首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The 1963 great Kurile earthquake was an underthrust earthquake occurred in the Kurile?CKamchatka subduction zone. The slip distribution of the 1963 earthquake was estimated using 21 tsunami waveforms recorded at tide gauges along the Pacific and Okhotsk Sea coasts. The extended rupture area was divided into 24 subfaults, and the slip on each subfault was determined by the tsunami waveform inversion. The result shows that the largest slip amount of 2.8?m was found at the shallow part and intermediate depth of the rupture area. Large slip amounts were found at the shallow part of the rupture area. The total seismic moment was estimated to be 3.9?×?1021?Nm (Mw 8.3). The 2006 Kurile earthquake occurred right next to the location of the 1963 earthquake, and no seismic gap exists between the source areas of the 1963 and 2006 earthquakes.  相似文献   

2.
Izvestiya, Physics of the Solid Earth - Abstract—The digital seismic network in Kamchatka deployed in 2006–2010 provided a fundamental possibility for calculating seismic moment tensor...  相似文献   

3.
4.
The 2010 Mentawai earthquake (magnitude 7.7) generated a destructive tsunami that caused more than 500 casualties in the Mentawai Islands, west of Sumatra, Indonesia. Seismological analyses indicate that this earthquake was an unusual “tsunami earthquake,” which produces much larger tsunamis than expected from the seismic magnitude. We carried out a field survey to measure tsunami heights and inundation distances, an inversion of tsunami waveforms to estimate the slip distribution on the fault, and inundation modeling to compare the measured and simulated tsunami heights. The measured tsunami heights at eight locations on the west coasts of North and South Pagai Island ranged from 2.5 to 9.3 m, but were mostly in the 4–7 m range. At three villages, the tsunami inundation extended more than 300 m. Interviews of local residents indicated that the earthquake ground shaking was less intense than during previous large earthquakes and did not cause any damage. Inversion of tsunami waveforms recorded at nine coastal tide gauges, a nearby GPS buoy, and a DART station indicated a large slip (maximum 6.1 m) on a shallower part of the fault near the trench axis, a distribution similar to other tsunami earthquakes. The total seismic moment estimated from tsunami waveform inversion was 1.0 × 1021 Nm, which corresponded to Mw 7.9. Computed coastal tsunami heights from this tsunami source model using linear equations are similar to the measured tsunami heights. The inundation heights computed by using detailed bathymetry and topography data and nonlinear equations including inundation were smaller than the measured ones. This may have been partly due to the limited resolution and accuracy of publically available bathymetry and topography data. One-dimensional run-up computations using our surveyed topography profiles showed that the computed heights were roughly similar to the measured ones.  相似文献   

5.
6.
Pseudotachylytes generated in granulite facies rocks are found in the Woodroffe thrust, central Australia. Petrologic evidence and structural and textural features show that these pseudotachylytes contain typical melting-origin features including injection occurrence, rounded and embayed clasts, and microlites within the fine-grained matrix, which formed contemporaneously with the wall granulite facies rocks under conditions of ~8 kbar and ~650–700°C. These granulite-related pseudotachylyte (G-Pt) veins are overprinted in subsequent deformation stages by three other types of pseudotachylytes including mylonite-related (M-Pt) and ultramylonite-related (Um-Pt) pseudotachylytes that are then transcut by cataclasite-related pseudotachylytes (C-Pt). The overprinting occurred following uplift of the lower crust where the G-Pt veins formed through the brittle-plastic transition zone where the M-Pt and Um-Pt veins occurred within the brittle-dominated regime of the C-Pt generation zone in the upper crust. The coexistence of multiple generations of large voluminous C-Pt, M-Pt, Um-Pt, and G-Pt veins indicates that numerous large earthquakes accompanying distinct seismic slip which produced the pseudotachylytes occurred over an extended period of seismicity and various depths of the crust within the Woodroffe thrust zone. The spatial distribution and structural features of the multiple-stage pseudotachylytes suggest that coseismic slipping caused by large earthquakes which nucleated in the brittle-dominated seismogenic zone propagated downward through the brittle-plastic transition zone into the plastic-dominated granulite facies depth from the upper to lower crust.  相似文献   

7.
We present the basis for a method for estimating the return period of large and medium earthquakes that is independent of current deterministic and probabilistic approaches. The two standard techniques of seismic hazard assessment??probabilistic seismic hazard assessment (PSHA) and deterministic seismic hazard assessment (DSHA)??suffer from limited knowledge of seismic prehistory. A further weakness of PSHA is its requirement of homogeneous seismic activity within a seismic zone. Moreover, PSHA and DSHA were developed for seismically active areas and, thus, cannot reliably be used in areas of medium and low activity. In this paper we propose the combined use of geodetic strain rate data and the seismic moment data set determined for past seismic events. This combination represents a new and independent approach to estimation of future seismic activity. Using a modified version of Kostrov??s (Phys Solid Earth 1:23?C40, 1974) equation and the catalogue of seismic moments, the minimum return period of the strongest earthquakes of a source area is estimated.  相似文献   

8.
INTRODUCTIONStudyingthe relation between the accumulation of crustal strain and the release rate of seismicmoment is animportant subject of earth science research.It is also one of the important methods ofestimatingthe future seismic risk(Ward,1994;1998a;…  相似文献   

9.
华北地区大地震矩释放率和GPS应变率的一致性研究   总被引:2,自引:0,他引:2  
GPS测量技术可以在较大地区范围内获得高精度地壳形变速率。稳定的应变速率提供了精确确定地震活动率的机会。本文运用Kostrov(1974)的公式将经平滑的华北地区应变速率转化为矩释放率,并与运用1303年洪洞地震以来的地震目录计算的矩释放率进行比较,发现两者之比南北向为60.6%,东西向为68.9%,北东剪切分量为104.1%。近似为1的比率表明了GPS测量结果的可靠性。这个结果对结合历史地震及大地形变测量估计矩释放进行地震危险性评估具有一定参考意义。  相似文献   

10.
地震矩张量反演在地震快速反应中的应用   总被引:15,自引:1,他引:15       下载免费PDF全文
利用地震矩张量反演的方法,对1996年11月~1998年1月发生于我国境内的10次MS5.2地震的震源机制进行了快速测定,并以地震震源参数简报的形式将测定结果及时发送中国地震局震情值班室和有关省地震局,在大震的快速反应中发挥了作用.  相似文献   

11.
Tsunami deposits are provisionally distinguished in the field on the basis of anomalous sand horizons, fining-up and fining-landward, coupled with organic-rich, fragmented `backwash' sediments. In this paper, micromorphological features of a sediment sequence previously interpreted as being of tsunami origin are described. These characteristics are shown to be consistent with the macro-scale features used elsewhere, but show additional details not seen in standard stratigraphies, including possible evidence for individual waves, possibly wave-magnitude progression, organic fragment alignment and intraclast microstructures. Although replication and more complete studies are needed, this analysis confirms the identification of a tsunami in Willapa Bay in ca.1700 AD, while demonstrating a widely applicable technique for confirming or refuting possible tsunami deposits.  相似文献   

12.
河北省测震台网中小地震矩震级的测定   总被引:3,自引:0,他引:3  
利用河北省测震台网的数字地震波形资料,反演了2008年12月至2010年4月62个中小地震的震源波谱参数,计算了这些地震的地震矩M0和矩震级Mw,利用正交回归分析方法得到了近震体波震级ML和Mw之间的关系式.  相似文献   

13.
14.
15.
Several studies of the 2004 Parkfield earthquake have linked the spatial distribution of the event’s aftershocks to the mainshock slip distribution on the fault. Using geodetic data, we find a model of coseismic slip for the 2004 Parkfield earthquake with the constraint that the edges of coseismic slip patches align with aftershocks. The constraint is applied by encouraging the curvature of coseismic slip in each model cell to be equal to the negative of the curvature of seismicity density. The large patch of peak slip about 15 km northwest of the 2004 hypocenter found in the curvature-constrained model is in good agreement in location and amplitude with previous geodetic studies and the majority of strong motion studies. The curvature-constrained solution shows slip primarily between aftershock “streaks” with the continuation of moderate levels of slip to the southeast. These observations are in good agreement with strong motion studies, but inconsistent with the majority of published geodetic slip models. Southeast of the 2004 hypocenter, a patch of peak slip observed in strong motion studies is absent from our curvature-constrained model, but the available GPS data do not resolve slip in this region. We conclude that the geodetic slip model constrained by the aftershock distribution fits the geodetic data quite well and that inconsistencies between models derived from seismic and geodetic data can be attributed largely to resolution issues.  相似文献   

16.
In 2011, Japan was hit by a tsunami that was generated by the greatest earthquake in its history. The first tsunami warning was announced 3 min after the earthquake, as is normal, but failed to estimate the actual tsunami height. Most of the structural countermeasures were not designed for the huge tsunami that was generated by the magnitude M = 9.0 earthquake; as a result, many were destroyed and did not stop the tsunami. These structures included breakwaters, seawalls, water gates, and control forests. In this paper we discuss the performance of these countermeasures, and the mechanisms by which they were damaged; we also discuss damage to residential houses, commercial and public buildings, and evacuation buildings. Some topics regarding tsunami awareness and mitigation are discussed. The failures of structural defenses are a reminder that structural (hard) measures alone were not sufficient to protect people and buildings from a major disaster such as this. These defenses might be able to reduce the impact but should be designed so that they can survive even if the tsunami flows over them. Coastal residents should also understand the function and limit of the hard measures. For this purpose, non-structural (soft) measures, for example experience and awareness, are very important for promoting rapid evacuation in the event of a tsunami. An adequate communication system for tsunami warning messages and more evacuation shelters with evacuation routes in good condition might support a safe evacuation process. The combination of both hard and soft measures is very important for reducing the loss caused by a major tsunami. This tsunami has taught us that natural disasters can occur repeatedly and that their scale is sometimes larger than expected.  相似文献   

17.
The major (M w = 8.8) Chilean earthquake of 27 February 2010 generated a trans-oceanic tsunami that was observed throughout the Pacific Ocean. Waves associated with this event had features similar to those of the 1960 tsunami generated in the same region by the Great (M w = 9.5) 1960 Chilean Earthquake. Both tsunamis were clearly observed on the coast of British Columbia. The 1960 tsunami was measured by 17 analog pen-and-paper tide gauges, while the 2010 tsunami was measured by 11 modern digital coastal tide gauges, four NEPTUNE-Canada bottom pressure recorders located offshore from southern Vancouver Island, and two nearby open-ocean DART stations. The 2010 records were augmented by data from seven NOAA tide gauges on the coast of Washington State. This study examines the principal characteristics of the waves from the 2010 event (height, period, duration, and arrival and travel times) and compares these properties for the west coast of Canada with corresponding properties of the 1960 tsunami. Results show that the 2010 waves were approximately 3.5 times smaller than the 1960 waves and reached the British Columbia coast 1 h earlier. The maximum 2010 wave heights were observed at Port Alberni (98.4 cm) and Winter Harbour (68.3 cm); the observed periods ranged from 12 min at Port Hardy to 110–120 min at Prince Rupert and Port Alberni and 150 min at Bamfield. The open-ocean records had maximum wave heights of 6–11 cm and typical periods of 7 and 15 min. Coastal and open-ocean tsunami records revealed persistent oscillations that “rang” for 3–4 days. Tsunami energy occupied a broad band of periods from 3 to 300 min. Estimation of the inverse celerity vectors from cross-correlation analysis of the deep-sea tsunami records shows that the tsunami waves underwent refraction as they approached the coast of Vancouver Island with the direction of the incoming waves changing from an initial direction of 340° True to a direction of 15° True for the second train of waves that arrived 7 h later after possible reflection from the Marquesas and Hawaiian islands.  相似文献   

18.
This paper has introduced the spatial distance method to analyze the distribution features of earthquakes quantitatively.The seismic distribution factor ZK defined in this paper can be used to identify the type of seismic spatial distribution better.The spatial distribution of earthquakes features a clustered pattern when the Zg-value approaches to 1; it is stochastic when ZK fluctuates around 0.5; and it may have a network pattern when ZK approaches to 0.From the angle of seismic spatial distribution,the change of the Rvalue reflects to some extent the dynamic variation of the degree of order and complexity of the seismogenic system.Taking 10 earthquakes of Ms≥5.8 in North China since 1970 as an example,the paper has discussed the variation features of ZK around moderately strong earthquakes.Results show that high Rvalue anomalies can generally be detected before moderately strong events.The Zk value of 0.642 can be taken as a criterion for identifying anomalies.Before the 2 strong earthquakes of Ms≥  相似文献   

19.
Linear and nonlinear responses of ten well-type tide gauge stations on the Japan Sea coast of central Japan were estimated by in situ measurements. We poured water into the well or drained water from the well by using a pump to make an artificial water level difference between the outer sea and the well, then measured the recovery of water level in the well. At three tide gauge stations, Awashima, Iwafune, and Himekawa, the sea-level change of the outer sea is transmitted to the tide well instantaneously. However, at seven tide gauge stations, Nezugaseki, Ryotsu, Ogi, Teradomari, Banjin, Kujiranami, and Naoetsu, the sea-level change of the outer sea is not always transmitted to the tide well instantaneously. At these stations, the recorded tsunami waveforms are not assured to follow the actual tsunami waveforms. Tsunami waveforms from the Niigataken Chuetsu-oki Earthquake in 2007 recorded at these stations were corrected by using the measured tide gauge responses. The corrected amplitudes of the first and second waves were larger than the uncorrected ones, and the corrected peaks are a few minutes earlier than the uncorrected ones at Banjin, Kujiranami, and Ogi. At Banjin, the correction was significant; the corrected amplitudes of the first and second upward motion are +103 cm and +114 cm, respectively, while the uncorrected amplitudes were +96 cm and +88 cm. At other tide gauge stations, the differences between the uncorrected and corrected tsunami waveforms were insignificant.  相似文献   

20.
So far, the direction and rate of relative motion between the Rivera and the North American plates (RIV-NAM) has been determined by the combination of two Euler poles: Rivera (RIV), with respect to Pacific (PAC), and PAC with respect to North America. Here, we estimate the relative motion of this plate pair (RIV-NAM) assuming that the horizontal projection of the direction of slip of the earthquakes occurring on the RIV-NAM boundaries reflect their relative plate motion. A catalog of earthquakes for which focal mechanisms are reported since 1976 is used in the analysis. Earthquakes were considered in the three segments of the RIV-NAM plate boundary: the subduction zone of the Rivera plate beneath the Jalisco block, the Tres Marias Escarpment and the events associated with the Tamayo Fracture Zone. The best fitting Euler pole is determined using a grid search of 64 potential poles. The slip direction predicted for each grid point is compared to the slip direction of the focal mechanisms of the earthquakes on the plate boundary. The best fitting Euler pole, determined in a root mean square sense (RMS), is located at 21.8°N, 107.6°W. A rate of rotation of 5.3°/year is estimated assuming the seismic earthquake cycle of the 1932 and 1995 great earthquakes represents a lower bound of the rate of plate motion in the subduction zone. The best fitting Euler pole shows that the subduction of the Rivera plate takes place in a direction perpendicular to the trench with a relative velocity of 4.3 cm/year, offshore Manzanillo. The rate of relative motion RIV-NAM decreases from SE to NW. North of approximately 21°N, the subduction of the Rivera plate becomes oblique to the trench and the relative velocity between the two plates decreases to an average of 1.9 cm/year. This slow rate of convergence may explain the rapid decrease of seismicity in the trench and the apparent absence of large earthquakes in this region. In the Tres Marias Escarpment, our best-fitting pole suggests that subduction stops, giving way to high-angle reverse faulting perpendicular to the Tres Marias Escarpment, in agreement with the reverse faulting earthquakes occurring here. To the north of 22.5°N, the slip predicted by the best-fitting pole suggests right-lateral faulting in a direction parallel to the Tamayo Fracture Zone, at a very low velocity (0.5–1.0 cm/year). The best fitting Euler pole determined here lies very close to the RIV-NAM plate boundary in the vicinity of the Tamayo Fracture Zone. This location of our best fitting Euler pole explains the low relative plate velocity, the relatively low level of seismic activity and the presence of a broad zone of deformation that accommodates the RIV-NAM motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号