首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
陈博  朱永峰  安芳  邱添  陈艺超 《地质通报》2011,30(07):1017-1026
新疆克拉玛依地区出露的早古生代蛇绿混杂岩带规模巨大,岩石单元出露齐全。白碱滩地区的地幔橄榄岩相对比较新鲜,单斜辉石、斜方辉石、尖晶石和橄榄石保存完好。研究表明,白碱滩蛇绿岩就位前,地幔岩发生了大于50km的快速隆升,且没有发生部分熔融。百口泉地区发现的地幔岩普遍遭受了改造,辉石多发生了强烈蚀变(透闪石化),但尖晶石和橄榄石保存较好。百口泉地区出露的地幔岩和白碱滩地幔岩的矿物组成基本一致,表明它们属于同一蛇绿混杂岩带。百口泉蛇绿岩剖面的揭露,将该蛇绿混杂岩带的范围向NE方向延伸了35km。  相似文献   

3.
陈博  朱永峰  安芳  邱添  陈艺超 《地质通报》2011,30(7):1017-1026
新疆克拉玛依地区出露的早古生代蛇绿混杂岩带规模巨大,岩石单元出露齐全。白碱滩地区的地幔橄榄岩相对比较新鲜,单斜辉石、斜方辉石、尖晶石和橄榄石保存完好。研究表明,白碱滩蛇绿岩就位前,地幔岩发生了大于50km的快速隆升,且没有发生部分熔融。百口泉地区发现的地幔岩普遍遭受了改造,辉石多发生了强烈蚀变(透闪石化),但尖晶石和橄榄石保存较好。百口泉地区出露的地幔岩和白碱滩地幔岩的矿物组成基本一致,表明它们属于同一蛇绿混杂岩带。百口泉蛇绿岩剖面的揭露,将该蛇绿混杂岩带的范围向NE方向延伸了35km。  相似文献   

4.
This paper presents field, petrographic–structural and geochemical data on spinel and plagioclase peridotites from the southern domain of the Lanzo ophiolitic peridotite massif (Western Alps). Spinel lherzolites, harzburgites and dunites crop out at Mt. Arpone and Mt. Musinè. Field evidence indicates that pristine porphyroclastic spinel lherzolites are transformed to coarse granular spinel harzburgites, which are in turn overprinted by plagioclase peridotites, while strongly depleted spinel harzburgite and dunite bands and bodies replace the plagioclase peridotites. On the northern flank of Mt. Arpone, deformed, porphyroclastic (lithospheric) lherzolites, with diffuse pyroxenite banding, represent the oldest spinel-facies rocks. They show microstructures of a composite subsolidus evolution, suggesting provenance from deeper (asthenospheric) mantle levels and accretion to the lithosphere. These protoliths are locally transformed to coarse granular (reactive) spinel harzburgites and dunites, which show textures reminiscent of melt/rock reaction and geochemical characteristics suggesting that they are products of peridotite interaction with reactively percolating melts. Geochemical data and modelling suggest that <1–5% fractional melting of spinel-facies DMM produced the injected melts. Plagioclase peridotites are hybrid rocks resulting from pre-existing spinel peridotites and variable enrichment of plagioclase and micro-gabbroic material by percolating melts. The impregnating melts attained silica-saturation, as testified by widespread orthopyroxene replacement of olivine, during open system migration in the lithosphere. At Mt. Musinè, coarse granular spinel harzburgite and dunite bodies replace the plagioclase peridotites. Most of these replacive, refractory peridotites have interstitial magmatic clinopyroxene with trace element compositions in equilibrium with MORB, while some Cpx have REE-depleted patterns suggesting transient geochemical features of the migrating MORB-type melts, acquired by interaction with the ambient plagioclase peridotite. These replacive spinel harzburgite and dunite bodies are interpreted as channels exploited for focused and reactive migration of silica-undersaturated melts with aggregate MORB compositions. Such melts were unrelated to the silica-saturated melts that refertilized the pre-existing plagioclase peridotites. Finally, MORB melt migration occurred along open fractures, now recorded as gabbroic dikes.

Our data document the complexity of rock-types and mantle processes in the South Lanzo peridotite massif and describe a composite tectonic and magmatic scenario that is not consistent with the “asthenospheric scenario” proposed by previous authors. We envisage a “transitional scenario” in which extending subcontinental lithospheric mantle was strongly modified (both depleted and refertilized) by early melts with MORB-affinity formed by decompression partial melting of the upwelling asthenosphere, during pre-oceanic rifting and lithospheric thinning in the Ligurian Tethys realm.  相似文献   


5.
This work considers the studies of melt and fluid inclusions in spinel of ultramafic rocks in the mantle wedge beneath Avacha volcano (Kamchatka). The generations of spinel were identified: 1 is spinel (Sp-I) of the “primary” peridotites, has the highest magnesium number (#0.69–0.71), highest contents of Al2O3 and lowest contents of Cr2O3 (26.2–27.1 and 37.5–38.5 wt %, respectively), and the absence in it of any fluid and melt inclusions; 2 is spinel (Sp-II) of the recrystallized peridotites, has lower magnesium number (Mg# 0.64–0.61) and the content of Al2O3 (18–19 wt %), a higher content of Cr2O3 (45.4–47.2 wt %) and the presence of primary fluid inclusions; 3 is spinel (Sp-III) that is characterized by the highest content of Cr2O3 (50.2–55.4 wt %), the lowest content of Al2O3 (13.6–16.6 wt %), and the presence of various types of primary melt inclusions. The data obtained indicate that metasomatic processing of “primary” peridotites occurred under the influence of high concentrated fluids of mainly carbonate-water-chloride composition with influx of the following petrogenic elements: Si, Al, Fe, Ca, Na, K, S, F, etc. This process was often accompanied by a local melting of the metasomatized substrate at a temperature above 1050°C with the formation of melts close to andesitic.  相似文献   

6.
New evidence for ultrahigh‐pressure metamorphism (UHPM) in the Eastern Alps is reported from garnet‐bearing ultramafic rocks from the Pohorje Mountains in Slovenia. The garnet peridotites are closely associated with UHP kyanite eclogites. These rocks belong to the Lower Central Austroalpine basement unit of the Eastern Alps, exposed in the proximity of the Periadriatic fault. Ultramafic rocks have experienced a complex metamorphic history. On the basis of petrochemical data, garnet peridotites could have been derived from depleted mantle rocks that were subsequently metasomatized by melts and/or fluids either in the plagioclase‐peridotite or the spinel‐peridotite field. At least four stages of recrystallization have been identified in the garnet peridotites based on an analysis of reaction textures and mineral compositions. Stage I was most probably a spinel peridotite stage, as inferred from the presence of chromian spinel and aluminous pyroxenes. Stage II is a UHPM stage defined by the assemblage garnet + olivine + low‐Al orthopyroxene + clinopyroxene + Cr‐spinel. Garnet formed as exsolutions from clinopyroxene, coronas around Cr‐spinel, and porphyroblasts. Stage III is a decompression stage, manifested by the formation of kelyphitic rims of high‐Al orthopyroxene, aluminous spinel, diopside and pargasitic hornblende replacing garnet. Stage IV is represented by the formation of tremolitic amphibole, chlorite, serpentine and talc. Geothermobarometric calculations using (i) garnet‐olivine and garnet‐orthopyroxene Fe‐Mg exchange thermometers and (ii) the Al‐in‐orthopyroxene barometer indicate that the peak of metamorphism (stage II) occurred at conditions of around 900 °C and 4 GPa. These results suggest that garnet peridotites in the Pohorje Mountains experienced UHPM during the Cretaceous orogeny. We propose that UHPM resulted from deep subduction of continental crust, which incorporated mantle peridotites from the upper plate, in an intracontinental subduction zone. Sinking of the overlying mantle and lower crustal wedge into the asthenosphere (slab extraction) caused the main stage of unroofing of the UHP rocks during the Upper Cretaceous. Final exhumation was achieved by Miocene extensional core complex formation.  相似文献   

7.
The Xugou garnet peridotite body of the southern Sulu ultrahigh‐pressure (UHP) terrane is enclosed in felsic gneiss, bounded by faults, and consists of harzburgite and lenses of garnet clinopyroxenite and eclogite. The peridotite is composed of variable amounts of olivine (Fo91), enstatite (En92?93), garnet (Alm20?23Prp53?58Knr6?9Grs12?18), diopside and rare chromite. The ultramafic protolith has a depleted residual mantle composition, indicated by a high‐Mg number, very low CaO, Al2O3 and total REE contents compared to primary mantle and other Sulu peridotites. Most garnet (Prp44?58) clinopyroxenites are foliated. Except for rare kyanite‐bearing eclogitic bands, most eclogites contain a simple assemblage of garnet (Alm29?34Prp32?50Grs15?39) + omphacite (Jd24?36) + minor rutile. Clinopyroxenite and eclogite exhibit LREE‐depleted and LREE‐enriched patterns, respectively, but both have flat HREE patterns. Normalized La, Sm and Yb contents indicate that both eclogite and garnet clinopyroxenite formed by high‐pressure crystal accumulation (+ variable trapped melt) from melts resulting from two‐stage partial melting of a mantle source. Recrystallized textures and P–T estimates of 780–870 °C, 5–7 GPa and a metamorphic age of 231 ± 11 Ma indicate that both mafic and ultramafic protoliths experienced Triassic UHP metamorphism in the P–T forbidden zone with an extremely low thermal gradient (< 5 °C km?1), and multistage retrograde recrystallization during exhumation. Develop of prehnite veins in clinopyroxenite, eclogite, felsic blocks and country rock gneiss, and replacements of eclogitic minerals by prehnite, albite, white mica, and K‐feldspar indicate low‐temperature metasomatism.  相似文献   

8.
The Strona-Ceneri Zone comprises a succession of polymetamorphic, pre-Alpidic basement rocks including ortho- and paragneisses, metasedimentary schists, amphibolites, and eclogites. The rock pile represents a Late Proterozoic or Palaeozoic subduction accretion complex that was intruded by Ordovician granitoids. Eclogites, which occur as lenses within the ortho-paragneiss succession and as xenoliths within the granitoids record a subduction related high-pressure event (D1) with peak metamorphic conditions of 710 ± 30 °C at 21.0 ± 2.5 kbar. After isothermal uplift, the eclogites experienced a Barrowtype (D2) tectonometamorphic overprint under amphibolite facies conditions (570-630 °C, 7-9 kbar). U-Pb dating on zircon of the eclogites gives a metamorphic age of 457 ± 5 Ma, and syn-eclogite facies rutile gives a 206Pb/238U age of 443 ± 19 Ma classifying the subduction as a Caledonian event. These data show that the main tectonometamorphic evolution of the Strona-Ceneri Zone most probably took place in a convergent margin scenario, in which accretion, eclogitization of MOR-basalt, polyphase (D1 and D2) deformation, anatexis and magmatism all occurred during the Ordovician. Caledonian high-pressure metamorphism, subsequent magmatism and Barrow-type metamorphism are believed to be related to subduction and collision within the northern margin of Gondwana. Editorial handling: Edwin Gnos  相似文献   

9.
High-pressure (HP) metamorphic rocks, including garnet peridotite, eclogite, HP granulite, and HP amphibolite, are important constituents of several tectonostratigraphic units in the pre-Alpine nappe stack of the Getic–Supragetic (GS) basement in the South Carpathians. A Variscan age for HP metamorphism is firmly established by Sm–Nd mineral–whole-rock isochrons for garnet amphibolite, 358±10 Ma, two samples of eclogite, 341±8 and 344±7 Ma, and garnet peridotite, 316±4 Ma.

A prograde history for many HP metamorphic rocks is documented by the presence of lower pressure mineral inclusions and compositional zoning in garnet. Application of commonly accepted thermobarometers to eclogite (grt+cpx±ky±phn±pg±zo) yields a range in “peak” pressures and temperatures of 10.8–22.3 kbar and 545–745 °C, depending on tectonostratigraphic unit and locality. Zoisite equilibria indicate that activity of H2O in some samples was substantially reduced, ca. 0.1–0.4. HP granulite (grt+cpx+hb+pl) and HP amphibolite (grt+hbl+pl) may have formed by retrogression of eclogites during high-temperature decompression. Two types of garnet peridotite have been recognized, one forming from spinel peridotite at ca. 1150–1300 °C, 25.8–29.0 kbar, and another from plagioclase peridotite at 560 °C, 16.1 kbar.

The Variscan evolution of the pre-Mesozoic basement in the South Carpathians is similar to that in other segments of the European Variscides, including widespread HP metamorphism, in which PTt characteristics are specific to individual tectonostratigraphic units, the presence of diverse types of garnet peridotite, diachronous subduction and accretion, nappe assembly in pre-Westphalian time due to collision of Laurussia, Gondwana, and amalgamated terranes, and finally, rapid exhumation, cooling, and deposition of eroded debris in Westphalian to Permian sedimentary basins.  相似文献   


10.
Summary One fresh (green), one altered (black) and one composite (green/black) peridotite xenolith from the Neogene-Quaternary basalts of the Dariganga Plateau, SE Mongolia, were studied by electron microprobe, X-ray fluorescence, wet chemical and instrumental neutron activation analysis. The history of the upper mantle underneath the Dariganga Plateau has been complex and is characterised by elemental depletions and enrichments processes. The rocks investigated appear to have been processed in several steps, have been moderately depleted (relative to the primitive upper mantle composition) in incompatible elements and subsequently metasomatically enriched in alkalis, Fe, Ca, LREE, Th and U. As a result, most peridotites are moderately depleted in Si, Cr, Ti, HREE and Hf, are slightly enriched in LREE and have elevated Th and U abundances. The minerals in all rocks are out of chemical equilibrium. In the green peridotites disequilibrium is modest but it is severe in the blackened lherzolites. The latter have experienced strong Fe metasomatism accompanied by strong oxidation. As a result, Mg-rich olivines formed by oxidation and precipitation of Fe oxides in the primary olivines (blackening) and Fe-rich olivines formed in the Fe metasomatic event. The latter could only have taken place after the oxidising event, otherwise the Fe-rich olivines would also have been affected by it. Three of the four rocks show negative anomalies (relative to the Ce abundance) of Hf and Ti, one is enriched in these elements, which is considered an indication of the action of carbonatitic melts/fluids in the upper mantle. Enrichment of U over Th in some of our samples seems also to indicate the presence of water in the fluid phase, however, the lack of (OH)-bearing minerals in the Dariganga xenoliths suggests a low activity of water in these fluids. The latest of the metasomatic events probably took place shortly before entrapment of the rocks by the basaltic lava that carried them to the earth’s surface. The composite sample consisting of a green harzburgite and a black lherzolite suggests that blackening took place at the original location of the rock rather than in the basaltic tuff because the latter should have altered the whole xenolith. It also demonstrates that metasomatic processes in the upper mantle can be confined to rather restricted locations with sharp boundaries towards the wall rocks. Blackening as well as the metasomatic events apparently took place because of a better permeability in one part of the rock as compared to the other, probably the result of tectonisation. Received May 28, 1999; revised version accepted February 24, 2001  相似文献   

11.
The Petermann Orogeny is a late Neoproterozoic to Cambrian ( c . 560–520  Ma) intracratonic event that affected the Musgrave Block and south-western Amadeus Basin in central Australia. In the Mann Ranges, within the central Musgrave Block, Mesoproterozoic granulite facies gneisses, granites and mafic dykes have been substantially reworked by deep crustal non-coaxial strain of late Neoproterozoic to early Cambrian age. Dolerite dykes have recrystallized to garnet granulite facies assemblages, associated with the development of a mylonitic fabric at P =12–13  kbar and T  =700–750 °C. Migmatization is restricted to discrete shear zones, which represent conduits for hydrous fluids during metamorphism. Peak metamorphism was followed by decompression to c . 7  kbar, reflecting exhumation of the terrane along the south-dipping Woodroffe Thrust. In scattered outcrops north of the Mann Ranges, peak metamorphism occurred at P =9–10  kbar and T  = c . 700 °C. The Woodroffe Thrust separates these deep crustal mylonites from granites that were metamorphosed during the Petermann Orogeny at P = c . 6–7  kbar and T  = c . 650 °C. The similarity in peak temperatures at different crustal levels implies an unusual thermal regime during this event. The existence of a relatively elevated geotherm corresponding with Th- and K-enriched granites that were in the mid-crust during the Petermann Orogeny suggests that radiogenic heat production may have substantially contributed to the thermal regime during metamorphism. This potentially has implications for the mechanisms by which intra-plate strain was localized during this event.  相似文献   

12.
Upper mantle xenoliths from the southern Rio Grande rift axis (Potrillo and Elephant Butte) and flank (Adam’s Diggings) have been investigated to determine chemical depletion and enrichment processes. The variation of modal, whole rock, and mineral compositions reflect melt extraction. Fractional melting is the likely process. Fractional melting calculations show that most spinel peridotites from rift axis locations have undergone <5% melting versus 7–14% melting for xenoliths from the rift shoulder, although the total range of fractional melting overlaps at all three locations. In the rift axis, deformed (equigranular and porphyroclastic texture) spinel peridotites are generally characterized by significantly less fractional melting (2–5%) than undeformed (protogranular) xenoliths (up to 16%). This difference may reflect undeformed xenoliths being derived from greater depths and higher temperatures than deformed rocks. Spinel peridotites from the axis and shoulder of the Rio Grande rift have undergone mantle metasomatism subsequent to melt extraction. Under the rift shoulder spinel peridotites have undergone both cryptic and patent (modal) metasomatism, possibly during separate events, whereas the upper mantle under the rift axis has undergone only cryptic metasomatism by alkali basaltic magma.  相似文献   

13.
14.
Among the spinel peridotite nodules from Dreiser Weiher. West Germany which represent fragments of the earth's upper mantle two series may be distinguished. One group (Ib) is anhydrous while the second one (Ia) is characterized by the presence of amphibole and/or breakdown-products of amphibole. Both suites display a wide range in modal composition. Pyroxene geothermometry yields equilibration temperatures of ~ 1150°C for group Ib and ~950°C for group Ia.Rare earth element (REE) patterns reveal marked differences between both groups: nearly unfractionated, light REE depleted or slightly light REE enriched chondrite normalized patterns in nodules from group Ib, but a high relative light REE enrichment in the amphibole containing suite Ia. An inverse correlation between the clinopyroxene content (or CaO) and relative light REE enrichment is observed in group Ia only. Two sources of light REE enrichment of the nodules can be distinguished: The first is a contaminant on mineral surfaces and can be removed by acid leaching. The second is an integral part of the constituent minerals of the nodules. Trace element abundances and modelling show that nodules of group Ib cannot be derived from upper mantle pyrolite by a one-stage partial melting process. Nodules of type Ia are interpreted as being the result of a reaction between Ib-type mantle and a fluid or liquid which provides H2O and incompatible elements. At Dreiser Weiher this ‘open system’ upper mantle metasomatism may be related to the young uplift of the Rhenish Shield in a similar way as previously proposed by Lloyd and Bailey (1975).A model for the lithospheric mantle below the Westeifel is different from the San Carlos model proposed by Frey and Prinz (1978) and more complex.  相似文献   

15.
16.
We report mineralogical and chemical compositions of spinel peridotite xenoliths from two Tertiary alkali basalt localities on the Archean North China craton (Hannuoba, located in the central orogenic block, and Qixia, in the eastern block). The two peridotite suites have major element compositions that are indistinguishable from each other and reflect variable degrees (0–25%) of melt extraction from a primitive mantle source. Their compositions are markedly different from typical cratonic lithosphere, consistent with previous suggestions for removal of the Archean mantle lithosphere beneath this craton. Our previously published Os isotopic results for these samples [Earth Planet. Sci. Lett. 198 (2002) 307] show that lithosphere replacement occurred in the Paleoproterozoic beneath Hannuoba, but in the Phanerozoic beneath Qixia. Thus, we see no evidence for a compositional distinction between Proterozoic and Phanerozoic continental lithospheric mantle. The Hannuoba xenoliths equilibrated over a more extensive temperature (hence depth) interval than the Qixia xenoliths. Neither suite shows a correlation between equilibration temperature and major element composition, indicating that the lithosphere is not chemically stratified in either area. Trace element and Sr and Nd isotopic compositions of the Hannuoba xenoliths reflect recent metasomatic overprinting that is not related to the Tertiary magmatism in this area.  相似文献   

17.
18.
19.
Orthopyroxene porphyroblasts zoned to interiors abnormally low in Al and Cr and containing numerous inclusions of olivine occur in some spinel peridotite xenoliths from the Colorado Plateau. Rims of these orthopyroxene grains contain 2.5–3.0 wt% Al2O3, consistent with equilibration in spinel peridotite at temperatures near 850 °C, but interiors contain as little as 0.20 wt% Al2O3 and 0.04 wt% Cr2O3. The Al-poor compositions are inferred to have equilibrated in chlorite peridotite, before porphyroblast growth during heating and consequent reactions that eliminated talc, tremolite, and chlorite. The distinctive orthopyroxene textures are inferred to have formed during reaction of talc and olivine. Rare intergrowths of orthopyroxene plus diopside are attributed to olivine-tremolite reaction. Al and Cr have gradients at grain rims that appear little modified by diffusion, but divalent elements are almost homogeneous throughout the porphyroblasts. Judging from the relative gradients, diffusion of Ca was at least 100 times faster than that of Al and Cr at the temperatures near and below 850 °C. Diffusion of Al and Cr was most effective along subgrain boundaries, and along these boundaries it appears to have been at least ten times faster than within the lattice: diffusion along such boundaries may be a dominant mechanism for re-equilibration of orthopyroxene at low mantle temperatures. Orthopyroxene with similar low Al and Cr occurs in chlorite peridotite xenoliths from the Navajo field, 300 km east of the Grand Canyon localities, and in spinel peridotite xenoliths from the Sierra Nevada, 500 km west across the extended Basin and Range province. Chlorite peridotite may therefore have been a significant minor component in much of the mantle lithosphere of western North America, although evidence for it would be erased at the higher temperatures recorded by xenoliths from the Basin and Range. Chemical changes during hydration may have been important in the evolution of these mantle volumes, and the case for addition of Sr is particularly strong. Dehydration reactions during heating could have influenced patterns of extension and crustal magmatism. Received: 1 July 1996 / Accepted: 2 December 1996  相似文献   

20.
Experiments have been done which simulate the modal metasomatism of spinel lherzolite by partial melts of the subducted slab. The experiments were designed so that the metasomatizing melts were generated during the experiments by partial melting of a slab analog (basaltic composition amphibolite). The melts are thought to be representative of hybridizing melts in that they are derived by high-pressure partial melting under conditions appropriate to a hot slab geotherm. During the experiments, the melts infiltrate into and metasomatize a model depleted peridotite. Chemical modifications to minerals in the peridotite are of the same nature and extent as those found in naturally metasomatized spinel lherzolites. Modal metasomatism produced pargasitic amphiboles in runs at 1.5 GPa and in all but the highest temperature run at 2.0 GPa. The amphiboles are indistinguishable from amphiboles found in amphibole-bearing peridotites from supra-subduction zone environments. Systematic variations in amphibole composition suggest that the melt infiltration process in the experiments involved continuous modification of the composition of the infiltrating melt as observed around inferred quenched melt (i.c., amphibolite or amphibolite/clinopyroxenite) veins in xenoliths and massif peridotites. The compositions of the initial and final mineral phases in the experiments and those of the metasomatizing melts are used to derive amphibole formation reactions at 1.5 and 2.0 GPa that are similar in form to those inferred in studies of natural amphibole-bearing peridotites. The metasomatism reactions show that the extent of amphibole formation in peridotite at 1.5 and 2.0 GPa will, in general, be limited by clinopyroxene and spinel abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号