共查询到20条相似文献,搜索用时 15 毫秒
1.
空间与谱间相关性分析的NMF高光谱解混 总被引:1,自引:1,他引:1
非负矩阵分解(NMF)技术是高光谱像元解混领域的研究热点。为了充分利用高光谱图像中丰富的空间与光谱相关性特征,改善基于NMF的高光谱解混算法性能,提出一种结合了空间与谱间相关性分析的NMF解混算法。算法针对NMF的通用性和局部极小问题,引入并结合高光谱图像两种典型的相关性特征,具体包括:基于马尔可夫随机场(MRF)模型,建立描述相邻像元空间相关特征的约束;通过复杂度映射技术,建立描述相邻波段谱间相关(光谱分段平滑)特征的约束;并将上述两种约束同时引入NMF解混目标函数中。实验结果表明,对于一般自然地物场景或人造地物场景,相对于分段平滑和稀疏约束的非负矩阵分解(PSNMFSC)、交互投影子梯度的非负矩阵分解(APSNMF)和最小体积约束的非负矩阵分解(MVCNMF)这3种代表性NMF解混参考算法,该算法可进一步提高高光谱解混精度;对于空间相关或谱间相关特征中某一种不显著的特殊场景,也具有更好的适应能力。通过将空间相关和谱间相关特征相结合,较全面地反映了高光谱数据与解混相关的重要特征,能够对绝大多数真实高光谱数据进行高精度解混,对高光谱解混及后续应用领域相关研究均具有参考价值。 相似文献
2.
高光谱影像中存在大量的混合像元,极大地限制了高光谱影像的定量应用,高效且精准地进行像元解混尤为重要。端元矩阵的初始化、算法本身的代价函数及其迭代规则,三者的不同往往会导致获取的最终端元光谱和端元丰度的不同。在不同条件下,选取适当的初始化方法、代价函数和迭代规则,使得高光谱解混结果更优尤为重要。本文改进了一种基于欧氏距离和光谱信息散度的分块初始化方法(IBISS),改进后方法在中低信噪比情况下优于其他初始化方法。同时针对初始化、算法本身这两个方面进行大量试验,结果表明:①分块初始化优于全局初始化;②梯度迭代NMF算法相比于乘性迭代NMF算法,具有更快的收敛速度,但容易陷入局部最小值;③乘性迭代分块NMF算法相比于乘性迭代标准NMF算法能够获取更好的端元丰度信息;④梯度迭代分块NMF算法不适用于随机初始化后的光谱解混过程。 相似文献
3.
提出了一种基于Fisher权重分析的迭代光谱解混方法(WLSMA),该方法首先对高光谱图像进行区域分割,在分割后的各子块中自动提取端元;再次对提取的端元进行聚类,从光谱的整体特征上将不同类别的端元区分开,针对聚类结果中的每一类别各选取几个具有代表性的端元光谱,并对最优光谱进行窗口卷积处理,结合In_CoB指标构建端元光谱样本库;最后对图像进行迭代光谱解混处理,在丰度反演过程中引入基于Fisher准则的补偿权值矩阵以提高反演精度。AVIRIS高光谱数据实验证明,WLSMA不需要大量先验信息,利用Fisher准则和迭代光谱分析理论增强了相似性矿物的可分性,为加强对矿区地表岩性的认识和模拟提供了更大的灵活性和可能性,对高光谱矿物填图有一定的借鉴意义。 相似文献
4.
基于光谱库的高光谱稀疏解混技术近年来得到了人们的关注,该技术利用光谱库中光谱样本作为端元,将解混问题转化为稀疏表示问题。然而,由于测量环境的差异,待解混图像的实际端元往往与光谱库中相应光谱信号存在差异。本文提出了一种光谱差异稀疏约束的联合稀疏回归解混算法。首先,假设光谱差异具有稀疏特性,建立了光谱库校正模型,使得在解混过程中可对光谱库进行自适应地调整;然后,将光谱库校正模型与联合稀疏回归解混模型结合,建立了考虑光谱差异的稀疏解混模型;最后,基于交替方向乘子法得到了迭代优化解决方案。分别利用仿真和真实高光谱数据进行了试验验证,结果表明,在光谱库不匹配的情形下,本文方法能够有效提高稀疏解混算法的解混性能。 相似文献
5.
矿物的混合多属于致密型混合,在可见光—短波红外波段的混合呈现非线性特征,同时由于矿物混合的复杂性以及图像中完全纯净的像元可能不存在等原因,使得从图像上提取端元具有较大不确定性。本文根据矿物单次散射反照率的线性可加性,提出一种基于矿物单次散射反照率光谱库的稀疏解混算法,利用Hapke模型将矿物反射率转换成矿物单次散射反照率,构建矿物单次散射反照率光谱库,以半监督的方式通过稀疏回归的方法从光谱库中寻找最优端元组合,并估算混合像元中各端元的丰度。利用RELAB矿物混合光谱库进行算法验证,结果表明,丰度反演的平均绝对误差为3.12%;将本文方法应用于美国内华达州铜矿区的AVIRIS高光谱图像数据,所得丰度图与美国地质勘探局USGS矿物识别结果具有较好的一致性。本文算法不需要从图像提取端元,并且考虑到了矿物的非线性混合特征,能够得到较高的反演精度,在近地行星和卫星表面岩矿成分的探测等领域具有较好的应用前景。 相似文献
6.
为了提高高光谱遥感图像混合像元分解的精度,提出基于核方法的高光谱线性解混。采用核化正交子空间投影(orthogonal subspace projection,OSP)算子、最小二乘正交子空间投影(least squares OSP,LSOSP)算子、非负约束最小二乘(nonnegative constrained least-squares,NCLS)算子和全约束最小二乘(fully constrained least-squares,FCLS)算子等方法分别构建核正交子空间投影(Kernel OSP,KOSP)、核最小二乘正交子空间投影(Kernel LSOSP,KLSOSP)、核非负约束最小二乘(Kernel NCLS,KNCLS)和核全约束最小二乘(Kernel FCLS,KFCLS)高光谱图像混合像元解混模型。对CUPRITE矿区AVIRIS数据进行KLSOSP、KNCLS和KFCLS与LSOSP、NCLS和FCLS丰度反演对比实验,结果表明,对于混合像元广泛存在的高光谱遥感图像来说,基于核方法的KLSOSP,KNCLS和KFCLS的解混精度优于LSOSP,NCLS和FCLS;附加约束条件有利于提高丰度反演的精度。 相似文献
7.
本文针对高光谱遥感影像端元丰度的稀疏性和空间分布平滑性,提出一种基于空间同质分析的稀疏解混算法。该算法首先对高光谱影像进行空间同质分析来提取同质指数,然后根据同质指数对稀疏回归解混模型中的空间正则项赋予不同权重,使其能更好地反映高光谱影像端元丰度分布的空间复杂性,进而实现对高光谱混合像元的有效分解。模拟数据和真实数据的实验分析表明:本文提出的算法能更好地保持结果的稀疏性和丰度空间分布的平滑性并且具有一定的抗噪性,提高了整体的解混精度。 相似文献
8.
正混合像元分解能在亚像素级别上定量化地了解地物的光谱信息和含量信息(丰度),是高光谱影像分析中的关键问题之一。由于影像场景复杂、同谱异物和同物异谱(端元可变性)现象普遍存在、光谱库端元数目远大于像元中含有的端元数目,再加上影像噪音的干扰,影像解混精度还亟待提高。本文的研究围绕基于空间-光谱分析的高光谱遥感影像稀疏解混方法,分别从顾及端元可变性、像元的 相似文献
9.
植被光谱变异性广泛存在于遥感图像当中,本文尝试通过PROSAIL辐射传输模型来描述植被端元变异性,并提出一种光谱解混方法,实现逐像元地估计植被变异性端元。具体地,面向植被—土壤背景两端元的场景,在非负矩阵分解框架下,利用PROSAIL辐射传输模型从机理上描述植被端元的变异性,并通过两组神经网络来分别实现辐射传输模型的反演与正算,从而更高效地拟合植被端元,最终得到一种能逐像元求解变异性植被端元的光谱解混算法。由于该方法求解了植被端元的空间变异光谱,因此,能够对植被参数遥感反演的尺度效应进行纠正。为此,本文进一步以LAI尺度效应为例,通过无人机图像实验来验证该方法的有效性。实验结果得出,经过光谱解混方法处理后,该方法能较准确地估计植被端元,并能使LAI尺度效应均方根误差RMSE能够从0.2151降低到0.0896,有望提升遥感植被信息提取的精度。 相似文献
10.
受仪器和观测条件限制,高光谱数据易受噪声污染,给数据解译带来挑战。针对传统稀疏解混模型抗噪性能差的问题,本文提出一种截断加权核范数稀疏解混方法,利用高光谱图像像元之间的相关性减轻噪声对丰度估计的干扰。该方法借助低秩表示在挖掘数据内在低维结构方面的优势,在稀疏解混中加入基于截断加权核范数的低秩约束,并结合加权稀疏技术,在稀疏正则项中引入空间邻域权重。截断加权核范数对丰度矩阵的奇异值向量分段处理,可以更好地实现丰度矩阵的低秩逼近,使丰度图像保持空间一致性并保留更多细节信息,空间加权策略则增强了丰度图像的空间连续性。模拟高光谱数据、Cuprite矿区真实数据和红树林高光谱数据实验表明,与其他先进的稀疏解混方法相比,所提方法具有更好的抗噪性,能够提高解混精度。 相似文献
11.
在高光谱解混的过程中考虑影像的空间信息,能够有效提高解混精度。而超像素分割能够划分空间同质区域,为此本文提出一种考虑光谱信息和超像素分割的解混网络(SSUNet)。首先需对原始影像进行超像素分割处理,获得具有空间特征的超像素分割数据,然后采用SSUNet对原始高光谱数据和超像素分割数据进行训练和解混。在线性和非线性混合模型生成的模拟数据集和两个真实数据集上的实验表明,与SUnSAL、SUnSAL-TV、SCLRSU、MTAEU、EGU-Net-pw和1DCNN的解混结果相比,所提网络具有更高的解混精度和较好的鲁棒性。 相似文献
12.
基于相关性分析的高光谱解混算法,通常缺少对高光谱图像空间和光谱相关性特征的综合分析与利用,或对于先验知识的依赖程度较高。本文提出一种基于混合像元空间与谱间相关性模型的NMF线性盲解混算法。具体包括:通过改进马尔科夫随机场(MRF)模型,建立相邻像元间的空间相关模型;利用复杂度映射技术,建立相邻波段间的光谱相关模型;在NMF目标函数外部和内部分别引入上述两种模型,作为盲解混算法的约束条件。试验结果表明,该算法相对于区域相关的NMF解混算法(ACBNMF)、最小化光谱相关度约束的NMF方法(MSCCNMF)和最小体积约束的非负矩阵分解(MVCNMF)等代表性NMF解混参考算法,解混精度有所提高;同时,降低了对于先验知识的依赖程度,拓宽了适用范围。 相似文献
13.
最小光谱相关约束NMF的高光谱遥感图像混合像元分解 总被引:1,自引:0,他引:1
提出了一种最小化光谱相关度约束的非负矩阵分解方法。该方法根据高光谱遥感图像中端元之间具有不相关性这一特点,提出了一种光谱相关度函数。该函数度量光谱之间的相关程度,函数值越小,光谱间的相关度越小。通过联合最小化光谱相关度函数和非负矩阵分解误差函数,使获得的光谱之间具有最小的相关性,从而获得端元光谱以及组分图。模拟实验和真实实验证明了算法的有效性。 相似文献
14.
针对线性光谱解混方法,全约束条件下的最小二乘准则和正交子空间投影(OSP),因缺乏物理约束条件使得组分丰度估值容易出现负值这一问题,该文在线性光谱混合分析模型中增加光谱组分丰度"和为1"且为"非负"的约束条件,提出了归一化地物子空间投影下(NMSP)的光谱解混方法。该方法假定一条基准端元已知以消除组分之间的相关性,再基于基准端元对端元矩阵和影像矩阵进行平移,进一步消除像元在端元方向投影时原点引起的错误。实验结果表明,与约束条件下的OSP分类器以及最小二乘法相比,NMSP在光谱解混中可以得到更加合理的地物组分丰度且能保持端元丰度"非负"和稀疏的物理特性。 相似文献
15.
针对高光谱非线性混合模型中的共线性问题,提出了一种非监督的增强型非线性自编码网络方法 ENAE(Enhanced Nonlinear Autoencoder)。通过结合自编码网络在挖掘数据内在结构、提取特征方面的优势,引入端元正则项减弱端元间的共线性效应,从而提高高光谱混合像元分解精度。ENAE方法的实现步骤主要包括两部分:一是网络结构初始化,二是非线性分解。网络结构初始化是确定编码器的节点数以及端元和丰度的初值;非线性分解则主要是实现损失函数的最小化。通过模拟数据、城市区域真实数据和高分五号卫星高光谱数据的实验,得到了相较于传统非线性分解方法更高的精度,证明了ENAE方法的鲁棒性。 相似文献
16.
17.
Hyperion高光谱影像中的坏线将直接影响后续应用的准确性。针对Hyperion高光谱辐射率数据的特点,考虑影像中坏线像元与邻近像元在空间和光谱上的相似性,提出了一种局部空间-光谱相似性测度(local spectral-spatial similarity measure,LS3M),以实现对Hyperion高光谱数据的描述和坏线修复。LS3M由空间和光谱两部分的相似性测度构成,前者为欧氏距离度量,后者组合了Canberra距离和光谱相关角(spectral correlation angle,SCA)。考虑到Hyperion高光谱不同波段的辐射率特性,引入信息熵对SCA进行约束。针对相似像元的邻近搜索问题,引入相似度均值与方差对光谱相似性阈值进行动态调整。为验证该方法的有效性,选取了沙漠、草原、森林、城郊、沿海城市和内陆城市6种典型场景的Hyperion高光谱数据进行模拟坏线的定量误差分析和真实坏线的定性评价;通过与邻域均值法及常规光谱相似性测度的对比,证实LS3M法坏线修复精度更高,稳定性更好。 相似文献
18.
基于地性线分级的DEM信息量计算方法研究 总被引:1,自引:0,他引:1
主要对基于DEM提取的地性线进行信息量的定量分析,探讨地性线的信息量与分辨率、地形单元的关系。这个过程中首先利用河网的自相似理论研究与当前DEM所代表的地貌详细程度相适宜的地性线提取的阈值区间,并讨论此阈值下地性线的分级,以此为基础通过以该分级为权重进行DEM地形信息量的计算。实践证明,这种顾及地性线等级的DEM信息量计算方法能较准确地反映地性线的分布规律和不同等级的要素造成的信息量度量差异。 相似文献
19.