complex area and dominance of mass‐movement erosion increased with larger catchment area. A decreasing distance to the threshold line for gullies under pasture indicates a later development for gully complexes. No gully complexes developed under indigenous forest, indicating that the threshold value for gully‐complex development is higher than for gully complexes under pasture and was not reached in the study area. A model of shifting topographical threshold for gully development for a given catchment is developed which depends on land use. When a catchment has an indigenous forest cover the topographical threshold is very high. After conversion to pasture, threshold values decrease drastically. With the invasion of scrub, the threshold slowly increases and returns to a similar level to that under indigenous forest after reforestation. Development of gullies and gully complexes is a highly dynamic phenomenon, and phases of expansion and inactivity indicate that models describing only unidirectional advancing stages without periods of inactivity are not suitable. Therefore, this study adds more phases to models of gully and gully‐complex development in the East Coast Region. The threshold line for gully initiation under pasture and a value of 9·4 ha in catchment area for gully‐complex initiation permits one to predict which catchments, under similar environmental settings, develop gullies and gully complexes on a physical basis. This enables land managers to implement sustainable land‐use strategies to reduce erosion rates of gullies and gully complexes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The aim of this study was to identify the mechanisms of runoff generation and routing and their controlling factors at the hillslope scale, on artificial slopes derived from surface coal mining reclamation in a Mediterranean–continental area. Rainfall and runoff at interrill and microcatchment scales were recorded for a year on two slopes with different substrata: topsoil cover and overburden cover. Runoff coefficient and runoff routing from interrill areas to microcatchment outlets were higher in the overburden substratum than in topsoil, and greater in the most developed rill network. Rainfall volume is the major parameter responsible for runoff response on overburden, suggesting that this substratum is very impermeable—at least during the main rainfall periods of the year (late spring and autumn) when the soil surface is sealed. In such conditions, most rainfall input is converted into runoff, regardless of its intensity. Results from artificial rainfall experiments, conducted 3 and 7 years after seeding, confirm the low infiltration capacity of overburden when sealed. The hydrological response shows great seasonal variability on the overburden slope in accordance with soil surface changes over the year. Rainfall volume and intensities (I30, I60) explain runoff at the interrill scale on the topsoil slope, where rainfall experiments demonstrated a typical Hortonian infiltration curve. However, no correlation was found at the microcatchment level, probably because of the loss of functionality of the only rill as ecological succession proceeded. The runoff generation mechanism on the topsoil slope is more homogeneous throughout the year. Runoff connectivity, defined as the ratio between runoff rates recorded at the rill network scale and those recorded at the interrill area scale in every rainfall event, was also greater on the rilled overburden slope, and in the most developed rill network. The dense rill networks of the overburden slope guarantee very effective runoff drainage, regardless of rainfall magnitude. Rills drain overland flow from interrill‐sealed areas, reducing the opportunity of reinfiltration in areas not affected by siltation. Runoff generation and routing on topsoil slopes are controlled by grass cover and soil moisture content, whereas on overburden slopes rill network density and soil moisture content are the main controlling factors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
The morphological consequences of paraglacial modification of valley-side drift slopes are investigated at six sites in Norway. Here, paraglacial slope adjustment operates primarily through the development of gully systems, whereby glacigenic sediment is stripped from the upper drift slope and redeposited in debris cones downslope. This results in an overall lowering of average gradient by up to 4·5° along gully axes. In general, slope profile adjustment appears to be characterized by a convergence of slope profiles towards an ‘equilibrium form’ with an upper rectilinear slope gradient at 29°± 4° and a range of concavities of approximately 0·0 to 0·4. After initial rapid incision, further gully deepening is limited, but gullies become progressively wider as sidewall gradients decline to c. 25°, after which parallel retreat appears to predominate. The final form of mature paraglacial gully systems consists of an upper bedrock-floored source area, a mid-slope area of broad gullies whose sidewalls rest at stable, moderate gradients, and a lower slope zone where gullies discharge onto the surfaces of debris cones and fans. Some gullies appear to have attained this final form and have stabilized following exhaustion of readily entrainable sediment within decades of gully initiation. At most sites, paraglacial activity has transformed steep drift-mantled valley sides into gullied slopes where an average of c. 2–3 m of surface lowering has taken place. At the most active sites, these average amounts imply minimum erosion rates averaging c. 90 mm a−1 since gully initiation, which highlights the extreme rapidity of paraglacial erosion of deglaciated drift-mantled slopes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
A typical gully sub-basin with a complex geomorphological form is used to do a model test of gravity erosion of loess by considering the sequence of slopes in a prototype gully creating a sequence of underlying surface forms in the upper reaches. The results show that the runoff from heavy rainfall is the main external force for the erosion of loess, and also is an important influencing factor to stimulate and intensify the development of gravity erosion. The soil structure and the height of the...  相似文献   

7.
V-shaped gullies are formed on slopes in the Rif Mountains where stony colluvium covers a truncated Luvisol in finegrained, early pleistocene slope deposits. The colluvium resulted from large-scale deforestation of summit areas in recent times. A number of properties related to the response of soil material to rainfall were investigated. Colluvium has a high infiltration capacity compared to the Luvisol. Consequently, the deposition of colluvium reduced overland flow and erosion by surface wash. Gully-forming processes on the other hand were activated by the superposition of permeable over impermeable material.  相似文献   

8.
The nature and rates of fluvial and slope processes change over time and space as urbanized areas replace forested land in Singapore. Storm-based and time-based data, from undisturbed rainforests, heavily disturbed construction sites, urban grass-covered slopes and an experimental plot, are collected to observe the impact of rainwater on the soil moisture conditions, surface microtopography, runoff generation, sediment movement, and ground lowering in the three different categories of land use. The undisturbed forested environment is characterized by high throughfall (58% of total rainfall) and frequent negative soil moisture suctions. The slow and unconcentrated overland flow during heavy storms is restricted by the forest floor microtopography. No rills develop. Ground lowering is recorded as 3·2–3·4 mm a?1. But sediment movement is episodic and suspended sediment concentrations in overland flow are 172–222 mg l?1. During urban construction, gully development is rapid on the bare slopes, runoff generation, voluminous, and sediment-laden discharges (5200–75498 mg l?1) lead to sediment plumes at channel mouths. Ground lowering rates are measured at 132·4 mm a?1. Once grass-covered, runoff carries less suspended sediment (800 mg l?1) and ground lowering rates are reduced, but depend on the condition of the cover, ranging from 0·2 to 8·2 mm a?1. As urban development continues, environments are altered both in time as well as spatially.  相似文献   

9.
A series of 188 rainfall plot simulations was conducted on grass, shrub, oak savanna, and juniper sites in Arizona and Nevada. A total of 897 flow velocity measurements were obtained on 3.6% to 39.6% slopes with values ranging from 0.007 m s‐1 to 0.115 m s‐1. The experimental data showed that shallow flow velocity on rangelands was related to discharge and ground litter cover and was largely independent of slope gradient or soil characteristics. A power model was proposed to express this relationship. These findings support the slope–velocity equilibrium hypothesis. Namely, eroding soil surfaces evolve such that steeper areas develop greater hydraulic roughness. As a result overland flow velocity becomes independent of the slope gradient over time. Our findings have implications for soil erosion modeling suggesting that hydraulic friction is a dynamic, slope and discharge dependent property. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
Small‐scale aerial photographs and high‐resolution satellite images, available for Ethiopia since the second half of the twentieth century as for most countries, allow only the length of gullies to be determined. Understanding the development of gully volumes therefore requires that empirical relations between gully volume (V) and length (L) are established in the field. So far, such V–L relations have been proposed for a limited number of gullies/environments and were especially developed for ephemeral gullies. In this study, V–L relations were established for permanent gullies in northern Ethiopia, having a total length of 152 km. In order to take the regional variability in environmental characteristics into account, factors that control gully cross‐sectional morphology were studied from 811 cross‐sections. This indicated that the lithology and the presence of check dams or low‐active channels were the most important controls of gully cross‐sectional shape and size. Cross‐sectional size could be fairly well predicted by their drainage area. The V–L relation for the complete dataset was V = 0 · 562 L 1·381 (n = 33, r2 = 0 · 94, with 34 · 9% of the network having check dams and/or being low‐active). Producing such relations for the different lithologies and percentages of the gully network having check dams and/or being low‐active allows historical gully development from historical remote sensing data to be assessed. In addition, gully volume was also related to its catchments area (A) and catchment slope gradient (Sc). This study demonstrates that V–L and V–A × Sc relations can be very suitable for planners to assess gully volume, but that the establishment of such relations is necessarily region‐specific. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Rainfall was simulated on unconfined plots on regolith in debris flow source areas using a portable simulator. In total, 351 simulations were carried out on steep slopes (27–54°) with rainfall intensities of 28–291 mm/h. From these rainfall simulations the infiltration parameters sorptivity (S) and steady-state infiltration capacity (K) of the regolith, and a threshold for the occurrence of micro-scale mass movements, were obtained. Two evaluation methods were used to obtain the infiltration parameters K and S. The ‘infiltration envelope’ method uses rainfall intensity and time to ponding from multiple tests and fits an infiltration envelope through the data from which K and S can be obtained. The ‘constant runoff’ method uses rainfall intensity and overland flow intensity to calculate K, after which S can be calculated in several ways by using time to ponding. The constant runoff method produced K values of 16.6–128 mm/h, which usually show a log-normal distribution. K values depend on the regolith parent material and rainfall intensity. Using this method, S values are 0.088–0.381 cm/min1/2. The infiltration envelope method produced K values of 9.8–131 mm/h and S values of 0.14–0.32 cm/min1/2. It can be argued that both methods overestimate K as well as S, but quantitative relations between measured/calculated and actual values of K and S have not yet been obtained. At high rainfall intensities, typically 100 mm/h or more, micro-scale mass movements sometimes occur. A lower threshold curve for the occurrence of these micro-scale mass movements has been constructed. It is a function of both slope angle and rainfall intensity. The micro-scale mass movements could play an important part in the initiation of debris flows in the study area, possibly by delivering sediment to overland flow. On the very steep slopes, the sediment-rich overland flow can easily mobilize coarse material.  相似文献   

12.
Hydrogeomorphic processes influencing alluvial gully erosion were evaluated at multiple spatial and temporal scales across the Mitchell River fluvial megafan in tropical Queensland, Australia. Longitudinal changes in floodplain inundation were quantified using river gauge data, local stage recorders and HEC‐RAS modelling based on LiDAR topographic data. Intra‐ and interannual gully scarp retreat rates were measured using daily time‐lapse photographs and annual GPS surveys. Erosion was analysed in response to different water sources and associated erosion processes across the floodplain perirheic zone, including direct rainfall, infiltration‐excess runoff, soil‐water seepage, river backwater and overbank flood inundation. The frequency of river flood inundation of alluvial gullies changed longitudinally according to river incision and confinement. Near the top of the megafan, flood water was contained within the macrochannel up to the 100‐year recurrence interval, but river backwater still partially inundated adjacent gullies eroding into Pleistocene alluvium. In downstream Holocene floodplains, inundation of alluvial gullies occurred beyond the 2‐ to 5‐year recurrence interval and contributed significantly to total annual erosion. However, most gully scarp retreat at all sites was driven by direct rainfall and infiltration‐excess runoff, with the 24‐h rainfall total being the most predictive variable. The remaining variability can be explained by seasonal vegetative conditions, complex cycles of soil wetting and drying, tension crack development, near‐surface pore‐water pressure, soil block undermining from spalling and overland flow, and soil property heterogeneity. Implications for grazing management impacts on soil surface and perennial grass conditions include effects on direct rainfall erosion, water infiltration, runoff volume, water concentration along tracks, and the resistance of highly dispersible soils to gully initiation or propagation under intense tropical rainfall. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Overland flow, sediments, and nutrients transported in runoff are important processes involved in soil erosion and water pollution. Modelling transport of sediments and chemicals requires accurate estimates of hydraulic resistance, which is one of the key variables characterizing runoff water depth and velocity. In this paper, a new theoretical power–velocity profile, originally deduced neglecting the impact effect of rainfall, was initially modified for taking into account the effect of rainfall intensity. Then a theoretical flow resistance law was obtained by integration of the new flow velocity distribution. This flow resistance law was tested using field measurements by Nearing for the condition of overland flow under simulated rainfall. Measurements of the Darcy–Weisbach friction factor, corresponding to flow Reynolds number ranging from 48 to 194, were obtained for simulated rainfall with two different rainfall intensity values (59 and 178 mm hr−1). The database, including measurements of flow velocity, water depth, cross-sectional area, wetted perimeter, and bed slope, allowed for calibration of the relationship between the velocity profile parameter Γ, the slope steepness s, and the flow Froude number F, taking also into account the influence of rainfall intensity i. Results yielded the following conclusions: (a) The proposed theoretical flow resistance equation accurately estimated the Darcy–Weisbach friction factor for overland flow under simulated rainfall, (b) the flow resistance increased with rainfall intensity for laminar overland flow, and (c) the mean flow velocity was quasi-independent of the slope gradient.  相似文献   

14.
Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high-resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used for topographic studies of gullies, but little work has been done to assess the variability of gully head drainage area estimates using different methods. This study evaluated alternative approaches to using high-resolution digital elevation models (DEMs) so that gully topographic models can be more readily applied to any area with suitably high-resolution data. Specifically, we investigated the impact of single- or multiple-direction flow routing algorithms, DEM hydrologic-enforcement procedures and spatial resolution on gully head drainage area estimation. We tested these methods on a 40 km2 site centred on Weany Creek, a low-relief semi-arid landscape draining towards the Great Barrier Reef, Australia. Using a subroutine to separate gully heads into those with divergent or convergent flow patterns upslope, we found that divergent flow conditions occurred at half of 484 studied gullies. Drainage areas estimated by different flow routing algorithms were more variable in these divergent cases than for convergent cases. This variation caused a significant difference between topographic threshold parameters (slope b and intercept k) derived from single- or multiple-direction flow routing algorithms, respectively. Different methods of hydrologic enforcement (filling or breaching) also affected threshold analysis, resulting in estimates of the exponent b being ~188% higher if the DEM was filled than if breached. The testing of the methods to date indicates that a finer resolution (≤2 m) DEM and a multiple-direction flow routing algorithm achieve the most realistic drainage area estimates in low-relief landscapes. For Weany Creek we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion.  相似文献   

15.
Gullies have been a common phenomenon in semi‐arid northern Ethiopia for the last centuries. However, soil and water conservation (SWC) structures have been implemented for a long time to curb soil erosion. Though, like most of the affected areas worldwide, density and distribution of gullies and SWC structures, their causes and interrelations are poorly understood. The aims of this study were to develop a technique for mapping these densities of gullies and SWC structures, to explain their spatial distribution and to analyze changes over the period 1935–2014. Aerial photographs from 1935 to 1936 and Google Earth images from 2014 of the 5142 km2 Geba catchment were used. Transect lines were established to count gullies and SWC structures in order to calculate densities. On average, a gully density of 1.14 km km?2 was measured in 1935–1936 of which the larger portion (75%) were vegetated, indicating they were not very active. Over 80 years, gully density has significantly increased to 1.59 km km?2 with less vegetation growing in their channel, but 66% of these gullies were treated with check dams. There was c. 3 km km?2 of indigenous SWC structures (daget or lynchets) in 1935–1936 whereas a high density (20 km km?2) of introduced SWC structures (mainly stone bunds and terraces) were observed in 2014. The density of gullies is positively correlated with slope gradient and shrubland cover and negatively with cropland cover, whereas the density of SWC structures significantly increased with increasing cropland cover. Density maps of gullies and SWC structures indicate sensitive areas to gully formation and priority areas for the implementation of SWC structures in Geba catchment. The obtained results illustrate the feasibility of the methods applied to map the density of gullies and SWC structures in mountainous areas. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
Predicting the location of gully heads in various environments is an important step towards predicting gully erosion rates. So far, field data collection and modelling of topographic thresholds for gully head development has mainly focused on gullies that formed in forested areas, rangelands, pastures and cropland. Such information for gullies in badlands however is very scarce. Therefore, this paper aims to extend the database on gully head topographical thresholds through data collection in a badland area and to improve the prediction of gully heads forming at sites with a very low erosion resistance value. For this, we chose a badland site located in central Italy that is characterized by biancana forms and both active and dormant gullies. The definition of the conditions under which present‐day gully heads developed allowed a better modelling of the gully head threshold equation, with modification of a previous model and the exemplification of how to use the updated model. The model shows that the resistance to gully head retreat depends on slope gradient and drainage area at gully heads, land use at the moment of gully development (as numerically expressed using parameters derived from the Runoff Curve Number method), surface rock fragment cover, presence of joints, pipes, and factors/processes affecting detachment rate. This study attempted to better understand environmental conditions that control the development of gully heads in badlands through a combination of field data collection of gully heads, an analysis of land use changes over 10 centuries, focusing on the period 1820–2005, and land use management through repeat photography and a critical examination of historical documents. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

17.
Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995–1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the maximum rainfall intensity and infiltration characteristics. The Aobao catchment yielded much larger runoff volume, runoff coefficient and sediment than the Wangdongguo catchment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Gully erosion of cultural sites in Grand Canyon National Park is an urgent management problem that has intensified in recent decades, potentially related to the effects of Glen Canyon Dam. We studied 25 gullies at nine sites in Grand Canyon over the 2002 monsoon–erosion season to better understand the geomorphology of the gully erosion and the effectiveness of erosion‐control structures (ECS) installed by the park under the direction of the Zuni Conservation Program. Field results indicate that Hortonian overland flow leads to concentrated flow in gullies and erosion focused at knickpoints along channels as well as at gully heads. Though groundcover type, soil shear strength and permeability vary systemat‐ically across catchments, gradient and, to a lesser degree, contributing drainage area seem to be the first‐order controls on gully extent, location of new knickpoints, and ECS damage. The installed ECS do reduce erosion relative to reaches without them and initial data suggest woody checkdams are preferable to rock linings, but maintenance is essential because damaged structures can exacerbate erosion. Topographic data from intensive field surveys and detailed photogrammetry provide slope–contributing area data for gully heads that have a trend consistent with previous empirical and theoretical formulations from a variety of landscapes. The same scaling holds below gully heads for knickpoint and ECS topographic data, with threshold coefficients the lowest for gully heads, slightly higher for knickpoints, and notably higher for damaged ECS. These topographic thresholds were used with 10‐cm digital elevation models to create simple predictive models for gully extent and structure damage. The model predictions accounted for the observed gullies but there are also many false‐positives. Purely topographical models are probably inadequate at this scale and application, but models that also parameterize the variable soil properties across sites would be useful for predicting erosion problems and ECS failure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Although obvious in the field, the impact of road building on hydrology and gullying in Ethiopia has rarely been analysed. This study investigates how road building in the Ethiopian Highlands affects the gully erosion risk. The road between Makalle and Adwa in the highlands of Tigray (northern Ethiopia), built in 1993–1994, caused gullying at most of the culverts and other road drains. While damage by runoff to the road itself remains limited, off‐site effects are very important. Since the building of the road, nine new gullies were created immediately downslope of the studied road segment (6·5 km long) and seven other gullies at a distance between 100 and 500 m more downslope. The road induces a concentration of surface runoff, a diversion of concentrated runoff to other catchments, and an increase in catchment size, which are the main causes for gully development after road building. Topographic thresholds for gully formation are determined in terms of slope gradient of the soil surface at the gully head and catchment area. The influence of road building on both the variation of these thresholds and the modification of the drainage pattern is analysed. The slope gradient of the soil surface at the gully heads which were induced by the road varies between 0·06 and 0·42 m m?1 (average 0·15 m m?1), whereas gully heads without influence of the road have slope gradients between 0·09 and 0·52 m m?1 (average 0·25 m m?1). Road building disturbed the equilibrium in the study area but the lowering of topographic threshold values for gullying is not statistically significant. Increased gully erosion after road building has caused the loss of fertile soil and crop yield, a decrease of land holding size, and the creation of obstacles for tillage operations. Hence roads should be designed in a way that keeps runoff interception, concentration and deviation minimal. Techniques must be used to spread concentrated runoff in space and time and to increase its infiltration instead of directing it straight onto unprotected slopes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Although numerous studies have acknowledged that vegetation can reduce erosion, few process-based studies have examined how vegetation cover affect runoff hydraulics and erosion processes. We present field observations of overland flow hydraulics using rainfall simulations in a typical semiarid area in China. Field plots (5 × 2 m2) were constructed on a loess hillslope (25°), including bare soil plot as control and three plots with planted forage species as treatments—Astragalus adsurgens, Medicago sativa and Cosmos bipinnatus. Both simulated rainfall and simulated rainfall + inflow were applied. Forages reduced soil loss by 55–85% and decreased overland flow rate by 12–37%. Forages significantly increased flow hydraulic resistance expressed by Darcy–Weisbach friction factor by 188–202% and expressed by Manning's friction factor by 66–75%; and decreased overland flow velocity by 28–30%. The upslope inflow significantly increased overland flow velocity by 67% and stream power by 449%, resulting in increased sediment yield rate by 108%. Erosion rate exhibited a significant linear relationship with stream power. M. sativa exhibited the best in reducing soil loss which probably resulted from its role in reducing stream power. Forages on the downslope performed better at reducing sediment yield than upslope due to decreased rill formation and stream power. The findings contribute to an improved understanding of using vegetation to control water and soil loss and land degradation in semiarid environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号