首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Packages of Late Paleozoic tectonic nappes and associated major NE-trending strike-slip faults are widely developed in the Altai–Sayan folded area. Fragments of early deformational phases are preserved within the Late Paleozoic allochthons and autochthons. Caledonian fold-nappe and strike-slip structures, as well as accompanying metamorphism and granitization in the region, are typical of the EW-trending suture-shear zone separating the composite Kazakhstan–Baikal continent and Siberia. In the Gorny Altai region, the Late Paleozoic nappes envelop the autochthon, which contains a fragment of the Vendian–Cambrian Kuznetsk–Altai island arc with accretionary wedges of the Biya–Katun’ and Kurai zones. The fold-nappe deformations within the latter zones occurred during the Late Cambrian (Salairian) and can thus be considered Salairian orogenic phases. The Salairian fold-nappe structure is stratigraphically overlain by a thick (up to 15 km) well-stratified rock unit of the Anyui–Chuya zone, which is composed of Middle Cambrian–Early Ordovician fore-arc basin rocks unconformably overlain by Ordovician–Early Devonian carbonate-terrigenous passive-margin sequences. These rocks are crosscut by intrusions and overlain by a volcanosedimentary unit of the Devonian active margin. The top of the section is marked by Famennian–Visean molasse deposits onlapping onto Devonian rocks. The molasse deposits accumulated above a major unconformity reflects a major Late Paleozoic phase of folding, which is most pronounced in deformations at the edges of the autochthon, nearby the Kaim, Charysh–Terekta, and Teletskoe–Kurai fault nappe zones. Upper Carboniferous coal-bearing molasse deposits are preserved as tectonic wedges within the Charysh–Terekta and Teletskoe–Kurai fault nappe zones.Detrital zircon ages from Middle Cambrian–Early Ordovician rocks of the Anyui–Chuya fore-arc zone indicate that they were primarily derived from Upper Neoproterozoic–Cambrian igneous rocks of the Kuznetsk–Altai island arc or, to a lesser extent, from an Ordovician–Early Devonian passive margin. A minor age population is represented by Paleoproterozoic grains, which was probably sourced from the Siberian craton. Zircons from the Late Carboniferous molasse deposits have much wider age spectra, ranging from Middle Devonian–Early Carboniferous to Late Ordovician–Early Silurian, Cambrian–Early Ordovician, Mesoproterozoic, Early–Middle Proterozoic, and early Paleoproterozoic. These ages are consistent with the ages of igneous and metamorphic rocks of the composite Kazakhstan–Baikal continent, which includes the Tuva-Mongolian island arc with accreted Gondwanan blocks, and a Caledonian suture-shear zone in the north. Our results suggest that the Altai–Sayan region is represented by a complex aggregate of units of different geodynamic affinity. On the one hand, these are continental margin rocks of western Siberia, containing only remnants of oceanic crust embedded in accretionary structures. On the other hand, they are represented by the Kazakhstan–Baikal continent composed of fragments of Gondwanan continental blocks. In the Early–Middle Paleozoic, they were separated by the Ob’–Zaisan oceanic basin, whose fragments are preserved in the Caledonian suture-shear zone. The movements during the Late Paleozoic occurred along older, reactivated structures and produced the large intracontinental Central Asian orogen, which is interpreted to be a far-field effect of the colliding East European, Siberian, and Kazakhstan–Baikal continents.  相似文献   

2.
The paper discusses the spatiotemporal and genetic relationships of hydrothermal Co mineralization in the Altai–Sayan orogen with mafic, alkaline mafic, and granitoid magmatism on the basis of isotopic, geochemical, and geochronological investigations. Four stages of Co mineralization have been distinguished for this region: Early Devonian (D1), Late Devonian–Early Carboniferous (D3–C1), Permo-Triassic (P2–T), and Early Cretaceous (K1). They correspond to periods of large-scale mafic magmatism. Isotopic (Pb, Sr, He) and geochemical studies have shown that Co mineralization is genetically related to mafic and granitoid magmatism. Also, these studies have confirmed that Co deposits are formed with the participation of mantle fluids and are related to chambers of mafic and alkaline mafic melts. Besides, it has been found that ore originated both from magmatic sources and host rocks. A pulsed facies endogenic zonation has been established for Co deposits, Co-bearing ore clusters, and zones with high-temperature Co–As and low-temperature Ni–Co–As mineralization. It has been first established that ores at hydrothermal Co deposits are rich in Pt and Pd.  相似文献   

3.
We present the results of tectonophysical reconstruction of natural stresses of the Earth's crust in the Altai–Sayan mountain region using cataclastic analysis of fault slips and seismic data on the focal mechanisms of earthquakes. This method allows one to obtain the parameters of the total stress tensor by invoking additional data: generalized experimental data on the brittle fracture of rocks, seismic data on the released stress of strong earthquakes, and data on the topography and density of rocks. Results of the tectonophysical reconstruction of stresses showed significant inhomogeneity of the stress state, which is manifested not only in the variation of the strike and dip of the principal axes of the stress tensor, determining changes in the geodynamic regime of the Earth's crust, but also in the close location of the regions of high and low isotropic tectonic pressure in relation to the lithostatic pressure. The variance of the ratio of tectonic pressure to lithostatic pressure is in the range of 0.59–1.31, with an average value for the region close to unity. This paper discusses internal or external mechanisms capable of generating the stress field obtained by the tectonophysical reconstruction.  相似文献   

4.
Based on the systematic investigation of the geochemical and isotopic (Sr and Nd) characteristics of basic rocks from various volcanic areas of the Devonian Altai-Sayan rift system, the compositions of mantle magma sources were characterized, and the geodynamic scenarios of their entrainment into rifting processes were reconstructed. It was found that the titanium-rich basic rocks (2.5 < TiO2 < 4.2 wt %) of this region are enriched in lithophile trace elements, including the rare earth elements, compared with N-MORB and are similar in composition to intraplate subalkali basalts of the OIB type. In contrast, moderate-titanium basic rocks (1.1 < TiO2 < 2.5 wt %) are mainly depleted in the highly charged incompatible elements Th, U, Nb, and Ta (La/Yb = 1.2−2.2) and, to a lesser extent, in Zr, Hf, and LREE ((La/Yb)N < 7), but are enriched in Ba. With respect to these characteristics, the moderate-titanium basites are similar to rocks formed in subduction environments. The geochemical parameters of the basites are strongly variable, which probably reflects the heterogeneity of the mantle sources that contributed to the formation of the rift system. In particular, the most notable variations in rock composition related to an increase in the contribution of an OIB-type source to magma composition were observed in the eastern direction, i.e., inland from the paleocontinent margin. The isotopic composition of the basites is relatively stable within individual rift zones and significantly variable at a comparison of rocks from different zones of the region. Based on the isotopic characteristics of the rocks, three melt sources were identified. One of them is chemically similar to the PREMA and is a common component in all observed trends of isotopic variations, irrespective of the position of the particular assemblage in the structure of the region. This component dominates the composition of the titaniumrich basalts with geochemical signatures of the derivatives of enriched mantle reservoirs of the E-MORB and OIB types and is considered as a plume source. Two other isotopic melt sources are related to subduction processes, which is indicated by their dominance during the formation of the moderate-titanium basalts showing the geochemical signatures (primarily, Ta-Nb depletion) of typical volcanic-arc rocks. These differences are consistent with the formation of the Altai-Sayan rift system in a complex geodynamic setting, which developed under the influence of intraplate magma sources (mantle plume) on the region of melt generation in an active continental margin (subduction zone).  相似文献   

5.
We generalize results of geological, geochronological, geochemical, and isotope-geochemical studies of the Vendian–Early Cambrian island-arc plagiogranitoid magmatism in the Altai–Sayan folded area and in the Lake Zone of western Mongolia. Based on these data, we analyzed the scales of development of plagiogranitoid magmatism, studied the petrologic composition and isotope characteristics of granitoids, and established the main sources of plagiogranitoid-generating melts and the leading mechanisms of formation of Early Caledonian juvenile crust.  相似文献   

6.
7.
Based on geological data and the geochemical and isotopic (Sr, Nd) parameters of the Devonian volcanic associations of the Minusa basin, the main regularities of volcanism development are considered, the composition of magmatic sources is studied, and the geodynamic mechanisms of their involvement in rifting are reconstructed. The early stage of formation of the Minusa basin was characterized by intense volcanism, which resulted in differentiated and, more seldom, bimodal volcanic complexes composed of pyroclastic rocks and dolerite sills. At the late stage, only terrigenous deposits accumulated in the basin. It has been established that the basites are similar in composition and are intermediate in geochemical characteristics between intraplate rocks (OIB) and continent-marginal ones (IAB). The basites, like OIB, have high contents of all lithophile elements, which is typical of enriched mantle sources, and, like IAB, show negative anomalies of Nb, Ta, Ti, and, to a smaller extent, Rb, Th, Zr, and Hf, selective enrichment in Pb and Ba (and, sometimes, Sr), and a weak REE differentiation (7 < (La/Yb)N < 17). In contrast to the basins in other segments of the Devonian Altai–Sayan rift area, the igneous associations in the Minusa basin are characterized by a worse expressed geochemical inhomogeneity of rocks and lack of high-Ti (> 2 wt.% TiO2) basites. The Sr and Nd isotope compositions of the Minusa basites deviate from the mantle rock series toward the compositions with high radiogenic-strontium and low REE contents.This points to the melting of a mantle substratum (PREMA-type) and carbonate-rich sedimentary rocks, which were probably assimilated by basaltic magma. The correlations between the contents of trace incompatible elements in rocks with SiO2 = 53–77 wt.% testify to the assimilation of crustal substrata by parental basaltic melts and the subsequent differentiation of contaminated magmas (AFC model). We propose a model for the formation of primary melts with the simultaneous participation of magmatic sources of two types: plume and fluid-saturated suprasubductional, localized beneath the active continental margin.  相似文献   

8.

The locations of areas prone to strong earthquakes (M ≥ 6.0) in the Altai–Sayan–Baikal region are determined. Based on a scheme of morphostructural zoning of the region and by using the CORA-3 pattern recognition algorithm, all intersections of morphostructural lineaments are separated into two classes: the highly seismic intersections in the vicinities of which strong earthquakes can occur and low seismic in the vicinities of which only earthquakes with M < 6.0 are possible. Recognition was performed for the vectors the components of which were measured values of the geological–geophysical characteristics describing the respective intersection. The result obtained allows the zones of high seismic hazard to be identified more reliably in the region.

  相似文献   

9.
Sedimentary processes in the paleocoastal part of the Bengal basin that occured in the Tertiary and Quaternary have been addressed. Three indicators were used: sedimentary bedding forms, microstructure of the sediment, and trace fossils. Various forms of sedimentary structures developed under the influence of dynamic geomorphic processes in the study area in the Quaternary. The microstructure analysis of the sedimentary materials was made by two methods: microphotography and Digital Color Analysis (DCA). The microstructure analysis shows that the geomorphic process remained very dynamic in the Quaternary, influencing the form, thickness, and mineral composition of the sediment strata. The enrichment of the sediments in heavy minerals evidences either oscillating or combined flow sedimentation, while under stable conditions light-mineral deposition took place. The digital data of microfabric study by the DCA method also show that larger particles deposited in the oscillating or high-flow environment and evidence a greater amount of heavy minerals like ferruginous materials. Trace fossils found in the sediments of this area also strongly support the concept that the environment remained dynamic during the Tertiary and Quaternary. The Late Tertiary deposition shows that, during these periods, the sediments were transported from tide-dominated marine coast with low flow energy, which is typical of hot and humid conditions. From Late Tertiary to Early Quaternary, the macrotidal coast became mesotidal (wave-dominated). The second phase is the Middle Pleistocene, when the environment was stable, favoring the continuous deposition of finer particles under low- to medium-flow energy conditions. The third phase, the Recent, is marked by the shoreline shift and modification of the environment. In the Early–Middle Holocene, the shoreline started to shift, which modified the geomorphic conditions of this place from coastal to estuarine and, finally, inland fluvial.  相似文献   

10.
The problem of the geochemical classification of granitoid magmatism in the zone of interaction of oceanic and continental plates is considered in this paper by the example of Mesozoic granitoids of the Krutogorova and Kol’ intrusive complexes of the Sredinny Range, Kamchatka. Based on new geological, petrological, and geochemical data (including the Sr, Nd, and Pb isotope systematics of rocks), it was shown that the protoliths of the granitoids were volcanic-terrigenous sequences accumulated within a Cretaceous marginal basin in the eastern Asian continent. The granitoids crystallized at ~80 Ma (SHRIMP U-Pb age) under the conditions of the andalusite-sillimanite depth facies corresponding to a pressure of approximately 2 kbar and induced contact metamorphism in the host sequences, which are made up of sediments with sheetlike bodies of mafic and ultramafic volcanics (Kikhchik Group and its metamorphic analogues of the Kolpakova, Kamchatka, and Malki groups). The lower age boundary of sedimentation of the host sequences and the time of basic volcanism coincide with the beginning of the formation of the Okhotsk-Chukotka volcanic belt. Such a correlation is not accidental and reflects a genetic connection between the processes of magmatic activation in the continental-margin sedimentary basin and the formation of the continental margin volcanic belt in eastern Asia. The development of basic volcanism in the sedimentary basin accompanied by the ascent of deep fluids resulted in the entrainment of crustal materials into magmatic processes and the formation of crustal magma chambers, the activity of which was manifested by the eruption of intermediate and silicic lavas and emplacement of shallow granitoid intrusions of considerable areal extent. These intrusions induced contact metamorphism in the enclosing volcanosedimentary complexes. The subsequent Eocene (60-50 Ma) collision processes related to the obduction of the oceanic segment of the crust of the transitional zone onto the Asian continental margin resulted in the tectonic piling of the rocks of Central Kamchatka and strong crustal thickening, which was favorable for its metamorphic alteration reaching the kyanite-sillimanite depth level of the amphibolite facies under the influence of a thermal front and deep fluids affecting lower crustal zones. The Eocene regional metamorphism caused not only metamorphic transformations, migmatization, and granitization in the sequences of the Sredinny Range, which underwent only contact hornfels formation during the first stage, but also metamorphism, migmatization, and extensive foliation in the igneous rocks of the Kol’ and Krutogorova complexes, which were transformed into gneissic metagranites.  相似文献   

11.
This work discusses the structural and compositional correlation of an unusual group of rocks that comprise post-folding massifs and dikes in the eastern Baltic Shield, which formed between 1.85 and 1.7 Ga. Occurring from the Barents Sea in the north to the Gulf of Finland in the south, these structures are associated with areas of granulite facies rocks that formed under conditions corresponding to the deep continental crust. Large-scale extension of continental crust, which led to the exhumation of the granulite complex, simultaneous with the formation of metasomatic formations and manifestations of post-folding magmatism, was confined to the periphery of a large circular structure, which is interpreted by us as the Baltic nucleus, or a tectonic portion of the continental crust at the end of early Precambrian. The formation of enriched mantle, a source of the Paleozoic alkaline melts, can also be associated with these processes of extension.  相似文献   

12.
Ischia, one active volcano of the Phlegraean Volcanic District, prone to very high risk, is dominated by a caldera formed 55 ka BP, followed by resurgence of the collapsed area. Over the past 3 ka, the activity extruded evolved potassic magmas; only a few low-energy explosive events were fed by less evolved magmas. A geochemical and Sr–Nd–O isotope investigation has been performed on minerals and glass from products of three of such eruptions, Molara, Vateliero, and Cava Nocelle (<2.6 ka BP). Data document strong mineralogical, geochemical, and isotopic heterogeneities likely resulting from mingling/mixing processes among mafic and felsic magmas that already fed the Ischia volcanism in the past. Detailed study on the most mafic magma has permitted to investigate its origin. The mantle sector below Ischia underwent subduction processes that modified its pristine chemical, isotopic, and redox conditions by addition of ≤1 % of sediment fluids/melts. Similar processes occurred from Southeast to Northwest along the Apennine compressive margin, with addition of up to 2.5 % of sediment-derived material. This is shown by volcanics with poorly variable, typical δ18O mantle values, and 87Sr/86Sr progressively increasing toward typical continental crust values. Multiple partial melting of this modified mantle generated distinct primary magmas that occasionally assimilated continental crust, acquiring more 18O than 87Sr. At Ischia, 7 % of Hercynian granodiorite assimilation produced isotopically distinct, K-basaltic to latitic magmas. A SW–NE regional tectonic structure gave these magmas coming from large depth the opportunity to mingle/mix with felsic magmas stagnating in shallower reservoirs, eventually triggering explosive eruptions.  相似文献   

13.
There are several source rock units in the Zagros Basin, but the Cretaceous Kazhdumi and Paleogene Pabdeh formations probably have produced the majority of the commercial hydrocarbons in this area. Among the hydrocarbon provinces of Iran, the Dezful Embayment, which is located southwest of Zagros Mountains, is one of the most prolific regions in the Middle East. Numerous studies have been made in the northern part of the Dezful Embayment, but relatively few have been done in its southern part. The present study focuses on organic matter characterization of two potential source rocks (Kazhdumi and Pabdeh formations) in southern part of the Dezful Embayment. Cuttings samples (114) were collected from 10 wells and evaluated using Rock–Eval pyrolysis and organic petrography in order to characterize the content and type of organic matter and thermal maturity. The results showed that the average total organic carbon (TOC) content of Kazhdumi and Pabdeh formations are 2.48 and 1.62 wt%, respectively. The highest TOC contents for both formations are found in the northern compartment and decreased gradually toward the south. Pyrolysis data reveal that organic matter has a fair to very good hydrocarbon generation potential and are classified as Type II–III and Type III. Rock–Eval Tmax and vitrinite reflectance show that the majority of samples are in the early mature to mature stage of the oil generation window.  相似文献   

14.
The Guarguaraz Complex in West Argentina formed during collision between the microplate Chilenia and South America. It is composed of neritic clastic metasediments with intercalations of metabasic and ultrabasic rocks of oceanic origin. Prograde garnet growth in metapelite and metabasite occurred between 1.2 GPa, 470°C and 1.4 GPa, 530°C, when the penetrative s2-foliation was formed. The average age of garnet crystallization of 390 ± 2 Ma (2σ) was determined from three four-point Lu–Hf mineral isochrones from metapelite and metabasite samples and represents the time of collision. Peak pressure conditions are followed by a decompression path with slight heating at 0.5 GPa, 560°C. Fluid release during decompression caused equilibration of mineral compositions at the rims and also aided Ar diffusion. An 40Ar/39Ar plateau age of white mica at 353 ± 1 Ma (1σ) indicates the time of cooling below 350–400°C. These temperatures were attained at pressures of 0.2–0.3 GPa, indicative of an average exhumation rate of ≥1 mm/a for the period 390–353 Ma. Late hydrous influx at 0.1–0.3 GPa caused pervasive growth of sericite and chlorite and reset the Ar/Ar ages of earlier coarse-grained white mica. At 284–295 Ma, the entire basement cooled below 280°C (fission track ages of zircon) after abundant post-collisional granitoid intrusion. The deeply buried epicontinental sedimentary rocks, the high peak pressure referring to a low metamorphic geotherm of 10–12°C/km, and the decompression/heating path are characteristics of material buried and exhumed within a (micro) continent–continent collisional setting.  相似文献   

15.
Gold mineralization at copper-skarn deposits (Tardanskoe, Murzinskoe, Sinyukhinskoe, Choiskoe) in the Altai–Sayan folded area is related to different hydrothermal-metasomatic formations. It was produced at 400–150 ºC in several stages spanning 5–6 Myr, which determined the diversity of its mineral assemblages. Gold mineralization associated with magnetite bodies is spatially correlated with magnesian and calcareous skarns, whereas gold mineralization in crushing zones and along fault sutures in moderate- and low-temperature hydrothermal-metasomatic rocks (propylites, beresites, serpentinites, and argillizites) is of postskarn formation. Different stages were manifested with different intensities at gold deposits. For example, the Sinyukhinskoe deposit abounds in early high-temperature mineral assemblages; the Choiskoe deposit, in low-temperature ones; and the Tardanskoe and Murzinskoe deposits are rich in both early and late gold minerals. Formation of commercial gold mineralization at different copper-skarn deposits is due to the combination of gold mineralization produced at different stages as a result of formation of intricate igneous complexes (Tannu-Ola, Ust’-Belaya, and Yugala) composed of differentiated rocks from gabbros to granites.  相似文献   

16.
The source region of the Yellow River, located in the northeastern portion of the Qinghai–Tibet Plateau, plays a critical role in water conservation, biodiversity protection, and wetland conservation. Aeolian desertification of this area is an important concern. Remote sensing and GIS technology were employed to assess the trends in aeolian desertification from 1975 to 2005. The monitoring results showed that, aeolian desert land increased from 15,112 to 17,214 km2 during 1975–2005. In addition, it was found that the area of aeolian desertification increased rapidly from 1975 to 1990, was stable from 1990 to 2000, and slightly decreased from 2000 to 2005. Increasing temperature, overgrazing, and drainage of wetlands have been key driving factors of aeolian desertification. Thus, to control the expansion of aeolian desert lands in the source region of the Yellow River and to rehabilitate existing desert areas, the priority should be given to altering human behavior in these areas.  相似文献   

17.
Two island arcs of different ages have been reconstructed in the Neoproterozoic history of southeastern East Sayan: Dunzhugur and Shishkhid. According to earlier concepts, the Dunzhugur arc formed at ~1020 Ma and underwent collision with the Siberian(?) continent at ~810 Ma. The Shishkhid arc formed somewhat earlier than 800 Ma and existed till the end of the Late Baikalian (~600 Ma, from indirect data). This primitive geologic history, when each arc existed for 200 Myr, was suggested because of the deficit of direct data, and its reconstruction cast doubt. In this work we present results of preliminary dating of detrital zircons separated from the volcaniclastic rocks composing the above arcs. We analyzed 12 zircon crystals from the Dunzhugur volcanic clastics, whose 206Pb/238U age varies from 844 ± 8 to 1048 ± 12 Ma (1σ). Five most ancient zircons form a concordant cluster with an age of 1034 ± 9 Ma (2σ). Hence, the arc formed earlier than it was assumed and existed for a long time, most likely, till its collision with the continent. We also studied two zircon samples from the volcaniclastic rocks of the Oka accretionary prism, which probably formed in the Shishkhid arc. All ten crystals of the first sample form a concordant cluster with an age of 813 ± 7 Ma (2σ). The analyzed zircons of the second sample arrange in two clusters, with an age of 775 ± 8 Ma (2σ, nine crystals) and 819 ± 17 Ma (three crystals). Thus, the Shishkhid arc formed earlier than it was assumed, at the end of the Early Baikalian, and underwent active volcanism at least till 775 Ma. Dating of detrital zircons from the volcaniclastics generated at the mature stage of the Shishkhid-arc evolution will help to reconstruct partly or completely its history in the period 775–600 Ma.  相似文献   

18.
19.
Pudukkottai region in the northeastern part of the Madurai Block exposes the garnetiferous pink granite that intruded the biotite gneiss. Charnockite patches are associated with both the rock types. Rb–Sr biotite and Sm–Nd whole-rock isochron ages indicate a regional uplift and cooling at ~550 Ma. The initial Nd isotope ratios (\(\varepsilon _{\text {Nd}}^{\mathrm {t}}=-20\) to ?22) and Nd depleted-mantle model ages (TDM = 2.25 to 2.79 Ga) indicate a common crustal source for the pink-granite and associated charnockite, while the biotite gneiss and the charnockite within it represent an older crustal source (\(\varepsilon _{\text {Nd}}^{\mathrm {t}}= -29\) and TDM = > 3.2 Ga). The Rb–Sr whole-rock data and initial Sr–Nd isotope ratios also help demonstrate the partial but systematic equilibration of Sr isotope and Rb/Sr ratios during metamorphic mineral-reactions resulting in an ‘apparent whole-rock isochron’. The available geochronological results from the Madurai Block indicate four major periods of magmatism and metamorphism: Neoarchaean–Paleoproterozoic, Mesoproterozoic, mid-Neoproterozoic and late-Neoproterozoic. We suggest that the high-grade and ultrahigh-temperature metamorphism was preceded by magmatism which ‘prepared’ the residual crust to sustain the high PT conditions. There also appears to be cyclicity in the tectono-magmatic events and an evolutionary model for the Madurai Block should account for the cyclicity in the preserved records.  相似文献   

20.
The Altos Cuchumatanes Range is made up of a core of igneous and metamorphic rocks, surrounded by lower Palaeozoic and Mesozoic sedimentary strata. These units constitute the westernmost exposure of basement rocks in Guatemala and represent some of the most important crustal units in the Maya Block. New laser ablation–inductively coupled plasma mass spectrometry U-Pb zircon geochronology allows better definition of their igneous ages, inheritance and petrologic evolution. The Altos Cuchumatanes magmatism occurred during the Middle Ordovician (461 Ma) and lower Pennsylvanian (312–317 Ma), replicating similar age trends present in southern Mexico (Acatlán Complex) and the Maya Block, from Chiapas to central Guatemala (Rabinal-Salamá area) and Belize (Maya Mountains). The U-Pb inheritance from cores of the studied zircons makes it possible to decipher the pre-magmatic history of the area. During the Late Ordovician to Permo-Carboniferous, the Altos Cuchumatanes and Maya Block were located adjacent to northeastern Mexico, near the Mixteco terrane, where Ordovician megacrystic granites intruded a passive-margin sedimentary sequence. The Ordovician granites present at the southern limit of the Maya Block, in the Altos Cuchumatanes, in central Guatemala and in Belize, are the result of partial crustal melting during the initial opening of the Rheic Ocean, when both Maya and Mixteco terranes would have lain close to NW Gondwana until the closure of that ocean. The crystallization of the early Pennsylvanian granites seems to be the result of an E-dipping subduction zone that accommodated convergence between Laurentia and Gondwana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号