首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高光谱遥感影像混合像元分解研究进展   总被引:5,自引:1,他引:5  
受高光谱成像仪低空间分辨率及复杂地物的影响,高光谱遥感图像存在大量混合像元。为提高地表分类精度以及满足亚像元级目标探测的需求,混合像元分解技术一直是高光谱遥感研究热点之一。本文主要对高光谱混合像元分解技术中的核心问题:端元数目估计、端元提取算法、丰度估计算法进行综述,系统地分析了各种典型算法的原理及优缺点,进一步阐述研究过程中建立高精度遥感混合反演模型与遥感产品业务化中的混合像元分解技术难题,同时针对今后混合像元分解技术发展方向,指出在继续引入新型算法理论方法基础上,结合用户应用需求,推进高光谱混合像元分解算法业务化应用,为高光谱遥感工程化应用提供支持。  相似文献   

2.
高光谱遥感是以成像光谱学为基础发展起来的一项综合性遥感技术,它能够同步记录成像区域内地物的空间信息和光谱信号,故而也称为“成像光谱遥感”。高光谱遥感所获取的数据称为“高光谱遥感图像”,相较于传统的遥感数据,高光谱遥感图像具有光谱分辨率高和“图谱合一”的特点,目前已成为遥感工程应用中的重要支撑数据之一。然而,受空间分辨率限制,混合像元(即某一像元内包含多种类型的地物)问题始终限制着高光谱遥感在精细化地物信息提取工作中的作用。混合像元分解(“解混”)是现阶段处理混合像元问题最有效的分析方法,旨在从亚像元角度出发,获取像元中纯净的光谱信号(“端元”),并分析出各类端元在像元内所占的比例(“丰度”)。在遥感领域,为实现地物信息精细化解译,目前已发展出不同类型的解混方法,在一定程度上解决了混合像元问题对遥感定量化分析的制约。如今,随着深度学习的发展,越来越多的先进理论和工具被用于处理混合像元问题,发展出了一类基于深度学习的新型解混方法。这些新方法以光谱混合模型为桥梁,用深度学习方式来解译光谱混合现象。相比于传统的解混方法,基于深度学习的解混方法在隐藏信息的挖掘和利用方面更具优势,对先验知识依赖程...  相似文献   

3.
最小光谱相关约束NMF的高光谱遥感图像混合像元分解   总被引:1,自引:0,他引:1  
提出了一种最小化光谱相关度约束的非负矩阵分解方法。该方法根据高光谱遥感图像中端元之间具有不相关性这一特点,提出了一种光谱相关度函数。该函数度量光谱之间的相关程度,函数值越小,光谱间的相关度越小。通过联合最小化光谱相关度函数和非负矩阵分解误差函数,使获得的光谱之间具有最小的相关性,从而获得端元光谱以及组分图。模拟实验和真实实验证明了算法的有效性。  相似文献   

4.
基于尺度下降理论,利用高时间分辨率的MODIS遥感影像数据,结合同时间段高空间分辨率的ETM+遥感影像及其分类数据,应用混合像元分解技术,获得了不同时间段的MODIS子像元类别反射率数据。通过类别反射率与像元反射率间的关系模型,以原有的ETM+影像的像元反射率和时间序列的类别反射率,模拟出具有高时间分辨率与高空间分辨率特征不同时间段的模拟影像,实现了遥感影像地物类别反射率在时间上和空间上的细化。通过计算模拟影像与真实影像的相关系数,以及比较模拟影像与真实影像生成的NDVI影像,验证了该方法的有效性。  相似文献   

5.
基于神经网络的高光谱混合像元分解方法研究   总被引:1,自引:0,他引:1  
当前遥感图像分类通常假设每一个像元都是由一类地物组成,对混合像元重视不够。但事实上许多像元都是混合像元,光谱是几种地物的混合光谱。高光谱遥感是当前遥感技术发展的前沿技术,特别在混合像元分解方面体现出明显的优越性。分别采用线性混合模型、BP神经网络等进行混合像元分解的试验,结果表明BP神经网络模型能够取得较好的效果。  相似文献   

6.
冯如意  王力哲  曾铁勇 《测绘学报》2023,52(7):1187-1201
高光谱遥感图像光谱分辨率高、波谱连续、图谱合一,这为精细地物分类、探测和识别提供了数据基础。然而,由于高光谱遥感图像空间分辨率的局限性及地物场景的复杂分布,混合像元普遍存在于高光谱遥感图像。混合像元是高光谱遥感图像精细信息提取与分析中的难点。解决混合像元问题,实现亚像元级信息的提取与分析是近年来高光谱遥感图像解译的热点和前沿。本文系统梳理了高光谱遥感图像亚像元信息提取的主要研究内容,具体从混合像元分解、亚像元制图及亚像元目标探测3个研究方向综述了经典方法,并对国内外相关方向的研究进展、发展前沿及主要挑战进行了分析与评价,最后分析讨论了高光谱遥感图像亚像元信息提取研究在模型构建、优化求解及与应用结合等方面的研究趋势及方向。  相似文献   

7.
基于混合像元分解的水体遥感图像去云法   总被引:9,自引:0,他引:9  
吴传庆  王桥  杨志峰 《遥感学报》2006,10(2):176-183
大型内陆水体的遥感图像中往往存在着不均匀薄云或者是气溶胶的影响,由于种种原因,传统的大气辐射校正算法无法消除这种不均匀影响,这就给遥感图像的大气校正带来了很大困难。由于水体属于低反射率地物,这种薄云或者气溶胶的不均匀性带来的误差,极大地降低了水体遥感图像的信噪比,进而影响水体信息遥感提取精度。根据部分太湖地区的遥感图像和地面实测数据,作者以一种新的思路来尝试解决这个问题。该方法充分考虑了水气环境的特点,把水体像元光谱看作水、污染物和气溶胶(薄云)等光谱的混和。基于混合像元模型,该方法有效地消除了薄云和气溶胶的影响,可使我们通过遥感手段更加精确地提取水质信息。  相似文献   

8.
刘帅  邢光龙 《测绘学报》1957,49(12):1600-1608
受成像光谱仪性能与复杂地物分布的影响,高光谱图像存在大量的混合像元。传统的基于学习的混合像元分解方法通常都是浅层模型,或缺少对空间、光谱信息的综合应用。本文提出一种多维卷积网络协同的混合像元分解深层模型,采用多种维度卷积网络能更充分利用多种维度语义信息,有利于估计小样本和高维的高光谱图像混合像元丰度。对训练数据进行增广处理,构建光谱维、空间维和立方体3种卷积神经网络;设计了融合层,协同3种卷积神经网络提取特征,“端到端”的估计混合像元丰度值;模型使用了批量归一化、池化和Dropout方法避免过拟合现象。试验结果表明,多维卷积网络协同方法的引入能更有效地提取空-谱特征信息,与其他的卷积网络解混模型相比,估计的混合像元丰度精度有显著提高。  相似文献   

9.
刘帅  邢光龙 《测绘学报》2020,(12):1600-1608
受成像光谱仪性能与复杂地物分布的影响,高光谱图像存在大量的混合像元。传统的基于学习的混合像元分解方法通常都是浅层模型,或缺少对空间、光谱信息的综合应用。本文提出一种多维卷积网络协同的混合像元分解深层模型,采用多种维度卷积网络能更充分利用多种维度语义信息,有利于估计小样本和高维的高光谱图像混合像元丰度。对训练数据进行增广处理,构建光谱维、空间维和立方体3种卷积神经网络;设计了融合层,协同3种卷积神经网络提取特征,"端到端"的估计混合像元丰度值;模型使用了批量归一化、池化和Dropout方法避免过拟合现象。试验结果表明,多维卷积网络协同方法的引入能更有效地提取空-谱特征信息,与其他的卷积网络解混模型相比,估计的混合像元丰度精度有显著提高。  相似文献   

10.
提出了基于支持向量机(support vector machine,SVM)的高光谱遥感图像亚像元定位方法。全变分(total variation,TV)模型是经典的保边缘平滑滤波器,本文将其引入作为预处理,来提高混合像元分解及亚像元定位的精度;本文方法在训练和检验样本的构建过程中,依据空间相关性理论,同时考虑了中心像元及其邻近像元丰度值对亚像元类别归属的影响;在监督分类训练和检验过程中,通过剔除纯净像元来缩减样本数量,在保证算法准确性的同时提高了效率。对真实高光谱遥感数据进行了实验,主观评价和定量分析验证了本文方法的有效性。  相似文献   

11.
遥感混合像元分解,作为一种遥感分类与制图的方法,具有其独特的优势.利用新疆阜康地区的Hyperion遥感影像,在ENVI/IDL软件运行环境下,分别采用沙漏算法,SMACC算法和体积法进行端元提取,并对3种方法进行了比较分析,从中选择符合实际的沙漏算法提取的端元,作为最终端元.在此基础上,分别运用最小二乘法、OSP算法...  相似文献   

12.
吴波  熊助国 《测绘学报》2012,41(2):205-212
提高混合像元线性分解精度的一个关键点在于改善端元光谱矩阵的构成。本文提出一种基于光谱多尺度分割特征的混合像元分解方法。首先在分割段内离差平方和最小准则下,对高光谱影像的光谱进行多尺度分割,并以各分割段中对应像元的光谱平均值为光谱特征,最后以限制性的最小二乘方法估计出混合像元的组分。模拟与真实数据的实验结果表明,本文方法能够较大的提高遥感影像混合像元的分解精度,并且优于光谱维小波特征的分解。  相似文献   

13.
黄河口遥感图像光谱混合分解   总被引:6,自引:0,他引:6  
探讨了用逻辑斯蒂法进行光谱混合分解的新技术,采用黄河口TM图像进行了分析。结果证明,它不仅能给出分类结果图像,而且能产生组成像元各地类的丰度图像,说明分类图像是在某种置信度下的结果。  相似文献   

14.
高光谱遥感影像较低的空间分辨率使得混合像元大量存在于影像中,不仅影响了基于高光谱影像的地物要素识别能力,而且还降低了高光谱影像的分类精度。本文提出了一种基于模糊混合像元分解的高光谱影像分类方法。该方法主要利用约束能量最小化法设计的FIR线性滤波器,使得影像通过滤波器后输出与每类地物类别相关的"丰度图",其维数等于类别数;最后利用类中心匹配分类法实现高光谱影像的分类。实验结果表明,提出的分类方法与直接利用类中心匹配分类法相比,提高了影像的分类精度。  相似文献   

15.
基于支撑向量回归的高光谱混合像元非线性分解   总被引:11,自引:3,他引:11  
吴波  张良培  李平湘 《遥感学报》2006,10(3):312-318
提出了基于支撑向量回归的高光谱混合像元自动分解.首先利用投影迭代的方法自动寻找到影像的典型地物光谱,然后利用Hapke近似函数模拟出非线性的训练和测试数据.支撑向量回归的混合像元分解方法与基于基函数分解方法的不同点是不需要预先确定非线性的映射形式,它通过核函数,把像元矢量从低维空间映射到高维特征空间,使得在特征空间中构造的线性光谱组合对应着原始空间(像元空间)的非线性组合特性,从而揭示了典型地物光谱之间的高阶性质,提高了混合像元的分解精度.实验结果证明,这种方法具有很高的混合像元的分解精度.利用模拟数据作分解精度的评价,表明97%以上的像元分解绝对误差不大于10%,而各类总体平均平方根误差均小于3.5%.  相似文献   

16.
基于混合像元的遥感图像分类技术   总被引:13,自引:0,他引:13  
本文提出了混合像元的概念,研究了基于混合像元的遥感图像分类问题,根据最小二乘法的原理导出了混合像元的分类算法。实验表明:在多光谱图像分类中考虑混合像元的客观存在,可以大大提高遥感图像的分类精度。  相似文献   

17.
卓莉  曹晶晶  王芳  陶海燕  郑璟 《遥感学报》2015,19(2):273-287
针对非负矩阵盲信号分离(NMF)用于混合像元分解易陷入局部极小值的不足,将非监督端元提取与盲分解方法相结合,构建了一种基于目标端元修正的混合像元盲分解模型(ATGP-NMF)。ATGP-NMF模型利用非监督正交子空间投影算法(ATGP)和非负最小二乘法(NNLS)获取NMF盲分离的初始值,然后将获得初始目标端元光谱与丰度输入NMF模型,通过迭代运算不断逼近优化目标而得到最终的端元光谱和端元丰度。为了检验模型对于各类数据的有效性和适用性,将ATGP-NMF与传统NMF分别应用于模拟仿真数据、室内控制数据和真实遥感影像3类实验数据进行分析验证。结果表明,ATGP-NMF模型具有较好的适用性,在没有先验信息、先验信息很少,以及纯像元假设不存在情况下都能较好地分解混合像元,且能够更好克服局部极小问题,提高混合像元分解的精度。  相似文献   

18.
基于SL-ICA算法的SAR图像混合像元分解   总被引:2,自引:0,他引:2  
为解决合成孔径雷达(SAR)图像存在大量混合像元的问题,针对传统ICA不能有效解决混合像元分解这一缺陷,提出一种新的独立成分分析算法--有监督学习ICA算法(SL-ICA).其目标函数是在原ICA负熵目标函数基础上增加监督学习的约束条件项,进而在同一目标函数内实现负熵和约束条件的统一,在最大化负熵的同时也最小化了约束条件的误差,此外,采用一种新的双梯度下降法优化迭代,提高计算速度.并以人工模拟SAR图像和北京地区ENVISAT-ASAR作为数据源进行实验,实验结果明显优于主成分分析方法(PCA)的分解结果.  相似文献   

19.
基于支撑向量机概率输出的高光谱影像混合像元分解   总被引:5,自引:0,他引:5  
提出利用支撑向量机(SVM)后验概率来分解高光谱影像的混合像元,通过支撑向量机的输出值转化为两两配对的后验概率,再由两两配对的概率值求得多类后验概率,并以像元所属类别的后验概率作为地物的组分信息。实验结果表明,该方法能较好地估计出混合像元的组分比。  相似文献   

20.
提出了一种基于改进BP神经网络的混合像元分解模型,通过加入动量项和变步长法对标准BP算法进行改进。利用该模型对多光谱遥感影像进行了处理分析,与一般BP分解模型进行比较后证明:改进的BP神经网络模型具有正确率高,自适应能力强的优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号