首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
There are deep-water populations of the endemic and threatened Mediterranean brown alga Cystoseira zosteroides in the Medes Islands Marine Reserve (NW Mediterranean). Here, the distribution, population structure, individual growth, mortality and recruitment rates of this species over two years are described in relation to the effects of an exceptional storm. We found a high spatial variability in the structure and dynamics of C. zosteroides populations at small geographical scales, suggesting that environmental factors acting at the population level display a key role in population size structure, mortality and recruitment. The elevated mortality rates recorded at some locations (almost 80%) is amongst the highest recorded for perennial algae as a consequence of a single storm, emphasizing the importance of episodic catastrophic events in the maintenance of these deep-water, slow-growing populations. These findings are of particular importance not only to fully understand the ecology of C. zosteroides, but also for its conservation.  相似文献   

2.
The influence of prolonged mouth closure on the population dynamics of the caridian shrimp, Palaemon peringueyi and the estuarine isopod, Exosphaeroma hylocoetes, in the littoral zone of temporarily open/closed Kasouga Estuary located on the south-eastern coastline of southern Africa was assessed monthly over the period October 2007 to September 2008. Prolonged mouth closure of the estuary contributed to hypersaline conditions (psu > 35) prevailing throughout the estuary for the last four months of the study. The high salinities coincided with a decrease in the areal extent (up to 80%) of the submerged macrophytes, mainly Ruppia maritima, within the littoral zone of the estuary. Total abundance and biomass values of the shrimp and isopod over the period of investigation ranged from 0 to 14.6 ind m−2, from 0 to 13.3 mg dwt m−2, from 12 to 1540 ind m−2 and from 0.1 to 2.16 mg dwt m−2, respectively. Maximum values of both the shrimp and isopod were recorded in the upper reaches of the estuary in close association with R. maritima. Over the course of the investigation, both the abundance and biomass values of the shrimp decreased significantly (P < 0.05 in both cases) which could be related to reduced habitat availability, R. maritima, that acts as a refuge against fish predation. Additionally, the decrease in abundance and biomass values could be attributed to reduced recruitment opportunities for the shrimp and the cessation of reproduction in the estuarine isopod. The establishment of a link to the marine environment following an overtopping event in September 2008 contributed to a decrease in salinity within the system although no recruitment of either the isopod or shrimp was recorded.  相似文献   

3.
We investigated the cover, community structure and abiotic environment of nine shipwrecks lying at increasing distance from the Belgian coast. Results indicated that all shipwrecks were strongly dominated by cnidarians in terms of biomass and by amphipods in terms of abundances. Based on their epifaunal composition, three groups of shipwrecks could be determined. Metridium senile dominated a species poor community of the coastal sites. On the same sites, a Tubularia larynx community with a more species-rich assemblage was also developing. The T. larynx community had a lower biomass value (102 g AFDW m−2) and significantly lower species richness compared to the other sites. The coastal sites were characterized by periodic salinity decreases, large seasonal temperature fluctuation, high total suspended matter load and reduced current velocity. Channel water masses influence the offshore sites causing a more stable temperature and salinity environment, less turbid waters and high current speed. Tubularia indivisa dominated this community, with an average biomass of 229 g AFDW m−2. Intermediate sites were also dominated by T. indivisa, but a higher biomass (424 g AFDW m−2) was observed. They showed intermediate results for the abiotic parameters and fast current velocities. Hypotheses for the observed variation in community structures are discussed in the light of the abiotic characterization of the shipwrecks.  相似文献   

4.
In this study we examined the hypothesis that, under conditions of replete macronutrients and iron in the Southern Ocean, phytoplankton abundance and specific N uptake rates are influenced strongly by the processes of grazing and NH4 regeneration. NH4 and NO3 uptake rates by marine phytoplankton were measured to the northeast and northwest of the island of South Georgia during January-February 1998. Mean specific uptake rate for NO3 (vNO3) was 0.0026 h−1 (range 0.0013-0.0065 h−1) and for NH4 (vNH4) was 0.0097 h−1 (0.0014-0.0376 h−1). vNH4 was related positively with NH4 availability, which ranged from 0.1 to 1.5 mmol m−3 within the upper mixed layer. Ambient NH4 concentrations and vNH4 were both positively related to local krill biomass values, computed from mean values along acoustic transect segments within 2 km of the uptake measurement stations. These biomass values ranged from ∼1 g krill fresh mass m−2 in the northwest to >4 kg krill wet mass m−2 in the northeast. In contrast to the variability found with NH4 concentrations and uptake rates, vNO3 was more uniform across the sampling sites. Under these conditions, increasing NH4 concentration appeared to represent an additional N resource. However, high vNH4 tended to be found for stations with lower phytoplankton standing stocks, across a total range of 0.24-20 mg chlorophyll a m−3. These patterns suggest a coupling between phytoplankton biomass, vNH4 and krill in this region of variable but high krill biomass. Locally high concentrations of krill in parts of the study area appeared to have two opposing effects. On the one hand they could graze down phytoplankton stocks, but on the other hand, their NH4 excretion supported enhanced uptake rates by the remaining, ungrazed cells.  相似文献   

5.
A survey within the French National Programme of Ecotoxicology was carried out in 2002, 2003 and 2004 to study the response of Nereis diversicolor populations (Polychaeta, Nereididae) to the impact of pollution in the Authie estuary (non-contaminated site) and in the Seine estuary (contaminated site). In the period studied, the density varied from 672 ind. m−2 to 3584 ind. m−2 in the Authie estuary and from 80 ind. m−2 to 920 ind. m−2 in the Seine estuary. Biomass varied from 3.94 g m−2 (dry weight) in February 2004 to 38.0 g m−2 in August 2003 in the Authie estuary and from 3.4 g m−2 in February 2002 to 0.6 g m−2 in February 2004 in the Seine estuary. Density and biomass of the populations of N. diversicolor were consistently lower in the Seine estuary than in the Authie estuary. Size frequency histograms permit the analysis of the cohorts as well as the elaboration of the growth curves. For the individuals from the Authie estuary, the relation between dry weight (DW) and length L3 (prostomium, peristomium and chaetiger 1) was DW = 4.2205 L32.9832. For those from the Seine estuary, the relation between dry weight and L3 was DW = 0.4697e1.7209L3. The individuals of N. diversicolor should belong to eight cohorts in Authie estuary (two cohorts each year) instead of six cohorts for those from the Seine estuary. These differences can be attributed to the effect of pollution on the population of N. diversicolor.  相似文献   

6.
We estimated primary and bacterial production, mineral nutrients, suspended chlorophyll a (Chl), particulate organic carbon (POC) and nitrogen (PON), abundance of planktonic organisms, mesozooplankton fecal pellet production, and the vertical flux of organic particles of the central Arctic Ocean (Amundsen basin, 89-88° N) during a 3 week quasi-Lagrangian ice drift experiment at the peak of the productive season (August 2001). A visual estimate of ≈15% ice-free surface, plus numerous melt ponds on ice sheets, supported a planktonic particulate primary production of 50-150 mg C m−2 d−1 (mean 93 mg C m−2 d−1, n = 7), mostly confined to the upper 10 m of the nutrient replete water column. The surface mixed layer was separated from the rest of the water column by a strong halocline at 20 m depth. Phototrophic biomass was low, generally 0.03-0.3 mg Chl m−3 in the upper 20 m and <0.02 mg Chl m−3 below, dominated by various flagellates, dinoflagellates and diatoms. Bacterial abundance (typically 3.7-5.3 × 105, mean 4.1 × 105 cells ml−1 in the upper 20 m and 1.3-3.7 × 105, mean 1.9 × 105 cells ml−1 below) and Chl concentrations were closely correlated (r = 0.75). Mineral nutrients (3 μmol NO3 l−1, 0.45 μmol PO4 l−1, 4-5 μmol SiO4 l−1) were probably not limiting the primary production in the upper layer. Suspended POC concentration was ∼30-105 (mean 53) mg C m−3 and PON ∼5.4-14.9 (mean 8.2) mg N m−3 with no clear vertical trend. The vertical flux of POC in the upper 30-100 m water column was ∼37-92 (mean 55) mg C m−2 d−1 without clear decrease with depth, and was quite similar at the six investigated stations. The mesozooplankton biomass (≈2 g DW m−2, mostly in the upper 50 m water column) was dominated by adult females of the large calanoid copepods Calanus hyperboreus and Calanus glacialis (≈1.6 g DW m−2). The grazing of these copepods (estimated via fecal pellet production rates) was ≈15 mg C m−2 d−1, being on the order of 3% and 20% of the expected food-saturated ingestion rates of C. hyperboreus and C. glacialis, respectively. The stage structure of these copepods, dominated by adult females, and their unsatisfied grazing capacity during peak productive period suggest allochthonous origin of these species from productive shelf areas, supported by their long life span and the prevailing surface currents in the Arctic Ocean. We propose that the grazing capacity of the expatriated mesozooplankton population would match the potential seasonal increase of primary production in the future decreased ice perspective, diminishing the likelihood of algal blooms.  相似文献   

7.
Faunal communities at the deep-sea floor mainly rely on the downward transport of particulate organic material for energy, which can come in many forms, ranging from phytodetritus to whale carcasses. Recently, studies have shown that the deep-sea floor may also be subsidized by fluxes of gelatinous material to the benthos. The deep-sea scyphozoan medusa Periphylla periphylla is common in many deep-sea fjords in Norway and recent investigations in Lurefjorden in western Norway suggest that the biomass of this jellyfish currently exceeds 50000 t here. To quantify the presence of dead P. periphylla jellyfish falls (hereafter termed jelly-falls) at the deep seafloor and the standing stock of carbon (C) and nitrogen (N) deposited on the seafloor by this species, we made photographic transects of the seafloor, using a ‘Yo-Yo’ camera system during an opportunistic sampling campaign in March 2011. Of 218 seafloor photographs taken, jelly-falls were present in five, which resulted in a total jelly-fall abundance of 1×10-2 jelly-falls m−2 over the entire area surveyed. Summed over the entire area of seafloor photographed, 1×10-2 jelly-falls m−2 was equivalent to a C- and N-biomass of 13 mg C m−2 and 2 mg N m−2. The contribution of each jelly-fall to the C- and N-amount of the sediment in the immediate vicinity of each fall (i.e. to sediment in each 3.02 m2 image in which jelly-falls were observed) was estimated to be 568±84 mg C m−2 and 88±13 mg N m−2. The only megafaunal taxon observed around or on top of the jelly-falls was caridean shrimp (14±5 individuals jelly-fall−1), and shrimp abundance was significantly greater in photographs in which a jelly-fall was found (14±5 individuals image−1) compared to photographs in which no jelly-falls were observed (1.4±0.7 individuals image−1). These observations indicate that jelly-falls in this fjord can enhance the sedimentary C- and N-amount at the deep-sea floor and may provide nutrition to benthic and demersal faunas in this environment. However, organic enrichment from the jelly-falls found in this single sampling event and associated disturbance was highly localized.  相似文献   

8.
We used non-destructive methods to study the bi-monthly changes in standing stock, turnover, and net aerial primary productivity (NAPP) of Spartina alterniflora in the Bahía Blanca Estuary, Argentina, from 2005 to 2007. Tillers were tagged and counted bimonthly and a weight:height relationship developed for the live and dead stems in a regularly flooded zone (low marsh, LM) and an irregularly flooded one (high marsh, HM). The annual tiller natality in year one compared to year two decreased from 440 ± 68 to 220 ± 58 new individuals m–2 yr–1 in the HM and from 500 ± 103 to 280 ± 97 new individuals m−2 yr−1 in the LM (μ ± 1 SE). Tiller mortality averaged 670 ± 70 individuals m−2 yr−1.  相似文献   

9.
Large Zostera marina meadows (covering 13.6 km2) existed in the Nakdong River estuary on the south coast of Korea until the mid-1980s, but these Z. marina beds nearly disappeared due to reclamation of adjacent mud flats for the construction of a port and industrial complex during the late 1980s. Partial recovery of Z. marina meadows occurred recently, and Z. marina coverage of about 0.3 km2 was observed in this estuary. In this study, shoot morphology, density, biomass, productivity, and tissue nutrient content were measured to evaluate the current status of the Z. marina meadows by comparing these data to those for persistent seagrass meadows in similar geographical areas. Additionally, we examined the ecological roles of Z. marina in this estuary after recovery from the large-scale disturbance. Shoot density (151 shoots m−2) and total biomass (141 g DW m−2) in the estuary were similar to those reported from other Z. marina meadows in Korea. Annual leaf production (1726 g DW m−2 y−1) was higher than generally observed for Z. marina in other geographical areas. These results imply that the existing Z. marina meadows in this estuary have adjusted to local environmental conditions that changed after large-scale reclamation. Estimated annual whole plant carbon (C) and nitrogen (N) incorporations based on shoot production and tissue C and N content were 810.0 g C m−2 y−1 and 59.7 g N m−2 y−1, respectively. These values were equivalent to 2.4 × 105 kg C y−1 and 1.8 × 104 kg N y−1 for all Z. marina beds in the Nakdong River estuary. This high C and N incorporation into Z. marina tissues suggests that existing Z. marina meadows play important roles in C and N cycles in this estuary. Although the currently existing Z. marina beds in this estuary are persisting and play an important ecological role, anthropogenic factors that cause seagrass declines still affect the estuary. Thus, effective management and monitoring of Z. marina beds and environmental factors are critical to protecting and conserving this invaluable component of the Nakdong River estuary.  相似文献   

10.
11.
Mesozooplankton composition and distribution were investigated by Juday net hauls in the Pechora Sea (south-eastern Barents Sea) in July 2001. A total of 66 taxa were identified. The total mesozooplankton abundance varied between 2416 ind m−2 in the northern part and 1458?935 ind m−2 in the south. The biomass ranged between 81 and 19?078 mg DW m−2. Three groups differed greatly in composition, abundance and biomass as delineated by cluster analysis. Copepod species Calanus finmarchicus, Pseudocalanus species and Limnocalanus macrurus dominated in terms of the total biomass within each single cluster. There were significant Spearman rank correlations between mesozooplankton abundance and oceanographic variables, and phytoplankton concentration. Salinity was the main factor affecting the mesozooplankton distribution in the coastal waters, while temperature had greater influence on the abundance and biomass in the central and northern parts. The mean mesozooplankton biomass in the region was higher in comparison with some previous investigations probably due to higher water temperature in summer 2001.  相似文献   

12.
The relationship between sedimentary Fe inputs and net seagrass population growth across a range of Posidonia oceanica meadows growing in carbonate Mediterranean sediments (Balearic Islands, Spain; SE Iberian Peninsula, Spain; Limassol, Cyprus; Sounion, Greece) was examined using comparative analysis. Sedimentary Fe inputs were measured using benthic sediment traps and the net population growth of P. oceanica meadows was assessed using direct census of tagged plants. The meadows examined ranged from meadows undergoing a severe decline to expanding meadows (specific net population growth, from −0.14 yr−1 to 0.05 yr−1). Similarly, Fe inputs to the meadows ranged almost an order of magnitude across meadows (8.6–69.1 mg Fe m−2 d−1). There was a significant, positive relationship between sedimentary iron inputs and seagrass net population growth, accounting for 36% of the variability in population growth across meadows. The relationship obtained suggested that seagrass meadows receiving Fe inputs below 43 mg Fe m−2 d−1 are vulnerable and in risk of decline, confirming the pivotal role of Fe in the control of growth and the stability of seagrass meadows in carbonate sediments.  相似文献   

13.
The structure and the trophic interactions of the planktonic food web were investigated during summer 2004 in a coastal lagoon of south-western Mediterranean Sea. Biomasses of planktonic components as well as bacterial and phytoplankton production and grazing by microzooplankton were quantified at four stations (MA, MB, MJ and R) inside the lagoon. Station MA was impacted by urban discharge, station MB was influenced by industrial activity, station MJ was located in a shellfish farming sector, while station R represented the lagoon central area. Biomasses and production rates of bacteria (7–33 mg C m−3; 17.5–35 mg C m−3 d−1) and phytoplankton (80–299 mg C m−3; 34–210 mg C m−3 d−1) showed high values at station MJ, where substantial concentrations of nutrients (NO3 and Si(OH)4) were found. Microphytoplankton, which dominated the total algal biomass and production (>82%), were characterized by the proliferation of several chain-forming diatoms. Microzooplankton was mainly composed of dinoflagellates (Torodinium, Protoperidinium and Dinophysis) and aloricate (Lohmaniellea and Strombidium) and tintinnid (Tintinnopsis, Tintinnus, Favella and Eutintinnus) ciliates. Higher biomass of these protozoa (359 mg C m−3) was observed at station MB, where large tintinnids were encountered. Mesozooplankton mainly represented by Calanoida (Acartia, Temora, Calanus, Eucalanus, Paracalanus and Centropages) and Cyclopoida (Oithona) copepods, exhibited higher and lower biomasses at stations MA/MJ and MB, respectively. Bacterivory represented only 35% of bacterial production at stations MB and R, but higher fractions (65–70%) were observed at stations MA and MJ. Small heterotrophic flagellates and aloricate ciliates seemed to be the main controllers of bacteria. Pico- and nanophytoplankton represented a significant alternative carbon pool for micrograzers, which grazing represented 67–90% of pico- and nano-algal production in all stations. Microzooplankton has, however, a relatively low impact on microphytoplankton, as ≤45% of microalgal production was consumed in all stations. This implies that an important fraction of diatom production would be channelled by herbivorous meso-grazers to higher consumers at stations MA and MJ where copepods were numerous. Most of the microalgal production would, however, sink particularly at station MB where copepods were scare. These different trophic interactions suggest different food web structures between stations. A multivorous food web seemed to prevail in stations MJ and MA, whereas microbial web was dominant in the other stations.  相似文献   

14.
Nereis diversicolor is generally considered to be a predator and deposit feeder, but have also been found to graze on benthic algae in shallow coastal areas. In this study we investigated the grazing effects on the development and growth of green algae, Ulva spp. Algal growth was studied in an experiment including two levels of sediment thickness; 100 mm sediment including macrofauna and 5 mm sediment without macrofauna, and three treatments of varying algal biomass; sediment with propagules, sediment with low algal biomass (120 g dry weight (dwt) m− 2) and sediment with high algal biomass (240 g dwt m− 2). In the 100 mm sediment, with a natural population of macrofauna, N. diversicolor was the dominating (60% of total biomass) species. After three weeks of experimentation the result showed that N. diversicolor was able to prevent initial algal growth, affect growth capacity and also partly reduce full-grown algal mats. The weight of N. diversicolor was significantly higher for polychaetes in treatments with algae added compared to non-algal treatments. There were also indications that a rich nutrient supply per algae biomass counteracted the grazing capacity of N. diversicolor.  相似文献   

15.
The annual total and organic mercury bioaccumulation pattern of Scrobicularia plana and Hediste diversicolor was assessed to evaluate the potential mercury transfer from contaminated sediments to estuarine food webs. S. plana was found to accumulate more total and organic mercury than H. diversicolor, up to 0.79 mg kg−1 and 0.15 mg kg−1 (wet weight) respectively, with a maximum annual uptake of 0.21 mg kg−1 y−1, while for methylmercury the annual accumulation was similar between species and never exceeded 0.045 mg kg−1 y−1. The higher organic mercury fraction in H. diversicolor is related to the omnivorous diet of this species. Both species increase methylmercury exposure by burrowing activities and uptake in anoxic, methylmercury rich sediment layers. Integration with the annual biological production of each species revealed mercury incorporation rates that reached 28 μg m−2 y−1, and to extract as much as 11.5 g Hg y−1 (of which 95% associated with S. plana) in the 0.4 km2 of the most contaminated area, that can be transferred to higher trophic levels. S. plana is therefore an essential vector in the mercury biomagnification processes, through uptake from contaminated sediments and, by predation, to transfer it to economically important and exploited estuarine species.  相似文献   

16.
Pteropods in Southern Ocean ecosystems   总被引:1,自引:0,他引:1  
To date, little research has been carried out on pelagic gastropod molluscs (pteropods) in Southern Ocean ecosystems. However, recent predictions are that, due to acidification resulting from a business as usual approach to CO2 emissions (IS92a), Southern Ocean surface waters may begin to become uninhabitable for aragonite shelled thecosome pteropods by 2050. To gain insight into the potential impact that this would have on Southern Ocean ecosystems, we have here synthesized available data on pteropod distributions and densities, assessed current knowledge of pteropod ecology, and highlighted knowledge gaps and directions for future research on this zooplankton group.Six species of pteropod are typical of the Southern Ocean south of the Sub-Tropical Convergence, including the four Thecosomes Limacina helicina antarctica, Limacina retroversa australis, Clio pyramidata, and Clio piatkowskii, and two Gymnosomes Clione limacina antarctica and Spongiobranchaea australis. Limacina retroversa australis dominated pteropod densities north of the Polar Front (PF), averaging 60 ind m−3 (max = 800 ind m−3) and 11% of total zooplankton at the Prince Edward Islands. South of the PF L. helicina antarctica predominated, averaging 165 ind m−3 (max = 2681 ind m−3) and up to >35% of total zooplankton at South Georgia, and up to 1397 ind m−3 and 63% of total zooplankton in the Ross Sea. Combined pteropods contributed <5% to total zooplankton in the Lazarev Sea, but 15% (max = 93%) to macrozooplankton in the East Antarctic. In addition to regional density distributions we have synthesized data on vertical distributions, seasonal cycles, and inter-annual density variation.Trophically, gymnosome are specialist predators on thecosomes, while thecosomes are considered predominantly herbivorous, capturing food with a mucous web. The ingestion rates of L. retroversa australis are in the upper range for sub-Antarctic mesozooplankton (31.2-4196.9 ng pig ind−1 d−1), while those of L. helicina antarctica and C. pyramidata are in the upper range for all Southern Ocean zooplankton, in the latter species reaching 27,757 ng pig ind−1 d−1 and >40% of community grazing impact. Further research is required to quantify diet selectivity, the effect of phytoplankton composition on growth and reproductive success, and the role of carnivory in thecosomes.Life histories are a significant knowledge gap for Southern Ocean pteropods, a single study having been completed for L. retroversa australis, making population studies a priority for this group. Pteropods appear to be important in biogeochemical cycling, thecosome shells contributing >50% to carbonate flux in the deep ocean south of the PF. Pteropods may also contribute significantly to organic carbon flux through the production of fast sinking faecal pellets and mucous flocs, and rapid sinking of dead animals ballasted by their aragonite shells. Quantification of these contributions requires data on mucous web production rates, egestion rates, assimilation efficiencies, metabolic rates, and faecal pellet morphology for application to sediment trap studies.Based on the available data, pteropods are regionally significant components of the Southern Ocean pelagic ecosystem. However, there is an urgent need for focused research on this group in order to quantify how a decline in pteropod densities may impact on Southern Ocean ecosystems.  相似文献   

17.
The inner zone of the Bahía Blanca Estuary is shallow, nutrient-rich and turbid. Tidal energy and water turbulence strongly affect the water column resulting in a well-mixed structure and high concentrations of suspended sediment. The phytoplankton community is mostly dominated by diatoms and the annual pattern has been characterized by a recurrent winter-early spring bloom. Here, we investigated to what extent the temporal variations of suspended particulate matter (SPM) regulate the phytoplankton blooms in the head of the estuary by light-limitation. Sampling was done on a fortnightly basis (weekly during the blooming season) at a fixed station in the inner zone of the estuary from January 2007 to February 2008. SPM concentrations and light extinction coefficients (k) in the water column were significantly correlated and showed relatively lower values during the phytoplankton maximal biomass levels. During winter, SPM and k reached values of 23.6 mg l−1 and 0.17 m−1 which were significantly lower than the annual means of 77.6 mg l−1 and 2.94 m−1, respectively. The particulate organic matter (POM) concentration was significantly correlated with the calculated phytoplankton biomass although the contribution of the latter to the total POM was rather low. Both, POM and biomass, had maximal values during winter (21.8 mg l−1 and 393.5 μg C l−1) and mid summer (24.3 mg l−1 and 407.0 μg C l−1), with cell densities up to 8 × 106 cells l−1 and chlorophyll a up to 24.6 μg l−1. Our results suggest that the decrease of SPM concentrations in the water column with a concomitant increase in the penetration of solar radiation seems to be one of the main causes for the development of the phytoplankton winter bloom in the Bahía Blanca Estuary.  相似文献   

18.
The intertidal serrated wrack, Fucus serratus L. (Fucales: Phaeophyceae), has become an abundant canopy-forming alga along a ca. 100 km stretch of shore in southwestern Iceland in the last century. Its distribution has not changed noticeably since a survey in 1975/1976. Many experimental studies have shown that canopy-forming algae can have profound effects on the community structure. Although such experiments involving F. serratus are few it was decided to test predictions from these experiments on a geographical scale by comparing community compositions within the area where F. serratus is a dominant algae (since at least 1975/1976) with an adjacent area of similar size where F. serratus is absent (with a single exception without consequences). The work is based on measurements on some 372 stations in the F. serratus area, termed region A, and 227 stations from the F. serratus-free area, termed region B. Percentage cover of algae and sessile invertebrates was estimated on 2 m2 on each station and animals collected from 800 cm2 from each station. The vertical distribution of F. serratus was most similar to that of Fucus distichus and the two species often grew intermingled on the lower part of the shore. F. serratus appeared to have reduced the cover of F. distichus in the lowermost part of the shore, while having little or no effect on other canopy-forming species. The low abundance of Semibalanus balanoides in the F. serratus area (region A) is in line with experiments showing detrimental effect on this barnacle by whiplash of F. serratus. In general algal grazers were more abundant in region A, consistent with the greater attractiveness of F. serratus than other canopy-forming species to grazers, although this may be partly explained by the abundance of understorey algae in region A.  相似文献   

19.
This study shows results on litterfall dynamics and decay in mangrove stands of Avicennia germinans distributed along a latitudinal gradient (three forest sites) in the Gulf of California, in order to assess whether internal sources could support the observed mangrove ecosystem organic deficit in this arid tropic. Total mean annual litterfall production increased southward (712.6 ± 53.3, 1501.3 ± 145.1 and 1506.2 ± 280.5 g DW m−2 y−1, in the Yaqui, Mayo and Fuerte areas respectively), leaves being the main component of litter in all locations during the entire year, followed by fruits. The wet season (June–September) showed the highest litterfall rates through fruits. The temporal trend of litterfall production was significantly explained through mean air temperature (R2 = 68%) whilst total annual litter production in the entire region showed a statistically significant relationship with total soil phosphorus, salinity, total nitrogen, organic matter and tree height (R2 = 0.67). Throughout 117 days of the decomposition experiment, the litter lost 50% of its original dry weight in 5.8 days (average decay rate of 0.032 ± 0.04 g DW d−1) and there were not significant differences in the remaining mass after 6 days. The percentage of both C and P released from the litter correlated significantly with the ratio of tidal inundated days to total experiment days (R2 = 0.62, p = 0.03 and R2 = 0.67, p = 0.02, respectively); however, the frequency of tidal inundation only showed a significant increase in C release from Avicennia litter after 6 and above 48 days of decomposition. Whereas the total C content of litter bags decreased linearly over the decomposition to (% Total C = 5.52 − 0.46 days, R2 = 0.81, p = 0.0005), N content displayed an irregular pattern with a significant increase of decay between 48 and 76 days from the beginning of the experiment. The pattern for relative P content of litter revealed reductions of up to 99% of the original (%tot-P = −9.77 to 1.004 days, R2 = 0.72, p = 0.01) although most of the P reduction occurred between 17 and 34 days after the experiment started. Soil N and P contents, which exhibited significant differences in the course of the decomposition experiment, appeared to show significant differences between sampling sites, although they were not related to tidal influence, nor by leaf and nutrient leaching. In a global basis, C/N litter ratios decreased linearly (C/N = 32.86 − 0.1006 days, R2 = 0.62, p = 0.02), showing a strong and significant correlation with meteorological variables (R2 = 0.99, p = 0.01). C/P ratios of litter increased through an exponential function (C/P = 119.35e0.04day, R2 = 0.89, p < 0.001). Changes in the remaining percentage of litter mass during the experiment were significantly correlated with soil C/N ratio (R2 = 0.56, p = 0.03) as well as with the soil C/P ratio (R2 = 0.98, p < 0.001). Our results of litter decomposition dynamics in this mangrove support the fact of null net primary productivity of the arid mangrove wetlands: fast litter decomposition compensates the ecosystem organic deficit in order to sustain the mangrove productivity. Litter decomposition plays a key role in the ecosystem metabolism in mangroves of arid tropics.  相似文献   

20.
The potential role of generalist herbivores to serve as a source of biotic resistance against algal invasion in marine ecosystems has been poorly examined. The present study investigates the capacity of Mediterranean herbivorous fishes to consume three of the most invasive seaweeds of the Western Mediterranean (Caulerpa racemosa, Lophocladia lallemandii and Womersleyella setacea) and examines vertical and temporal variations of such consumption. Our results show that although fish feed throughout the depth gradient examined (5–35 m), they concentrate in shallow waters, and can consume high amounts of C. racemosa. Such high ingestion of C. racemosa does not appear to be random, since this alga is consistently chosen when offered in pairs with several native species. Conversely, L. lallemandii and W. setacea are barely eaten by fish even though they can be very abundant in the field throughout the year. Our results suggest that fish could be an important controlling agent that has been overlooked in temperate marine invasions, and they may be able to provide certain resistance to C. racemosa invasion. In contrast, they are unlikely to exert any important control effects on L. lallemandii or W. setacea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号