首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper reports data on the mineralogy, geochemistry, phase composition of comendites and pantellerites from Nemrut volcano, eastern Turkey; estimates of the crystallization conditions of minerals, composition of matrix glasses and melt inclusions in anorthoclase, fayalite, hedenbergite phenocrysts. LA-ICP-MS was applied to analyze the matrix glasses and phenocryst minerals. The distribution coefficients between phases and glass were calculated for P, B, Li, Rb, Cs, Ba, Sr, Zr, Hf, Ta, Nb, Sc, V, Cr, Ni, Cu, Pb, Th, U, Y, REE. Mass balance simulations of the comenditic and pantelleritic compositions, experimental data, data on melt inclusions are utilized to analyze the processes responsible for the derivation of the magmas, accumulation of components in them and to elucidate genetic links between the trachyte-comenditic, comenditic and pantelleritic melts. The origin of the residual comenditic and pantelleritic melts is explained by variations in the crystallization conditions of anorthoclase (dominant phase), hedenbergite, fayalite, Fe and Ti oxides in the parental trachyte-comenditic magma depending on the pressure and concentration of water dissolved in the melts. The accessory phases (REEand Sr-bearing fluorapatite and zircon) were likely involved in the fractionation of the melts. The following crystallization parameters were obtained by QUILF calculations for the hedenbergite, fayalite, and ilmenite phenocrysts (minimum values for quartz-free melts): 3 kbar, 763°C, ΔFMQ = ?1.27 for the Fe-comendites; 3.3–3.8 kbar, 715°C, ΔFMQ = ?1.8 for the pantellerites; 2.3 kbar, 748°C, ΔFMQ = ?1.16 for the low-Fe comendites. The equilibrium crystallization of anorthoclase phenocrysts in the comenditic melts proceeded at temperature ~750°C. Data on glasses of melt inclusions indicate that the comenditic and pantelleritic melts contained 1–3 wt % H2O. Analysis of literature data and estimates of the conditions under which the Nemrut magmas were derived suggest that the local chambers with H2O-undersaturated comenditic and pantelleritic melts could occur at centers of alkaline volcanism at depths within the range of 5 to 10–15 km (lithostatic pressure of 1–4 kbar), at temperatures <750°C and oxygen fugacity below the FMQ buffer.  相似文献   

2.
It is well established that minute amounts of chemical elements will leach from bottle materials (glass or PET – polyethylene terephthalate) to water stored in such bottles. This study investigated whether leaching increases with storage temperature. For glass bottles this is clearly the case for a long list of elements: Ag, Al, As, B, Ba, Ca, Co, Cr, Cs, Cu, Fe, Ga, Ge, K, La, Li, Mg, Mo, Na, Ni, Pb, Rb, Sb, Se, Sn, Sr, Ti, U, V, W and Zr. However, for glass bottles drinking water maximum admissible concentration values as defined by European authorities are not exceeded even after 1 week of leaching at 80 °C. The critical temperature limit where leaching substantially increases for many elements appears to be 45 °C. For PET bottles, Sb is the only element where leaching is observed at all temperatures and again leaching strongly increases at 45 °C. For PET bottles Sb concentrations observed in water after 1 week storage at 80 °C reach almost four times the maximum admissible concentration values for drinking water but do not exceed the relevant higher limit for food (including water) packaged in PET.  相似文献   

3.
Five bentonite samples of different compositions and geneses were saturated with Cs and Sr in the static regime. Desorption is examined during the filtration of distilled water through saturated samples. Both elements are firmly retained to most of the bentonite samples. The Cs and Sr desorption values were 12–20%, and 2.5–23%, respectively. Structural changes in the clay fraction of bentonites resulted from the sorption–desorption of Cs and Sr were studied by the method of X-ray diffraction.  相似文献   

4.
The partition coefficients of K, Rb, Cs, Sr and Ba between clinopyroxene and liquid were experimentally determined in the system diopside-albite-anorthite-water at 15–30 kb and 1100–1200°C. Clinopyroxene and liquid (glass) were separated by a new technique (differential dissolution technique—DDT) and analyzed by isotope dilution. The partition coefficients lie in the range 0.054–0.081 for Sr, 0.0014–0.0026 for K, 0.00078–0.0023 for Ba, 0.0010–0.0041 for Rb, 0.00035–0.0036 for Cs. Variations of the partition coefficients with pressure, temperature and composition of the phases are relatively small, though no systematic study of these parameters was attempted.  相似文献   

5.
《Applied Geochemistry》1996,11(4):555-565
Organic material is present at low concentrations, typically 1–2 mg/l in terms of dissolved organic carbon (DOC), in groundwaters deep in granitic rock. Hydrophobic and hydrophilic acids may complex inorganic contaminants and change their sorption behaviour on geological materials. This report describes a series of experiments performed under aerobic conditions to investigate the effects of fulvic acid over a concentration range of 0–5 mg/I DOC on the sorption of85Sr,137Cs,233U,238Pu and241'Am by crushed granite, biotite, goethite, montmorillonite and quartz. In addition, similar solutions were used to study the effects of dissolved fulvic acid on the sorption of99Tc and125I on each of the above solids except quartz. The fulvic acid was extracted from groundwater collected at a depth of 240 m in the granitic rock of the Underground Research Laboratory near Lac du Bonnet, Manitoba.In all experiments, the sorption of the fulvic acid by the geological materials was in the order goethite montmorillonite > biotite > granite > quartz. No sorption of Tc was observed from any of the solutions on any of the solids. Low sorption of I on montmorillonite occurred in the presence of the dissolved organic material. No sorption of I was observed with the other solids used. Only montmorillonite sorbed any appreciable amount of Sr in this study with the fulvic acid having no effect on this sorption. All the solids except quartz sorbed substantial amounts of Cs, but sorption was not affected by the organic material in solution. Each of the solids sorbed U with no difference in sorption observed due to the dissolved organic. In general, Pu sorption decreased as the concentration of dissolved fulvic acid increased. However, sorption of Pu on quartz remained at approximately the same levels regardless of the concentration of organic in solution. Generally high sorption of Am was found. Lowest sorption of Am on all solids occurred from the solution with the highest concentration of fulvic acid. Sorption of Am on granite decreased as the concentration of the organic in solution increased.This study indicated that, under aerobic conditions, the effect of dissolved organic material on sorption of radioisotopes depends on the radioisotope in question and the concentration of the organic in solution.  相似文献   

6.
《Applied Geochemistry》2006,21(7):1169-1183
The Cornia Plain alluvial aquifer, in Tuscany, is exploited intensely to meet the demand for domestic, irrigation and industrial water supplies. The B concentration of groundwater, however, is often above the European limit of 1 mg L−1, with the result that exploitation of these water resources requires careful management. Boron and Sr isotopes have been used as part of a study on the origin and distribution of B dissolved in groundwater, and indirectly as a contribution to the development of appropriate water management strategies.The geochemistry of the Cornia Plain groundwater changes from a HCO3 facies in the inland areas to a Cl facies along the coastal belt, where seawater intrusion takes place. The B concentration of groundwater increases towards the coastal areas, while the 11B/10B ratio decreases. This indicates that there is an increasing interaction between dissolved B and the sediments forming the aquifer matrix, whose B content is in the order of 100 mg kg−1. Adsorption–desorption exchanges take place between water and the sediment fine fraction rich in clay minerals, with a net release of B from the matrix into the groundwater, and a consequent δ11B shift from positive to negative values. The aquifer matrix sediments therefore seem to be the major source of B dissolved in the groundwater.The groundwater–matrix interactions triggered by the ionic strength increase caused by seawater intrusion can also be detected in the Ca–Na ion exchanges. Dissolved Sr follows a trend similar to that of Ca, while the 87Sr/86Sr ratio is equal to that of the exchangeable Sr of the aquifer matrix and therefore does not change significantly.These results have helped to define a new strategy for groundwater exploitation, with the final objective of reducing B concentration in the water extracted from the aquifer.  相似文献   

7.
ABSTRACT

Tongling, in eastern China, is an area well-known for intra-plate adakites. Here, we present the mineral chemistry and zircon U–Pb ages for amphibole cumulate xenoliths, the mineral chemistry of amphibole megacrysts, and the whole–rock chemistry, zircon U–Pb age and Sr–Nd isotopic compositions of host gabbros from Tongling. Zircon U–Pb dating yields a crystallization age of 120.6 ± 1.2 Ma (MSWD = 4.2) for the host gabbros, which are characteristically depleted in high field strength elements (Nb, Ta, and Ti) and enriched in large ion lithophile elements (Ba and Sr), with εNd (t) of ?3.00 to ?4.52 and initial 87Sr/86Sr ratios of 0.7068–0.7072, suggesting an enriched mantle source. Parental melts, as estimated from average amphibole megacryst and cumulate compositions, have Mg# values of 26–33, are enriched in Ba, Th, U, and Nd, and depleted in Nb, Ta, Zr, Hf, and Ti, similar to 136 Ma mafic magmas in Tongling. Zircon U–Pb dating yields a crystallization age of 135.4 ± 1.0 Ma (MSWD = 1.6) for the amphibole cumulates. It is concluded that the Tongling adakitic rocks were formed by polybaric crystallization involving early high-pressure intracrustal fractional crystallization of cumulates comprising hornblende and clinopyroxene, and late low-pressure fractional crystallization of hornblende and plagioclase phenocrysts. The flat subduction of Pacific plate and its subsequent foundering during the Cretaceous may have triggered the generation of extensive adakitic magmas and lithospheric thinning in the Lower Yangtze Region.  相似文献   

8.
The Quaternary sediments representing the interface between the granite host rock and the Earth surface are of paramount importance when determining the potential cycling of anthropogenic and natural radionuclides in near-surface systems. This is particularly true in the case of high-level nuclear waste (HLNW) repositories placed in granite. In this work a modelling procedure is presented to quantitatively determine the retention capacity of a Quaternary till in the Forsmark area, which has been recently selected to host the deep geologic storage of HLNW in Sweden. Reactive transport numerical models have been used to simulate the intrusion of a deep groundwater carrying radionuclides potentially released from a repository into a Quaternary till. Four radionuclides (235U, 135Cs, 226Ra and 90Sr) have been selected according to their different geochemical behaviour and potential dose relevance to surface ecosystems. Numerical results indicate that repository-derived: (i) U will have a minor impact in the till, mainly due to the high natural concentration of U and its adsorption on ferrihydrite; (ii) Cs will be efficiently retained by cation exchange on illite; (iii) Ra will be retained via co-precipitation with barite; and although (iv) Sr will be retained via co-precipitation with calcite and cation exchange on illite, the retention capacity of the Quaternary till for Sr is limited.  相似文献   

9.
We report the first high-precision δ18O analyses of glass, δ18O of minerals, and trace element concentrations in glass and minerals for the 260–79 ka Central Plateau Member (CPM) rhyolites of Yellowstone, a >350 km3 cumulative volume of lavas erupted inside of 630 ka Lava Creek Tuff (LCT) caldera. The glass analyses of these crystal-poor rhyolites provide direct characterization of the melt and its evolution through time. The δ18Oglass values are low and mostly homogeneous (4.5 ± 0.14 ‰) within and in between lavas that erupted in four different temporal episodes during 200 ka of CPM volcanism with a slight shift to lower δ18O in the youngest episode (Pitchstone Plateau). These values are lower than Yellowstone basalts (5.7–6 ‰), LCT (5.5 ‰), pre-, and extracaldera rhyolites (~7–8 ‰), but higher than the earliest 550–450 ka post-LCT rhyolites (1–2 ‰). The glass δ18O value is coupled with new clinopyroxene analyses and previously reported zircon analyses to calculate oxygen isotope equilibration temperatures. Clinopyroxene records >900 °C near-liquidus temperatures, while zircon records temperatures <850 °C similar to zircon saturation temperature estimates. Trace element concentrations in the same glass analyzed for oxygen isotopes show evidence for temporal decreases in Ti, Sr, Ba, and Eu—related to Fe–Ti oxide and sanidine (±quartz) crystallization control, while other trace elements remain similar or are enriched through time. The slight temporal increase in glass Zr concentrations may reflect similar or higher temperature magmas (via zircon saturation) through time, while previosuly reported temperature decreases (e.g., Ti-in-quartz) might reflect changing Ti concentrations with progressive melt evolution. Multiple analyses of glass across single samples and in profiles across lava flow surfaces document trace element heterogeneity with compatible behavior of all analyzed elements except Rb, Nb, and U. These new data provide evidence for a three-stage geochemical evolution of these most recent Yellowstone rhyolites: (1) repeated batch melting events at the base of a homogenized low-δ18O intracaldera fill resulting in liquidus rhyolite melt and a refractory residue that sequesters feldspar-compatible elements over time. This melting may be triggered by conductive "hot plate" heating by basaltic magma intruding beneath the Yellowstone caldera resulting in contact rhyolitic melt that crystallizes early clinopyroxene and/or sanidine at high temperature. (2) Heterogeneity within individual samples and across flows reflects crystallization of these melts during preeruptive storage of magma at at lower, zircon-saturated temperatures. Compatible behavior and variations of most trace elements within individual lava flows are the result of sanidine, quartz, Fe–Ti oxide, zircon, and chevkinite crystallization at this stage. (3) Internal mixing immediately prior to and/or during eruption disrupts, these compositional gradients in each parental magma body that are preserved as melt domains distributed throughout the lava flows. These results based on the most recent and best-preserved volcanic products from the Yellowstone volcanic system provide new insight into the multiple stages required to generate highly fractionated hot spot and rift-related rhyolites. Our proposed model differs from previous interpretations that extreme Sr and Ba depletion result from long-term crystallization of a single magma body—instead we suggest that punctuated batch melting events generated a sanidine-rich refractory residue and a melt source region progressively depleted in Sr and Ba.  相似文献   

10.
In the Kurai fault zone, travertine forms a matrix cementing clastic material of colluvial and glacial deposits or rarely forming a stockwork in a system of fractures in Palaeozoic rocks. The regular change of composition of solutions in the process of travertine formation has resulted in change of stable Mg–calcite by Sr–aragonite. According to the carbon isotopic composition, the travertine has intermediate genesis between thermal and meteogene. The light oxygen isotopic composition of CaCO3 indicates formational water input. The carbonates inherited Y, Sr, U, and Ni and in some areas, V, As, and Zn from the endogeneous water sources. Given that the Kurai zone travertine cements the Late Pleistocene–Holocene sediments and 14C dating of the carbonates gives a range of >40 000–3475 ± 35 years, the faults serving as routes of migration of the solutions forming the travertine should be considered as active structures.  相似文献   

11.
Extremely pure samples of clinopyroxene phenocrysts from two volcanic rocks have been analyzed for K, Rb, Cs, Sr and Ba. In conjunction with matrix concentrations, partition coefficients are obtained which are in the range 0.001–0.004 for K, Rb, Cs and Ba. These values are lower than those in the literature by factors of 6–100 but are in good agreement with values determined experimentally at pressures of 15–30 kb by Shimizu (Geochim. Cosmochim. Acta38, 1974). Values for partition coefficients measured on separates of impure or cloudy pyroxenes from these same rocks were higher and similar to those in the literature. We suggest this effect is related to ‘trapping,’ during crystal growth, of liquid which is enriched in the larger ions (such as Rb and Cs) due to lack of diffusion equilibrium in the liquid. Partition coefficient values for olivine and plagioclase from one of these same rocks were also determined.  相似文献   

12.
An indirect method was used to study Na, K, Rb, Cs, Sr and Ba partition coefficients between crystals and silicate melt. Equilibria between a hydrothermal solution and the melt at 800°C and 2 kb and between a hydrothermal solution and crystals at 750°C and 2 kb were separately achieved.For major element partitioning (Na and K), the results obtained here are in good agreement with those of Tuttle and Bowen (1958) which allow us to follow crystal evolution during a fractional crystallization process where the growth of zoned crystals takes place.For minor elements Rb, Cs, Sr, Ba, melt/aqueous solution partition coefficients depend on Na/K as well as the silica content of the melt. These effects are rather small for Rb and Cs, but are much more important for the alkaline earths. The feldspar/aqueous solution partition coefficients also depend on Na/K.The variations of the partition coefficients feldspar/melt are complex in the part of the Qz-Ab-Or diagram located below the cotectic line.During fractional crystallization following the Rayleigh law (assuming that there are no kinetic phenomena) Sr (D > 10) is almost totally removed from the melt in the early stages whereas Cs (D < 0.1) remains in the melt during the whole process. Rb and Ba have partition coefficients closer to unity. The variation of these coefficients, due to changes in bulk composition of liquid and crystals during fractional crystallization, can lead to complex zoning with possible concentration maxima at some stages. Similar phenomena can be expected in non-ideal natural solid solutions, even if no discontinuities can be detected in the physicochemical evolution of the parent magma.  相似文献   

13.
The Band-e-Hezarchah granitoids (BHG) is located in the northern margin of the central Iran, where the very old continental crust of Iran is found. The BHG mainly include granodiorite, granite and leucogranite. Small meta-gabbroic stocks and dykes are associated with BHG. U–Pb zircon dating of the BHG granites and metabasites yield 238U/206Pb crystallization ages of ca. 553.6 and 533.5 Ma respectively (Ediacaran–early Cambrian). The metabasites have calc-alkaline signature and their magmas seem to have originated from a mantle wedge above a subduction zone. These rocks are thought to be formed in a continental back-arc setting, related to the oblique subduction of Proto-Tethys oceanic lithosphere beneath the northern margin of Gondwanan supercontinent during Ediacaran–Cambrian time. The initial 87Sr/86Sr ratios and ɛNd (t) values for metabasites are change from 0.705 to 0.706 and −3.5 to −3.6 respectively. Sr–Nd isotope composition of metabasites indicates that these rocks were derived from a subcontinental lithospheric mantle source. The BHG and associated metabasites are coeval with other similar aged metagranites and gneisses from Iranian basements exposed in central Iran, Sanandaj-Sirjan and Alborz zones. These rocks were formed due to continental arc magmatism of Neoproterozoic–early Cambrian, bordering the northern active margin of Gondwana.  相似文献   

14.
The interaction of aluminophosphate glass with water at 95°C for 35 days results in glass heterogenization and in the appearance of a gel layer and various phases. The leaching rate of elements is low owing to the formation of a protective layer on the glass surface. It is shown that over 80% of uranium leached from the glass matrix occurs as colloids below 450 nm in size characterized by high migration ability in the geological environment. To determine the composition of these colloids is a primary task for further studies. Water vapor is a crystallization factor for glasses. The conditions as such may appear even at early stages of glass storage because of the failure of seals on containers of high-level radioactive wastes. The examination of water resistance of crystallized matrices and determination of the fraction of radionuclide in colloids are also subjects for further studies.  相似文献   

15.
This study is aimed at understanding the behavior of monazite, xenotime, apatite and zircon, and the redistribution of Zr, REE, Y, Th, and U among melt, rock-forming and accessory phases in a prograde metamorphic sequence, the Kinzigite Formation of Ivrea-Verbano, NW Italy, that may represent a section from the middle to lower continental crust. Metamorphism ranges from middle amphibolite to granulite facies and metapelites show evidence of intense partial melting and melt extraction. The appearance of melt controls the grain size, fraction of inclusions and redistribution of REE, Y, Th, and U among accessories and major minerals. The textural evolution of zircon and monazite follows, in general, the model of Watson et al. (1989). Apatite is extracted from the system dissolved into partial melts. Xenotime is consumed in garnet-forming reactions and is the first source for the elevated Y and HREE contents of garnet. Once xenotime is exhausted, monazite, apatite, zircon, K-feldspar, and plagioclase are progressively depleted in Y, HREE, and MREE as the modal abundance of garnet increases. Monazite is severely affected by two retrograde reactions, which may have consequences for U-Pb dating of this mineral. Granulite-grade metapelites (stronalites) are significantly richer in Ti, Al, Fe, Mg, Sc, V, Cr, Zn, Y, and HREE, and poorer in Li, Na, K, Rb, Cs, Tl, U, and P, but have roughly the same average concentration of Cu, Sr, Pb, Zr, Ba, LREE, and Th as amphibolite-grade metapelites (kinzigites). The kinzigite-stronalite transition is marked by the sudden change of Th/U from 5–6 to 14–15, the progressive increase of Nb/Ta, and the decoupling of Ho from Y. Leucosomes were saturated in zircon, apatite, and (except at the lowest degree of partial melting) monazite. Their REE patterns, especially the magnitude of the Eu anomaly, depend on the relative proportion of feldspars and monazite incorporated into the melt. The presence of monazite in the source causes an excellent correlation of LREE and Th, with nearly constant Nd/Th ≈ 2.5–3. The U depletion and increase in Th/U characteristic of granulite facies only happens in monazite-bearing rocks. It is attributed to enhancement of the U partitioning in the melt due to elevated Cl activity followed by the release of a Cl-rich F-poor aqueous fluid at the end of the crystallization of leucosomes. Halide activity in partial melts was buffered by monazite and apatite. Since the U (and K) depletion does not substantially affect the heat-production of metapelites, and mafic granulites maintain similar Th/U and abundance of U and Th as their unmetamorphosed equivalents, it seems that geochemical changes associated to granulitization have only a minor influence on heat-production in the lower crust.  相似文献   

16.
Protolith zircon in high‐grade metagranitoids from Queensland, Australia, partially recrystallized during granulite‐grade metamorphism. We describe the zircon in detail using integrated cathodoluminescence, U–Pb isotope, trace element and electron backscatter diffraction pattern (EBSP) analyses. Primary igneous oscillatory zoning is partially modified or obliterated in areas within single crystals, but is well preserved in other areas. A variety of secondary internal structures are observed, with large areas of transgressive recrystallized zircon usually dominant. Associated with these areas are recrystallization margins, interpreted to be recrystallization fronts, that have conformable boundaries with transgressive recrystallized areas, but contrasting cathodoluminescence and trace element chemistry. Trace element analyses of primary and secondary structures provide compelling evidence for closed‐system solid‐state recrystallization. By this process, trace elements in the protolith zircon are purged during recrystallization and partitioned between the enriched recrystallization front and depleted recrystallized areas. However, recrystallization is not always efficient, often leaving a ‘memory’ of the protolith trace element and isotopic composition. This results in the measurement of ‘mixed’ U–Pb isotope ages. Nonetheless, the age of metamorphism has been determined. A correlation between apparent age and Th/U ratio is indicative of incomplete re‐setting by partial recrystallization. Recrystallization is shown to probably not significantly affect Lu–Hf ages. Recrystallization has been determined by textural and trace element analysis and EBSP data not to have proceeded by sub‐grain rotation or local dissolution/re‐precipitation, but probably by grain‐boundary migration and defect diffusion. The formation of metamorphic zircon by solid‐state recrystallization is probably common to high‐grade terranes worldwide. The recognition of this process of formation is essential for correct interpretation of zircon‐derived U–Pb ages and subsequent tectonic models.  相似文献   

17.
《Applied Geochemistry》2002,17(3):163-183
The combined chemical composition, B and Sr isotopes, and the basic geologic setting of geothermal systems from the Menderes Massif in western Turkey have been investigated to evaluate the origin of the dissolved constituents and mechanisms of water–rock interaction. Four types of thermal water are present: (1) a Na–Cl of marine origin; (2) a Na–HCO3 type with high CO2 content that is associated with metamorphic rocks of the Menderes Massif; (3) a Na–SO4 type that is also associated with metamorphic rocks of the Menderes Massif with H2S addition; and (4) a Ca–Mg–HCO3–SO4 type that results from interactions with carbonate rocks at shallow depths. The Na–Cl waters are further subdivided based on Br/Cl ratios. Water from the Cumalı Seferihisar and Bodrum Karaada systems are deep circulated seawater (Br/Cl=sea water) whereas water from Çanakkale–Tuzla (Br/Cl<sea water) are from dissolution of Messinian evaporites. Good correlations between different dissolved salts and temperature indicate that the chemical composition of the thermal waters from non-marine geothermal systems is controlled by: (1) temperature dependent water–rock interactions; (2) intensification of reactions due to high dissolved CO2 and possibly HCl gasses; and (3) mixing with overlying cold groundwater. All of the thermal water is enriched in B. The B isotopic composition (δ11B=2.3‰ to 18.7‰; n=6) can indicate either leaching of B from the rocks, or B(OH)3 degassing flux from deep sources. The large ranges in B concentrations in different rock types as well as in thermal waters from different systems suggest the water-rock mechanism. 87Sr/86Sr ratios of the thermal water are used to differentiate between solutes that have interacted with metamorphic rocks (87Sr/86Sr ratio as high as 0.719479) and carbonate rocks (low 87Sr/86Sr ratio of 0.707864).  相似文献   

18.
The Central Anatolian Volcanic Province (CAVP), one of four major volcanic provinces in Turkey, plays a significant role in the interpretation of the tectonic evolution of Central Anatolia. The CAVP developed within a complex collisional system involving the African, Arabian and Eurasian plates during the Miocene. The volcanism exhibits complicated variations in mineralogical, petrological and geochemical compositions resulting from post-collisional lithospheric dynamics. The Incesu ignimbrite has 5–20 m thick and covers an area of ~7800 km2. It is composed of three stratigraphic levels. The lower level (LL) shows blackish brown and glassy welded structure. The middle level (ML) is a well-welded, reddish pink in color and has large amounts of fiamme. The upper level (UL) is grayish pink, weakly welded and has rock fragments of different compositions. The Incesu ignimbrite is composed of plagioclase (oligoclase, andesine) + pyroxene (augite, clinoenstatite) + opaque minerals and low amount of amphibole, biotite and quartz. Eutaxitic texture is dominant in ML and LL samples; these levels are more strongly and contain more flattened pumice fragments and volcanic glass shards than in the UL. A sharp color contrast defines the contact between LL and ML.Major, trace and rare earth element of the Incesu ignimbrite, characterized by their rhyolite, rhyodacite–dacite composition, medium–high K, calcalkaline and peraluminous nature, show fractional crystallization primarily controlled by plagioclase, clinopyroxene, magnetite, ilmenite and titanomagnetite. Sr and Nd isotopic ratios of Incesu ignimbrite display isotopic variations between the ignimbrite levels; they exhibit a limited range in 87Sr/86Sr (0.7043–0.7049) and 143Nd/144Nd (0.512716–0.512760). The Sr–Nd isotopic ratio of Incesu ignimbrite reveals an age of 3 Ma. The ignimbrite evolved through fractional crystallization and crystal contamination of the parent magma derived from Ocean Island Basalt (OIB) like magma. This suggestion is supported by the AFC modeling based on the trace elements and Sr isotope data.Variation of several major oxide concentrations (Fe2O3, TiO2, CaO and K2O), trace element concetrations (V, Sr, Cs and Rb) and trace element ratios (Ba/Rb, Sr/, K/Sr, K/Nb, Rb/Sr, Rb/Y and Rb/Nb) versus SiO2 concentration show the magma chamber that generated the Incesu ignimbrite was compositionally zoned. All geochemical and Sr–Nd isotpic datas can be interepreted to be the result of a subduction related source.  相似文献   

19.
We found that the suppression of signals for 88Sr, 140Ce and 238U in rock solution caused by rock matrix in ICP-MS (matrix effects) was reduced at high power operation (1.7 kW) of the ICP. To make the signal suppression by the matrix negligible, minimum dilution factors (DF) of the rock solution for Sr, Ce and U were 600, 400 and 113 at 1.1, 1.4 and 1.7 kW, respectively. Based on these findings, a rapid and precise determination method for Rb, Sr, Y, Cs, Ba, REE, Pb, Th and U using FI (flow injection)-ICP-MS was developed. The amount of the sample solution required for FI-ICP-MS was 0.2 ml, so that 1.8 mg sample was sufficient for analysis with a detection limit of several ng g-1. Using this method, we determined the trace element concentrations in the USGS rock reference materials, DTS-1, PCC-1, BCR-1 and AGV-1, and the GSJ rock reference materials, JP-1, JB-1, -2, -3, JA-1, -2 and -3. The reproducibilities (RSD %) in replicate analyses (n=5) of BCR-1, AGV-1, JB-1, -2, -3, JA-1, -2, and -3 were < 6 %, and typically 2.5%. The difference between the average concentrations of this study for BCR-1 and those of the reference values were < 2%. Therefore, it was concluded that the method can give reliable data for trace elements in silicate rocks.  相似文献   

20.
Thermokarst lakes, formed during permafrost thaw in Western Siberia Plain over past tens to hundreds years, cover overall territory close to million km2 and may represent significant source of CO2 and CH4 to the atmosphere. These acidic (3 < pH < 6) and humic [10 < dissolved organic carbon (DOC) < 50 mg/L] lakes are essentially inhabited by heterotrophic bacterioplankton with rare phytoplankton bloom occurring during warm periods. In order to understand possible effects of phytoplankton bloom on thermokarst lake hydrochemistry under climate warming scenario, we cultured pure cyanobacterium (Gloeocapsa sp.) and native cyanobacterial associate separated from the natural lake water. As substrates, sterilized thermokarst lake water and peat leachate from western Siberia were used. In these laboratory microcosm experiments which lasted 10 days, we monitored daily pH, biomass, DOC, and 40 major and trace elements. Despite significant variation of pH (4 to ~10.5) and biomass (a factor of 3–5), very few dissolved elements responded to massive cyanobacterial growth. The DOC varied within a factor of 1.2–1.5, exhibiting slow increase due to exometabolite production in thermokarst lake water and an initial decrease due to photodegradation in peat leachate. Elements appreciably affected by photosynthesis in both lake water and peat leachate substrates were P, Zn, Mn, and, in a lesser degree, Cd, K, Rb, Sr, Ba, Cr, Al, and U. While P, K (Rb), Mn, and Zn removal from solution during cell growth could be linked to biological demand by cyanobacteria, the adsorption of Cd, Sr, Ba, Al, Cr, U on the cell surface in response to the pH rise is most likely. Many other trace elements did not exhibit any significant evolution of the concentration during 10-day experiment either due to their strong complexation with allochthonous organic matter and essentially organic/organo-mineral colloidal status (Fe, Ni, Co, Cu, Pb, REEs, Ti, Zr, Hf, Th) or due to the lack of element interaction with cyanobacterial cells, via both adsorption and intracellular uptake (B, Si, V, Mo, As, Sb, Cs). Therefore, possible intensification of cyanobacterial bloom in thermokarst lakes caused by leaching of thawing peat will likely affect only few macronutrients and micronutrients such as P, K, Mn, and Zn, while the majority of trace elements bound to allochthonous DOC in the form of organic and organo-mineral colloids will not be affected by cyanobacterial biomass production and pH rise due to photosynthesis. Cyanobacterial bloom in organic-rich (20 mg DOC/L) thermokarst lakes exhibited significant potential of carbon sequestration from the atmosphere, which is more than an order of magnitude higher than the CO2 evasion due to heterotrophic plankton respiration of allochthonous DOC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号