首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doklady Earth Sciences -  相似文献   

2.
3.
4.
Porphyry Cu-Mo mineralization and mantle plumes   总被引:1,自引:0,他引:1  
  相似文献   

5.
Mantle plumes are the consequence of a focussed transfer of mass from mantle to core and are agents of outgassing from the mantle. The energy of propagation is derived from released energy of their formation, decreases in density, and partial fluidization. This energy is dissipated during distension and rupture of the overlying crust.
Zusammenfassung Mantelplumes haben ihren Ursprung in einer gezielten Massenverfrachtung vom Mantel zum Kern und führen zur Mantelentgasung. Die Fortpflanzungsenergie entsteht aus frei werdender Bildungsenergie, Dichteverminderung und teilweiser Verflüssigung. Die Energie verflüchtigt sich bei Ausdehnung und Rißbildung der überlagernden Kruste.

Résumé Plumes en le manteau sont derivées d'un transfert de masse dès le manteau au noyau. Elles sont agents de la dégassification du manteau. L'énergie de la propagation est derivée de l'énergie de la formation liberée, des décroissements de la densité, et de la fluidification partielle. Cette énergie est dissipée pendant la dilatation et la rupture de la croûte s'étendante là-dessus.

Plumes , . : , . .
  相似文献   

6.
Thermodynamic analysis of experimental data has demonstrated that FeO activity in silicate melts identical in composition to natural magmas can be described by the regular-solution model, which takes into account interactions of all cations with Si and interaction of Ca with Al. Using this model, we propose an oxygen barometer for spinel + magma phase association. In contrast to the earlier proposed methods for estimation of oxygen chemical potential, this barometer can work in the PJ-domain close to the liquidus of magmatic process. The new oxygen barometer has been applied to magmas related to mantle plume activity, including Siberian meimechites, Hawaiian picrites, and picrites from the Emeishan large igneous province (LIP) and Greenland. We have shown that most magmas related to the activity of deep-seated mantle plumes are characterized by a higher relative chemical potential of oxygen than magmas of mid-ocean ridges. Thermodynamically calculated stability fields of rocks with different carbon-containing phases show that under PJ-conditions of the lower mantle, the ascending mantle plumes are characterized by relatively high oxygen fugacity. Formation of diamond in the lower mantle requires more oxidizing conditions as compared with the major part of this geosphere, where the presence of Fe-Ni alloy is predicted. We have put forward a hypothesis that the main reason for the oxygen fugacity increase in particular domains of the lower mantle is a shift of redox equilibria toward a decrease in the amount of Fe-Ni alloy, up to its disappearance, with temperature growth.  相似文献   

7.
Laboratory and numerical experiments simulating the heat transfer and flow structure of thermochemical mantle plumes provide insights into the mechanisms of plume eruption onto the surface depending on the relative thermal power of plumes Ka = N/N1, where N and N1 are the heat transferred from the plume base to the plume conduit and the heat transferred from the plume conduit to the surrounding mantle, respectively, under steady thermal conduction. There are three main types of plumes according to the Ka criterion: (i) plumes with low thermal power (Ka < 1.15), which fail to reach the surface, (ii) plumes with intermediate thermal power (1.15 < Ka < 1.9), which occur beneath cratons and transport melts from depths below 150 km, where diamond is stable (diamondiferous plumes), and (iii) plumes with a mushroom-shaped head (1.9 < Ka < 10), which are responsible for large intrusive bodies, including batholiths. The volume of erupted melt and the depth from which the melt is transported to the surface are estimated for plumes of types (ii) and (iii). The relationship between the plume head area (along with the plume head diameter) and the relative thermal power is obtained. The relationship between the thickness of the block above the plume head and the relative thermal power is derived. On the basis of the results obtained, the geodynamic-regime diagram of thermochemical mantle plumes, including the plumes with Ka > 10, has been constructed.  相似文献   

8.
9.
The average compositions (including H2O, Cl, F, and S contents) and chemical structure of oceanic mantle plumes were estimated on the basis of the ratios of incompatible volatile components, potassium, and some other elements in the basaltic magmas of ocean islands (melt inclusions and quenched glasses). The following average concentrations were estimated for the plume mantle: 510 ppm K2O, 520 ppm H2O, 21 ppm Cl, 55 ppm F, and 83 ppm S; these values are significantly higher than those of the depleted mantle (except for S). The abundances of H2O, Cl, and S are lower than in the primitive mantle. The normalized H2O content in the plume mantle is similar to the concentrations of similarly incompatible La and Ce but lower than the concentrations of K2O, Cl, and Sr. This is at odds with the idea of wet mantle plumes. Three types of basaltic magmas corresponding to three types of plume sources (M1, M2, and M3) were distinguished. The concentrations of incompatible elements in these reservoirs were estimated using two models, assuming either an isochemical mantle or a moderately enriched composition of plume material. The latter model gave the following average concentrations of H2O, Cl, F, and S: 130, 33, 11, and 110 ppm for M1, 110, 12, 65, and 45 ppm for M2; 530, 29, 49, and 110 ppm for M3. The plume mantle is not homogeneous, and its heterogeneity is related to the existence of three main compositions, one of which (M1) is similar to the mantle of mid-ocean ridges, and two others (M2 and M3) are moderately enriched in K2O, TiO2, P2O5, F, and incompatible trace elements. The compositions of M2 and M3 are strongly different in H2O, Cl, and S contents. The M2 mantle reservoir is significantly poorer in these components and richer in incompatible trace elements than M3. The plume mantle was formed mainly by the mixing of three sources: ultradepleted mantle, moderately enriched relatively dry mantle, and moderately enriched H2O-rich mantle. In addition to the three main components of the plume mantle, there are probably minor components enriched in chlorine and depleted in fluorine. It is supposed that all these components are entrained into the plume mantle through the mantle recycling of components of the oceanic and continental crust. The established relationships are in agreement with the zonal model of a mantle plume, which includes a hot central part poor in H2O, Cl, and S; an outer part enriched in volatile and nonvolatile incompatible elements; and enclosing mantle material interacting with the plume.  相似文献   

10.
11.
12.
Seismic images under 60 hotspots: Search for mantle plumes   总被引:10,自引:0,他引:10  
Dapeng Zhao   《Gondwana Research》2007,12(4):335-355
The mantle plume hypothesis is now widely known to explain hotspot volcanoes, but direct evidence for actual plumes is weak, and seismic images are available for only a few hotspots. In this work, we present whole-mantle tomographic images under 60 major hotspots on Earth. The lateral resolution of the tomographic images is about 300 km under the continental hotspots and 400–600 under the oceanic hotspots. Twelve plume-like, continuous low-velocity (low-V) anomalies in both the upper and lower mantle are visible under Hawaii, Tahiti, Louisville, Iceland, Cape Verde, Reunion, Kerguelen, Amsterdam, Afar, Eifel, Hainan, and Cobb hotspots, suggesting that they may be 12 whole-mantle plumes originating from the core–mantle boundary (CMB). Clear upper-mantle low-V anomalies are visible under Easter, Azores, Vema, East Australia, and Erebus hotspots, which may be 5 upper-mantle plumes. A mid-mantle plume may exist under the San Felix hotspot. The active intra-plate volcanoes in Northeast Asia (e.g., Changbai, Wudalianchi, etc.) are related to the stagnant Pacific slab in the mantle transition zone. The Tengchong volcano in Southwest China is related to the subduction of the Burma microplate under the Eurasian plate. Although low-V anomalies are generally visible in some depth range in the mantle under other hotspots, their plume features are not clear, and their origins are still unknown. The 12 whole-mantle plumes show tilted images, suggesting that plumes are not fixed in the mantle but can be deflected by the mantle flow. In most cases, the seismic images under the hotspots are complex, particularly around the mantle transition zone. A thin low-V layer is visible right beneath the 660-km discontinuity under some hotspots, while under a few other hotspots, low-V anomalies spread laterally just above the 660-km discontinuity. These may reflect ponding of plume materials in the top part of the lower mantle or the bottom of the upper mantle. The variety of behaviors of the low-V anomalies under hotspots reflects strong lateral variations in temperature and viscosity of the mantle, which control the generation and ascending of mantle plumes as well as the flow pattern of mantle convection.  相似文献   

13.
At the transition from the Permian to the Triassic, Eurasia was the site of voluminous flood-basalt extrusion and rifting. Major flood-basalt provinces occur in the Tunguska, Taymyr, Kuznetsk, Verkhoyansk–Vilyuy and Pechora areas, as well as in the South Chinese Emeishen area. Contemporaneous rift systems developed in the West Siberian, South Kara Sea and Pyasina–Khatanga areas, on the Scythian platform and in the West European and Arctic–North Atlantic domain. At the Permo–Triassic transition, major extensional stresses affected apparently Eurasia, and possibly also Pangea, as evidenced by the development of new rift systems. Contemporaneous flood-basalt activity, inducing a global environmental crisis, is interpreted as related to the impingement of major mantle plumes on the base of the Eurasian lithosphere. Moreover, the Permo–Triassic transition coincided with a period of regional uplift and erosion and a low-stand in sea level. Permo–Triassic rifting and mantle plume activity occurred together with a major reorganization of plate boundaries and plate kinematics that marked the transition from the assembly of Pangea to its break-up. This plate reorganization was possibly associated with a reorganization of the global mantle convection system. On the base of the geological record, we recognize short-lived and long-lived plumes with a duration of magmatic activity of some 10–20 million years and 100–150 million years, respectively. The Permo–Triassic Siberian and Emeishan flood-basalt provinces are good examples of “short-lived” plumes, which contrast with such “long lived” plumes as those of Iceland and Hawaii. The global record indicates that mantle plume activity occurred episodically. Purely empirical considerations indicate that times of major mantle plume activity are associated with periods of global mantle convection reorganization during which thermally driven mantle convection is not fully able to facilitate the necessary heat transfer from the core of the Earth to its surface. In this respect, we distinguish between two geodynamically different scenarios for major plume activity. The major Permo–Triassic plume event followed the assembly Pangea and the detachment of deep-seated subduction slabs from the lithosphere. The Early–Middle Cretaceous major plume event, as well as the terminal–Cretaceous–Paleocene plume event, followed a sharp acceleration of global sea-floor spreading rates and the insertion of new subduction zone slabs deep into the mantle. We conclude that global plate kinematics, driven by mantle convection, have a bearing on the development of major mantle plumes and, to a degree, also on the pattern of related flood-basalt magmatism.  相似文献   

14.
There were two key stages in the history of Paleozoids that formed in the place of the Paleoasian ocean, one in the Cambrian–Ordovician and the other in the Permian–Triassic. Both time spans were characterized by a combination of similar geodynamic, magmatic, and geomagnetic events: closure and opening of oceanic basins, intense plume magmatism associated with Earth's core cooling, and absence of geomagnetic reversals (superchrons). Three superchrons about 490–460, 260–300, and 124–86 Ma correlate with major events of plume magmatism. Plume reconstructions have to be updated for the period 490–460 Ma, which corresponded to the third superchron and was marked by ocean opening. The previous superplume, about 800–740 Ma, requires further justification but fits the global periodicity with 240 Ma major cycles and smaller ones of 120 (or also 30) Ma.In the Late Cambrian–Ordovician, large-scale accretion and collision events acted, in similar tectonic settings, upon the vast territory that currently extends from the Polar Urals to Lake Baikal (and was times larger in the past). As a result, Gondwanian microcontinents (Kokchetav, Altai–Mongolia, Tuva–Mongolia, etc.) and island arcs joined into the Kazakhstan–Tuva–Mongolia system. The formation of the Late Cambrian–Ordovician orogen in Central Asia was synchronous with opening of the Ural, Ob–Zaisan, Turkestan, and Paleotethys oceans. The plume pulses (520–500 and 490–460 Ma) may have been responsible for opening of new oceans, accelerated amalgamation of terranes, and synchronicity in geodynamic events from the Urals to Transbaikalia.  相似文献   

15.
地幔柱大辩论及如何验证地幔柱假说   总被引:20,自引:1,他引:20  
目前关于地幔柱存在与否的争论主要集中在地幔柱学说的三个假设上:(1)起源于地球核幔边界缓慢上升的细长柱状热物质流;(2)热点下具有异常高温地幔;(3)地幔柱是相对静止的。这三个方面的验证需要今后深部地球物理探测、岩石学和古地磁等学科的综合运用和进一步的工作。文中认为,地幔柱学说依然能合理地解释地球上一级地质现象,反对地幔柱的学者过分强调了一些小尺度的与地幔柱理论不符的细节,而小尺度地壳特征显然还受到其他许多因素的影响。可以从以下5个方面来鉴别老地幔柱:(1)大规模火山作用前的地壳抬升;(2)放射状岩墙群;(3)火山作用的物理特征;(4)火山链的年代学变化;(5)地幔柱产出岩浆的化学组成。研究表明,峨眉山大火成岩省满足其中的3到4个指标,因此地幔柱是形成峨眉山玄武岩的主要动力学机制。  相似文献   

16.
This paper presents the numerical models built for convection in a three-component mantle with heavy matter in the form of the D“ layer and a light highly viscous supercontinent. The models explain deformation of the heavy layer by mantle flows with hot provinces concentrating on the mantle bottom. The role played by supercontinents in plume generation is also explained, as well as the regularities of how plumes, which produce hot spots, traps, and basaltic plateaus on the Earth’s surface and ore diamond deposits in the lithosphere, are generated on the mantle bottom.  相似文献   

17.
Summary Intraplate tectono-magmatic phenomena, including the emplacement of layered intrusions, and the giant dyke swarms, anorogenic (hotspot) volcanism, oceanic plataeux, rifting processes, basin formation, and geomorphological features are discussed in the context of the mantle plume theory. A review of the relationships between mantle plumes and ore deposits focuses on direct links, proxied by the emplacement of mafic-ultramafic magmas (e.g. PGE and Ni–Cu sulphides associated with flood basalts) and indirectly in rift systems where high geothermal gradients are set up in the crust above the plume, induce large scale circulation of hydrothermal fluids, which result in the generation of a wide range of ore deposits. Peak periods in the deposition of iron formations coincide with plume events in the Archeaen and Proterozoic. Passive margins, which evolve from continental breakups and triple junctions, host abundant mineral and hydrocarbon resources.  相似文献   

18.
We report Sr, Nd, and Pb isotopic data of young alkaline basalt lava from a new type of volcano (petit-spot) on the northwestern Pacific Plate. Petit-spot lavas show Dupal, or extremely EM-1-like, Sr-Nd-Pb isotopic compositions. The data cannot be explained by contamination of pelagic sediment, in spite of the prediction on the basis of geological observation. We thus consider that the geochemistry of petit-spot lava indicates the existence of recycled fertile plate materials, not only the Dupal isotopic signature, in the northern hemisphere Pacific upper mantle unrelated to one or more active plumes. In consideration of published experimental results for fertile plate materials, selective melting of recycled material is a process critical in generating petit-spot lava. Moreover, the small volume of the volcano and low degree of melting in the mantle source needed to form strongly alkalic lavas suggest that petit-spot volcanism is originated from small-scale heterogeneities of recycled material. This idea consistently explains the geochemistry and noble gas isotopic composition of petit-spot lava, and also suggests small-scale heterogeneity widespread in the upper mantle of the Pacific Ocean. Together with a revised view of upper mantle heterogeneity, we propose that gross upper mantle composition is controlled by abundances and scales of regions of recycled material that correspond to differences in the relative position to the Pangea supercontinent, suggesting the link to the tectonic origin of the global scale heterogeneity.  相似文献   

19.
If the Earth formed by accretion of volatile-rich material on to a refractory, primitive body with incomplete subsequent mixing, old or deep-seated igneous rocks should exhibit an anti-correlation between radiogenic Pb and radiogenic Sr. The ancient Amîtsoq gneiss and some modern oceanic rocks appear to comply with this model. Mantle plumes should not be a source of radiogenic Sr.  相似文献   

20.
The Baikal rift zone: the effect of mantle plumes on older structure   总被引:8,自引:0,他引:8  
The main chain of SW–NE-striking Cenozoic half-grabens of the Baikal rift zone (BRZ) follows the frontal parts of Early Paleozoic thrusts, which have northwestern and northern vergency. Most of the large rift half-grabens are bounded by normal faults at the northwestern and northern sides. We suggest that the rift basins were formed as a result of transformation of ancient thrusts into normal listric faults during Cenozoic extension.Seismic velocities in the uppermost mantle beneath the whole rift zone are less than those in the mantle beneath the platform. This suggests thinning of the lithosphere under the rift zone by asthenosphere upwarp. The geometry of this upwarp and the southeastward spread of its material control the crustal extension in the rift zone. This NW–SE extension cannot be blocked by SW–NE compression generated by pressure from the Indian lithospheric block against Central Asia.The geochemical and isotopic data from Late Cenozoic volcanics suggest that the hot material in the asthenospheric upwarp is probably provided by mantle plumes. To distinguish and locate these plumes, we use regional isostatic gravity anomalies, calculated under the assumption that topography is only partially compensated by Moho depth variations. Variations of the lithosphere–asthenosphere discontinuity depth play a significant role in isostatic compensation. We construct three-dimensional gravity models of the plume tails. The results of this analysis of the gravity field are in agreement with the seismic data: the group velocities of long-period Rayleigh waves are reduced in the areas where most of the recognized plumes are located, and azimuthal seismic anisotropy shows that these plumes influence the flow directions in the mantle above their tails.The Baikal rift formation, like the Kenya, Rio Grande, and Rhine continental rifts [Achauer, U., Granet, M., 1997. Complexity of continental rifts as revealed by seismic tomography and gravity modeling. In: Jacob, A.W.B., Delvaux, D., Khan, M.A. (Eds.), Lithosphere Structure, Evolution and Sedimentation in Continental Rifts. Proceedings of the IGCP 400 Meeting, Dublin, March 20–22, 1997. Institute of Advanced Studies, Dublin, pp. 161–171], is controlled by the three following factors: (i) mantle plumes, (ii) older (prerift) linear lithosphere structures favorably positioned relative to the plumes, and (iii) favorable orientation of the far-field forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号