首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Regime shifts: Can ecological theory illuminate the mechanisms?   总被引:2,自引:0,他引:2  
“Regime shifts” are considered here to be low-frequency, high-amplitude changes in oceanic conditions that may be especially pronounced in biological variables and propagate through several trophic levels. Three different types of regime shift (smooth, abrupt and discontinuous) are identified on the basis of different patterns in the relationship between the response of an ecosystem variable (usually biotic) and some external forcing or condition (control variable). The smooth regime shift is represented by a quasi-linear relationship between the response and control variables. The abrupt regime shift exhibits a nonlinear relationship between the response and control variables, and the discontinuous regime shift is characterized by the trajectory of the response variable differing when the forcing variable increases compared to when it decreases (i.e., the occurrence of alternative “stable” states). Most often, oceanic regime shifts are identified from time series of biotic variables (often commercial fish), but this approach does not allow the identification of discontinuous regime shifts. Recognizing discontinuous regime shifts is, however, particularly important as evidence from terrestrial and freshwater ecosystems suggests that such regime shifts may not be immediately reversible. Based on a review of various generic classes of mathematical models, we conclude that regime shifts arise from the interaction between population processes and external forcing variables. The shift between ecosystem states can be caused by gradual, cumulative changes in the forcing variable(s) or it can be triggered by acute disturbances, either anthropogenic or natural. A protocol for diagnosing the type of regime shift encountered is described and applied to a data set on Georges Bank haddock, from which it is concluded that a discontinuous regime shift in the abundance of haddock may have occurred. It is acknowledged that few, if any, marine data are available to confirm the occurrence of discontinuous regime shifts in the ocean. Nevertheless, we argue that there is good theoretical evidence for their occurrence as well as some anecdotal evidence from data collection campaigns and that the possibility of their occurrence should be recognized in the development of natural resource management strategies.  相似文献   

2.
A regime shift is considered to be a sudden shift in structure and functioning of a marine ecosystem, affecting several living components and resulting in an alternate state. According to this definition, regime shifts differ from species replacement or alternation of species at similar trophic levels, whereby the ecosystem is not necessarily significantly altered in terms of its structure and function; only its species composition changes. This paper provides an overview of regime shifts, species replacements and alternations that have been observed in the northern and southern Benguela ecosystems over the past few decades. Bottom-up control, initiating and sustaining regime shifts or species replacements via environmental forcing, is documented for both the southern and the northern Benguela ecosystems. Fishing (a case of top-down control) appears to have played an important role in regime shift processes in the Namibian ecosystem. Very low biomass levels of exploited fish stocks associated with less efficient energy transfer in the northern Benguela are indicative of a regime shift. Very high biomass levels have been reached in the southern Benguela in the 2000s. However the alternation between sardine and anchovy that has been observed in the southern Benguela over the last two decades appears not to have had major effects on the overall functioning of the ecosystem. The consequences of regime shifts for exploitation are highlighted, suggesting that fisheries managers should move towards a more effective ecosystem approach to fisheries.  相似文献   

3.
There were climatic regime shifts over the North Pacific in 1976 and 1988 which affected the dynamics of the marine ecosystem and fisheries resources in Korean waters. Precipitation in Korean waters showed a decadal scale climatic jump, especially of Ullungdo Island, reflecting the regime shift that occurred in the North Pacific. The variation was also detected in East Asian atmospheric systems. The Aleutian Low and North Pacific High Pressure Systems showed substantial changes in 1976 and around 1987–89. 1976 was an unusually warm year for Korea; mean sea surface temperature (SST) was higher than ‘normal’ and was accompanied by a northward shift in the thermal front. Post 1976, the volume transport of the Kuroshio Current increased and higher seawater and air temperatures persisted until 1988. Other shifts occurred after 1976 such as an increase in mixed layer depth (MLD) and biological changes in the ecosystem of Korean waters including decreases in spring primary production and an increase in autumn primary production. Primary production increased again after 1988, and was followed by a significant increase in zooplankton biomass after 1991. The 1976 regime shift was manifested by a decreased biomass and production of saury, but an increase in biomass and production of sardine and filefish in Korean waters. After 1988, recruitment, biomass, and production of sardine collapsed while those of mackerel substantially increased. Based on these observations, hypotheses on the relationship between the climate-driven oceanic changes and changes in fisheries resources were developed and are discussed.  相似文献   

4.
Regimes and regime shifts are important concepts for understanding decadal variability in the physical system of the North Pacific because of the potential for an ecosystem to reorganize itself in response to such shifts. There are two prevalent senses in which these concepts are taken in the literature. The first is a formal definition and posits multiple stable states and rapid transitions between these states. The second is more data-oriented and identifies local regimes based on differing average climatic levels over a multi-annual duration, i.e. simply interdecadal fluctuations. This second definition is consistent with realizations from stochastic red noise processes to a degree that depends upon the particular model. Even in 100 year long records for the North Pacific a definition of regimes based solely on distinct multiple stable states is difficult to prove or disprove, while on interdecadal scales there are apparent local step-like features and multi-year intervals where the state remains consistently above or below the long-term mean. The terminologies climatic regime shift, statistical regime shift or climatic event are useful for distinguishing this second definition from the first.To illustrate the difficulty of advocating one definition over the other based upon a relatively short time series, we compare three simple models for the Pacific Decadal Oscillation (PDO). The 104-year PDO record is insufficient to statistically distinguish a single preference between a square wave oscillator consistent with the formal definition for regime shifts, and two red noise models that are compatible with climatic regime shifts. Because of the inability to distinguish between underlying processes based upon data, it is necessary to entertain multiple models and to consider how each model would impact resource management. In particular the persistence in the fitted models implies that certain probabilistic statements can be made regarding climatic regime shifts, but we caution against extrapolation to future states based on curve fitting techniques.  相似文献   

5.
The North Sea regime shift: Evidence, causes, mechanisms and consequences   总被引:2,自引:0,他引:2  
This paper focuses on the ecosystem regime shift in the North Sea that occurred during the period 1982–1988. The evidence for the change is seen from individual species to key ecosystem parameters such as diversity and from phytoplankton to fish. Although many biological/ecosystem parameters and individual species exhibited a stepwise change during the period 1983–1988, some indicators show no evidence of change. The cause of the regime shift is likely to be related to pronounced changes in large-scale hydro-meteorological forcing. This involved activating of complex intermediate physical mechanisms which explains why the exact timing of the shift can vary from 1982 to 1988 (centred around two periods: 1982–1985 and 1987–1988) according to the species or taxonomic group. Increased sea surface temperature and possibly change in wind intensity and direction at the end of the 1970s in the west European basin triggered a change in the location of an oceanic biogeographical boundary along the European continental shelf. This affected both the stable and substrate biotope components of North Sea marine ecosystems (i.e. components related to the water masses and components which are geographically stable) circa 1984. Large-scale hydro-climatic forcing also modified local hydro-meteorological parameters around the North Sea after 1987 affecting the stable biotope components of North Sea ecosystems. Problems related to the detection and quantification of an ecosystem regime shift are discussed.  相似文献   

6.
Evidence supports the hypothesis that two climatic regime shifts in the North Pacific and the Japan/East Sea, have affected the dynamics of the marine ecosystem and fisheries resources from 1960 to 2000. Changes in both mixed layer depth (MLD) and primary production were detected in the Japan/East Sea after 1976. The 1976 regime shift appears to have caused the biomass replacement with changes in catch production of major exploited fisheries resources, including Pacific saury, Pacific sardine and filefish. Both fisheries yield and fish distribution are reflected in these decadal fluctuations. In the 1960s and 1990s, common squid dominated the catches whereas in the 1970s and 1980s, it was replaced by walleye pollock. In the post-1988 regime shift, the distribution of horse mackerel shifted westward and southward and its distributional overlap with common mackerel decreased. The habitat of Pacific sardine also shifted away from mackerel habitats during this period. To evaluate changes in the organization and structure of the ecosystem in the Japan/East Sea, a mass-balanced model, Ecopath, was employed. Based on two mass-balanced models, representing before (1970–75) and after (1978–84) the 1976 regime shift, the weighted mean trophic level of catch increased from 3.09 before to 3.28 after. Total biomass of species groups in the Japan/East Sea ecosystem increased by 15% and total catch production increased by 48% due to the 1976 regime shift. The largest changes occurred at mid-trophic levels, occupied by fishes and cephalopods. The dominant predatory species shifted from cephalopods to walleye pollock due to the 1976 regime shift. It is concluded that the climatic regime shifts caused changes in the structure of the ecosystem and the roles of major species, as well as, large variations in biomass and production of fisheries resources.  相似文献   

7.
An ecosystem approach to the management of the marine environment has received considerable attention over recent years. However, there are few examples which demonstrate its practical implementation. Much of this relates to the history of existing marine monitoring and assessment programmes which (for many countries) are sectoral, making it difficult to integrate monitoring data and knowledge across programmes at the operational level.To address this, a scientific expert group, under the auspices of the International Council for the Exploration of the Sea (ICES), prepared a plan for how ICES could contribute to the development of an Integrated Ecosystem Assessment (IEA) for the North Sea by undertaking a pilot study utilising marine monitoring data. This paper presents the main findings arising from the expert group and in particular it sets out one possible integrated approach for assessing the relative significance of environmental forcing and fishing pressure on the ecological status of the North Sea, it then compares the findings with assessments made of other Large Marine Ecosystems (LMEs).We define the North Sea ecosystem on the basis of 114 state and pressure variables resolved as annual averages between 1983 and 2003 and at the spatial scale of ICES rectangles. The paper presents results of integrated time-series and spatial analysis which identifies and explains significant spatial and temporal gradients in the data. For example, a significant shift in the status of the North Sea ecosystem (based upon 114 state-pressure variables) is identified to have occurred around 1993. This corresponds to previously documented shifts in the environmental conditions (particularly sea surface temperature) and changes in the distribution of key species of plankton (Calanus sp.), both reported to have occurred in 1989. The difference in specific timing between reported regime shifts for the North Sea may be explained, in part, by time-lag dependencies in the trophic structure of the ecosystem with shifts in higher trophic levels occurring later than 1989.By examining the connection (or relatedness) between ecosystem components (e.g. environment, plankton, fish, fishery and seabirds) for the identified regime states (1983–1993; 1993–2003) we conclude that both the North Sea pelagic and benthic parts of the ecosystem were predominantly top-down (fishery) controlled between 1983 and 1993, whereas between 1993 and 2003 the pelagic stocks shifted to a state responding mainly to bottom-up (environment) influences. However, for the demersal fish stocks between 1993 and 2003 top-down (fishery) pressure dominated even though over this period significant reductions in fishing pressure occurred. The present analysis, therefore, provides further evidence in support of the need for precautionary management measures taken in relation to setting fishery quotas.  相似文献   

8.
Long-term ecosystem changes, such as regime shifts, have occurred in several marine ecosystems world-wide. Multivariate statistical methods have been used to detect such changes. A new method known as the sequential t-test algorithm for analysing regime shifts (STARS) is applied to a set of biological state variables as well as environmental and anthropogenic forcing variables in the southern Benguela. The method is able to correct for auto-correlation within time-series by a process known as prewhitening. All variables were tested with and without prewhitening. Shifts that were detected with both methods were termed robust. The STARS method detected shifts in relatively short time-series and identified when these shifts occurred without a priori hypotheses. Shifts were generally well detected at the end of time-series, but further development of the method is needed to enhance its performance for auto-correlated time-series. Since 1950, two major long-term ecosystem changes were identified for the southern Benguela. The first change occurred during the 1960s, caused predominantly by heavy fishing pressure but with some environmental forcing. The second change occurred in the early 2000s, caused mainly by environmental forcing. To strengthen these findings, further analyses should be carried out using different methods.  相似文献   

9.
Although striking regime shifts have been observed in marine systems, mechanistic explanations for these phenomena remain scarce. Here, we review studies of regime shifts in lakes and compare them to what has been found in marine systems to explore the extent to which lakes can be viewed as microcosms for studying essential ecosystem feedbacks in marine systems. We conclude that despite obvious differences, which have been discussed by several authors, lakes are in fact quite similar to oceans in many aspects. In particular, similar mechanisms may be involved in causing alternative attractors (and thus a tendency to show occasional regime shifts) in both systems. A striking similarity exists between the mechanisms that may have caused massive marine anoxic events in the distant past, and the shift of many deep lakes to a mode of anoxic phosphorus recycling. Biotic interactions are relatively poorly understood in the oceans. However, based on what we know from lakes, we expect competitive interactions and diffuse multi-species interactions to be a common cause of alternative attractors in marine communities. In addition, overexploitation traps are an obvious cause of multiple attractors to be expected in the oceans. These should not be limited to direct effects of human overexploitation. Shifts between overexploited and under-exploited states may happen at various trophic levels. Finally, we conclude from observed patterns and theoretical results that implications of alternative attractors will be quite different in benthic and open ocean systems. Benthic regime shifts might happen easily but can be relatively local. By contrast, open ocean shifts might not arise so easily but tend to be impressive in magnitude and scale when they happen.  相似文献   

10.
This note provides a brief review of five analytical methods previously used or promoted for diagnosing regime shifts in marine ecosystems. The methods discussed are: (i) principal components analysis, (ii) compositing average standard deviates, (iii) autoregressive moving average and intervention analysis modeling, (iv) vector autoregressive process modeling, and (v) Fisher information. Assessments of the relative strengths and weaknesses for the different analytical approaches are also offered. Some of these methods are applied to a collection of fishery oceanographic time series for the N. Pacific to illustrate aspects of their relative utility and limitations for diagnosing regime shift behavior. One recommendation for future studies is to analyze biotic and abiotic time series separately in order to identify ecosystem state variables of interest and to better isolate ecosystem behaviors from other influences like environmental change. Methods that allow for quantitative assessments of the statistical significance of hypothesized regime shifts should be favored over those that do not. Analyses of especially large collections of time series may benefit from first using a data compression technique and then applying one of the methods that are more appropriate for just one or a small number of time series. Because of the difficulties in observing and adequately documenting many aspects of marine ecosystem variability, it is crucial that future research attempt to combine empirical studies of large marine ecosystems with theoretical and modeling studies of other systems for which the dynamics and predictability are better understood. With such a comparative approach it should be possible to refine conceptual and simulation models, while also identifying crucial gaps in existing observations.  相似文献   

11.
Progress in ecosystem management requires the characterisation of the dynamics of a species's ecosystem and the influences of climatic oscillations on those dynamics. Within the North Pacific, ecosystem dynamics have been described on decadal-scales (regimes) and have been shown to shift abruptly (regime shifts). The year class success of sablefish (Anoplopoma fimbria) exhibit decadal-scale patterns that relate to decadal-scale patterns in North Pacific climate–ocean conditions. As an example, and a step towards, incorporating the dynamics of marine systems into the stock assessment and management of sablefish, we produce a ‘report card’ that characterises the species's ecosystem on decadal-scales. This report card consists of a matrix of climatological and oceanographic indices for the North Pacific, and regional environmental and biological indices. It indicates that both Pacific-wide and regionally, conditions were generally good for sablefish year class strength during the 1977–1988 regime, but these favourable conditions did not persist into the 1990s. Exploitation scenarios can be developed around the decadal-scale dynamics in sablefish year class success and their life history, in particular longevity. Fisheries managers can begin to develop exploitation strategies that acknowledge these changes in the sablefish ecosystem. The report card presents an aggregation of parameters that, on average, gives an impression of productivity during a specific regime and can be used to augment present stock assessment and management efforts.  相似文献   

12.
The analysis of interdecadal physical and biological variability is made challenging by the relative shortness of available time series. It has been suggested that rapid temporal changes of the most energetic empirical orthogonal function of North Pacific sea surface temperature (sometimes called the Pacific Decadal Oscillation or PDO) represents a “regime shift” between states with otherwise stable statistics. Using random independent time series generated to have the same frequency content as the PDO, we show that a composite analysis of climatic records recently used to identify regime shifts is likely to find them in Gaussian, red noise with stationary statistics. Detection of a shift by this procedure is not evidence of nonlinear processes leading to bi-stable behavior or any other meaningful regime shift.  相似文献   

13.
Ecosystems often shift abruptly and dramatically between different regimes in response to human or natural disturbances. When ecosystems tip from one regime to another, the suite of available ecosystem benefits changes, impacting the stakeholders who rely on these benefits. These changes often create some groups who stand to incur large losses if an ecosystem returns to a previous regime. When the participation cost in the decision-making process is extremely high, this can “lock in” ecosystem regimes, making it harder for policy and management to shift ecosystems out of what the majority of society views as the undesirable regime. Public stakeholder meetings often have high costs of participation, thus economic theory predicts they will be dominated by extreme views and often lead to decisions that do not represent the majority viewpoint. Such extreme viewpoints can create strong inertia even when there is broad consensus to manage an ecosystem towards a different regime. In the same manner that reinforcing ecological feedback loops make it harder to exit an ecosystem regime, there are decision-making feedback loops that contribute additional inertia.  相似文献   

14.
The change of sea surface temperature(SST) in the southern Indian Ocean(SIO) during the recent six decades has been analyzed based on oceanic reanalysis and model, as well as atmospheric data. The results show that a thermal regime shift in SIO during the 1960 s, which is not caught enough attentions, has been of equal magnitude to the linear warming since 1970. Empirical Orthogonal Function(EOF) analyses reveal that a thermal shift is combined with atmospheric changes such as the weakening of westerly during the period of 1960–1967. Inner dynamic connections can be defined that when the westerly winds turn weak, the anticyclonic wind circulation between westerly winds and the trade winds decreases, which further reduces the SST to a negative peak in this period. It is noted that the shifts in the 1960 s are also evident for Southern Hemisphere. For example, subtropical high and the entire westerly winds belt at high latitudes both change dramatically in the 1960 s. This large-scaled process maybe link to the change of southern annular mode(SAM).  相似文献   

15.
The epipelagic and mesopelagic nekton communities of the northern California Current have been sampled somewhat continuously over the last four decades with bottom and pelagic trawls, small midwater trawls, and purse seines. We review the zoogeography and community and environmental associations of the dominant pelagic micronekton and nekton species in this region with a view to understanding their role in this dynamic marine ecosystem. As is typical of many upwelling eastern boundary current regions, the pelagic biomass is dominated by a few species that fluctuate dramatically through time. The abundance trends of pelagic nekton caught in this region demonstrated large-scale ecosystem changes about the time of the regime shifts of 1976/77 and 1989 and possibly another beginning in 1999. The rapidity of the changes in composition indicates that the response was due to a change in migration or distribution patterns as opposed to recruitment patterns. The 1989 regime shift led to a dramatic increase in sardine and a decrease in anchovy populations. The most pronounced interannual signals were attributed to strong El Niño/Southern Oscillation (ENSO) conditions in 1983 and 1998 that altered the latitudinal ranges and proximity to the coast of many pelagic species. Variations in abundance and cross-shelf distribution patterns were noted for both pelegic nekton and micronektonic from surveys off California, Oregon, and Washington.  相似文献   

16.
We compiled and analyzed past time-series data to evaluate changes in oceanographic conditions and marine ecosystems near the Ieodo ocean research station (IORS) in the East China Sea (N 31°15??C33°45??, E 124°15??C127°45??) in relation to longterm changes in climate and global warming. The environment data we used was a depth-specific time-series of temperature and salinity for the water columns at 175 fixed stations along 22 oceanographic lines in Korean waters, based on bimonthly measurements since 1961 taken by the National Fisheries Research & Development Institute. As an indicator for the ecosystem status of the waters off Ieodo, we analyzed species composition in biomass of fishes caught by Korean fishing vessels in the waters near the IORS (1984?C2010) and summarized the data in relation to the environmental changes using canonical correspondence analysis (CCA). To detect step changes in the time-series of environmental factors, we applied a sequential t-test analysis of regime shift. Correspondence analysis detected a major shift in fish assemblage structure between 1990 and 1993: the dominant species was filefish during 1981?C1992, but chub mackerel during 1992?C2007. This shift in fish assemblage structure seemed to be related to the well-established 1989 regime shift in the North Pacific, which was confirmed again with respect to temperature in the Yellow Sea and the Korea Strait (but not in the waters off the IORS). In overall from 1984 to 2010, salinity was more important than water temperature in CCA, implying that the fluctuation of the Tsushima warm current is a most important force driving the long-term changes in fish assemblage structure in the waters off the IORS. Further multidisciplinary researches are required to identify oceanographic and biological processes that link climate-driven physical changes to fish recruitment and habitat range fluctuations.  相似文献   

17.
《Ocean Modelling》2011,40(3-4):209-219
Meridional shifts of the Gulf Stream (GS) jet on interannual to decadal timescales and the corresponding oceanic changes around the GS are investigated using a near global eddy-resolving ocean model hindcast from 1960 to 2003. The simulated variability in the shifts of the GS jet axis shows good agreement with observations, and lags atmospheric fluctuations characterized by the North Atlantic Oscillation by about 2 years. This lagged response of the GS jet to the atmospheric variations is attributed to the westward propagation of the undulation of the jet axis from 45°W to 75°W, which has a wavelength of about 4000 km and a displacement of 0.5°. The propagation direction and phase speed of about 2.8 cm s−1 are consistent with the thin-jet theory. The shifts of the jet axis in the downstream region are likely induced by wind fluctuations through Ekman convergence over the central North Atlantic. Associated with the northward (southward) shift of the jet axis, sea surface temperature is warming (cooling) around and north of the jet, and the former warming has a deep and meridionally narrow subsurface structure, consistent with the northward shift of the jet. The meridional shifts of the jet accompany coherent meridional shifts of energetic eddy activity regions around the GS. Our numerical results suggest that the GS jet brings the atmospheric signals from the central to the western North Atlantic, and the resultant meridional shift of the jet induces the notable oceanic changes around the GS.  相似文献   

18.
利用一个较高分辨率的全球海洋环流模式在COADS 1945~1993年逐月平均资料的强迫下对海温和环流场进行了模拟,分析了北太平洋海温和环流场的年代际变化特征,同时诊断了1976-77年代际跃变过程中海温场变化的机制.模式模拟出了北太平洋海温年代际异常的主要模态以及1976-77年跃变前后的演变特征,模拟的北太平洋中部、加州沿岸和KOE区的海温异常的强度和演变趋势均和观测比较一致;同时,模式重现了分别始于20世纪70和80年代的中纬度海温异常信号沿等密度面向低纬地区的两次潜沉过程.在表层,流场的异常主要表现为与风应力异常基本符合Ekman关系的一个异常海洋涡旋,而整个上层海洋平均的流场异常则表现为两个海洋涡旋的异常,其中副热带海洋涡旋的异常的强度要显著于副极地海洋涡旋的异常,而副极地海洋涡旋异常出现的时间比副热带海洋涡旋晚3a左右的时间.对1976-77年前后3个区域上层海温各贡献项的诊断结果表明,北太平洋中部变冷主要是水平平流和热通量异常贡献的结果;而加州沿岸变暖主要归因于热通量的贡献;在KOE区,垂直平流、热通量和水平平流三者都起了重要作用,其中水平平流异常对这一区域海温年代际跃变出现的时间起了至关重要的作用.  相似文献   

19.
东北大西洋北海渔场鱼类群落结构年际变化研究   总被引:2,自引:1,他引:1  
陈爽  陈新军 《海洋学报》2019,41(6):64-75
根据2001-2015年东北大西洋北海渔场进行的国际底拖网调查渔获数据,采用生物多样性指数和多元统计分析研究该海域群落结构的年际变化,并利用格局转变贯序t检验的方法研究鱼类种群的转变规律,结合环境因素与捕捞因素分析群落结构变化的原因。结果显示:2001-2015年北海渔场共出现280种渔业资源,其中鱼类有222种,资源丰度波动较大;物种多样性整体呈上升趋势。聚类分析和非度量多维标度排序分析表明,研究期间大致分为2001-2003年、2004-2011年和2012-2015年3个阶段。大西洋鲱分别在2004年和2014年种群结构发生格局转变,格局转变指数(RSI)分别为-0.45和0.41;黑线鳕在2003年和2012年格局发生转变,RSI值分别为-0.58和-0.66;黍鲱在2014年格局发生转变,RSI值为2。通过对环境因素与捕捞因素的分析发现,北海渔场群落格局第一次发生转变主要受捕捞因素影响,第二次发生转变主要受环境因素影响。  相似文献   

20.
Past studies suggested that a basin-wide regime shift occurred in 1988–1989, impacting marine ecosystem and fish assemblages in the western North Pacific. However, the detailed mechanisms involved in this phenomenon are still yet unclear. In the Ulleung basin of the East Sea, filefish, anchovy and sardine dominated the commercial fish catches in 1986–1992, but thereafter common squid comprised > 60% of the total catch in 1993–2010. To illuminate the mechanisms causing this dramatic shift in dominant fisheries species, I related changes in depth-specific oceanographic conditions from 0 to 500 m to inter-annual changes in the fish assemblage structure from 1986 to 2010. In the upper layer of 50–100 m depths, water temperature suddenly increased in 1987–1989, and consequently warm-water epi-pelagic species (anchovy, chub mackerel, and common squid) became dominant, while sardine, relatively cold-water epi-pelagic species, nearly disappeared. An annual index of the volume transport by the Korea Strait Bottom Cold Water, originating from the deep water of the Ulleung Basin, displayed a sudden intensification in 1992–1993, accompanied by decreased water temperature and increased water density in the deep water and replacement of dominant bentho-pelagic species from filefish, warm-water species, to herring and cod, cold-water species. The results suggest that climate-driven oceanic changes and the subsequent ecological impacts can occur asynchronously, often with time lags of several years, between the upper and the deep layer, and between epi-pelagic and deepwater fish assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号