首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following the success of seismic analysis of a canyon [1], the problem of SH-wave diffraction by a semi-circular hill is revisited using the null-field boundary integral equation method (BIEM). To fully utilize the analytical property in the null-field boundary integral equation approach in conjunction with degenerate kernels for solving the semi-circular hill scattering problem, the problem is decomposed into two regions to produce circular boundaries using the technique of taking free body. One is the half-plane problem containing a semi-circular boundary. This semi-infinite problem is imbedded in an infinite plane with an artificial full circular boundary such that degenerate kernel can be fully applied. The other is an interior problem bounded by a circular boundary. The degenerate kernel in the polar coordinates for two subdomains is utilized for the closed-form fundamental solution. The semi-analytical formulation along with matching boundary conditions yields six constraint equations. Instead of finding admissible wave expansion bases, our null-field BIEM approach in conjunction with degenerate kernels have five features over the conventional BIEM/BEM: (1) free from calculating principal values, (2) exponential convergence, (3) elimination of boundary-layer effect, (4) meshless and (5) well-posed system. All the numerical results are comparing well with the available results in the literature. It is interesting to find that a focusing phenomenon is also observed in this study.  相似文献   

2.
In this study, the null-field boundary integral equation method (BIEM) and the image method are used to solve the SH wave scattering problem containing semi-circular canyons and circular tunnels. To fully utilize the analytical property of circular geometry, the polar coordinates are used to expand the closed-form fundamental solution to the degenerate kernel, and the Fourier series is also introduced to represent the boundary density. By collocating boundary points to match boundary condition on the boundary, a linear algebraic system is constructed. The unknown coefficients in the algebraic system can be easily determined. In this way, a semi-analytical approach is developed. Following the experience of near-trapped modes in water wave problems of the full plane, the focusing phenomenon and near-trapped modes for the SH wave problem of the half-plane are solved, since the two problems obey the same mathematical model. In this study, it is found that the SH wave problem containing two semi-circular canyons and a circular tunnel has the near-trapped mode and the focusing phenomenon for a special incident angle and wavenumber. In this situation, the amplification factor for the amplitude of displacement is over 300.  相似文献   

3.
A boundary integral formulation is presented and applied to model the ground motion on alluvial valleys under incident P, S and Rayleigh waves. It is based on integral representations for the diffracted and the refracted elastic waves using single-layer boundary sources. This approach is called indirect BEM in the literature as the sources' strengths should be obtained as an intermediate step. Boundary conditions lead to a system of integral equations for boundary sources. A discretization scheme based on the numerical and analytical integration of exact Green's functions for displacements and tractions is used. Various examples are given for two-dimensional problems of diffraction of elastic waves by soft elastic inclusion models of alluvial deposits in an elastic half-space. Results are displayed in both frequency and time domains. These results show the significant influence of locally generated surface waves in seismic response and suggest approximations of practical interest. For shallow alluvial valleys the response and its resonant frequencies are controlled by a coupling mechanism that involves both the simple one-dimensional shear beam model and the propagation of surface waves.  相似文献   

4.
本文采用辅助函数的思想,利用复变函数和多级坐标的方法给出了SH波入射条件下多个半圆形沉积谷地附近浅埋圆形孔洞动力分析问题的解答。将整个求解区域分割成两部分来处理,区域I为多个半圆形沉积谷地,区域II为浅埋圆形孔洞附近带半圆形凹陷的半无限弹性空间。在区域I和II中分别构造位移解,并在二个区域的“公共边界”上实施位移应力的连续条件,建立求解该问题的无穷代数方程组。最后,本文给出了算例和数值结果,并对其进行了讨论。  相似文献   

5.
A hybrid indirect boundary element – discrete wavenumber method is presented and applied to model the ground motion on stratified alluvial valleys under incident plane SH waves from an elastic half-space. The method is based on the single-layer integral representation for diffracted waves. Refracted waves in the horizontally stratified region can be expressed as a linear superposition of solutions for a set of discrete wavenumbers. These solutions are obtained in terms of the Thomson–Haskell propagators formalism. Boundary conditions of continuity of displacements and tractions along the common boundary between the half-space and the stratified region lead to a system of equations for the sources strengths and the coefficients of the plane wave expansion. Although the regions share the boundary, the discretization schemes are different for both sides: for the exterior region, it is based on the numerical and analytical integration of exact Green's functions for displacements and tractions whereas for the layered part, a collocation approach is used. In order to validate this approach results are compared for well-known cases studied in the literature. A homogeneous trapezoidal valley and a parabolic stratified valley were studied and excellent agreement with previous computations was found. An example is given for a stratified inclusion model of an alluvial deposit with an irregular interface with the half-space. Results are displayed in both frequency and time domains. These results show the significant influence of lateral heterogeneity and the emergence of locally generated surface waves in the seismic response of alluvial valleys.  相似文献   

6.
采用有限元模拟方法建立了建筑群-沉积谷地二维模型,并在土体截断边界上施加粘弹性人工边界,在频域与时域中对比分析此体系和单独沉积谷地的地震反应,观察地震时沉积谷地与建筑群之间的动力相互作用规律。分析表明,沉积谷地中建筑群对谷地本身的地震反应具有显著影响。入射波频率较低时,由于共振效应的存在,在部分区域处建筑群-沉积谷地体系的地表位移响应幅值会大于单独沉积谷地,但随着入射波频率的增加,建筑群的存在又会对地震反应产生明显的减弱效果;建筑群对谷地的影响还与建筑高度和建筑间距有关,且不同位置处的响应也存在很大差异。计算结果可为沉积谷地中设防烈度的设置以及工程抗震设计提供部分理论依据。  相似文献   

7.
退化的Fourier偏移算子及其在复杂断块成像中的应用   总被引:11,自引:4,他引:7       下载免费PDF全文
波动方程宽角抛物逼近得到的通常是非常系数的单程波传播算子,其系数是速度横向变化的函数,因此需要利用有限差分(FD)进行数值实施. 通过对Lippmann Schwinger单程波动积分方程的退化核逼近,本文研究了一类宽角退化算子的偏移成像. 这种退化偏移算子只用快速Fourier变换进行波场延拓,将常规的Fourier分裂步地震偏移方法(SSF)推广适应强速度横向变化介质和大角度传播波场. 退化的Fourier偏移算子通过在两个分裂步项之间作波数域线性插值来实现波场延拓,每延拓一层需要比常规的SSF地震偏移方法多一次快速Fourier变换(FFT). 通过SEG/EAGE盐丘模型和实际地震资料的应用表明,退化Fourier偏移算子能很好地对盐下的陡倾角断层和实际地震剖面上的复杂小断块和大断裂地质构造成像.  相似文献   

8.
Antiplane response of two scalene triangular hills and a semi-cylindrical canyon by SH-waves is studied using wave function expansion and complex function method. Firstly, the analytical model is divided into three parts, and the displacement solutions of wave fields are constructed based on boundary conditions in the three regions. Three domains are then conjoined to satisfy the "conjunction" condition at shared boundary. In addition, combined with the zero-stress condition of semi-cylindrical canyon, a series of infinite algebraic equations for the problem are derived. Finally, numerical examples are provided and the influence of different parameters on ground motion is discussed.  相似文献   

9.
Three-dimensional scattering of seismic waves by a cylindrical alluvial valley embedded in a layered half-space is investigated by using the combination of the boundary integral representation and the finite element method. The surface displacements due to incident plane harmonic body waves (P, SV and SH) propagating at an arbitrary angle to the axis of the cylindrical valley are evaluated numerically for two semi-elliptical alluvial valleys. The presence of the layer is found to have a strong effect on the amplification of the surface displacements in some cases. The three-dimensional motion seems to be quite critical and may cause large amplification. The surface ground motion becomes significant when compared with corresponding free-field motion as the wavelengths become comparable to the characteristic length of the valley. The maximum amplification always occurs atop the valley. Numerical results show that the amplitude and the amplification pattern of the surface displacement strongly depend upon the frequency, the angle and the type of the incident waves.  相似文献   

10.
Scattering of elastic waves by inhomogeneous and anisotropic bodies in a half space is considered. The integral equation method is formulated by using the fundamental solution of a homogeneous isotropic body in elastostatics and regarding the resulting inhomogeneous terms as equivalent body forces. Numerical examples are presented for the wave scattering by inhomogeneous and/or anisotropic alluvial valleys and for the dynamic analysis of an inhomogeneous dam. The effect of inhomogeneities and anisotropy on the dynamic behaviour of alluvial valley and dam is discussed.  相似文献   

11.
A comprehensive numerical analysis of the seismic response and site period of curved alluvial valleys was performed by taking into account the characteristics of sedimentary materials. This study presents a criterion as a combination of the three following geometrical and geotechnical characteristics of curved valleys in order to provide a simple method for code implementation of complex site effects: depth ratio, filling ratio and impedance ratio. The parametric studies were performed by a HYBRID program combining finite elements in the near field and boundary elements in the far field (FEM/BEM). The amplification patterns under above-mentioned characteristics were determined at the central point of valleys. The results are shown in the form of response spectra. Different impedance coefficients of materials were considered to evaluate effects resulting from combination with filling ratio and geometrical parameters. Finally, a criterion is proposed in terms of engineering applications to assess the spectral response at the surface of curved alluvial valleys.  相似文献   

12.
A rigorous analytical solution is developed for the lateral linear shear response of embankment dams in semi-cylindrical valleys. Closed-form algebraic expressions are presented pertaining to both free and base-induced oscillations, and extensive parametric and comparative studies elucidate the prominent effects of canyon geometry (shape and aspect ratio) on dynamic response. Harmonic steady-state as well as earthquake-induced accelerations, displacements and shear strains in the dam are studied and compared with those obtained from 3-Dimensional analyses for other canyon geometries, as well as from 2-Dimensional (2-D) analyses of the dam mid-section. It is shown that such 2-D analyses may provide significantly lower values of near-crest accelerations, but slightly higher values of shear strains and stresses than the 3-D analyses. The proposed method of analysis is at least three orders of magnitude less expensive than other presently available numerical procedures.  相似文献   

13.
A direct boundary element procedure is presented to determine the impedance matrix for a three-dimensional foundation supported on an infinitely-long canyon of uniform cross-section cut in a homogeneous half-space. The uniform cross-section of the canyon permits analytical integration along the canyon axis leading to a series of two-dimensional boundary problems involving Fourier transforms of the full-space Green's functions. Solution of these two-dimensional boundary problems leads to a dynamic flexibility influence matrix which is inverted to determine the impedance matrix. The accuracy of the procedure is demonstrated by comparison with previous solutions for a surface-supported, square foundation and results obtained by a three-dimensional boundary element method (BEM) for a foundation of finite-width supported on an infinitely-long canyon. Compared with the three-dimensional BEM, the present method requires less computer storage and is more accurate and efficient. The foundation impedance matrix determined by this procedure can be incorporated in a substructure method for earthquake analysis of arch dams.  相似文献   

14.
An alternate formulation of the ‘substructure deletion method’ suggested by Dasgupta in 19791 has been successfully implemented. The idea is to utilize simple Green's functions developed for a surface problem to replace the more complicated Green's functions required for embedded problems while still being able to generate an accurate solution. Since the exterior medium is usually represented by a continuum model, the interior medium in the present approach will also be represented by a continuum model rather than a finite element model as suggested originally, thereby eliminating the incompatibility between the solutions of the interior and exterior media. Detailed studies of the method's accuracy and limitations were performed using two-dimensional examples in wave scattering of canyons and alluvial valleys, problems which are more suitable for this method than the embedded foundation problem. The results obtained indicate that the alternate formulation gives accurate results only when the vertical dimension of the scattering object is not too large; if the aspect ratio (vertical over lateral) exceeds a certain limit, the results will not approach the known results given by boundary integral equation solutions or indirect boundary integral equations no matter what the refinement of the model may be. The greatest advantage of the present method is that the task of calculating Green's functions is reduced significantly; computational time using this new formulation is approximately five times less than for conventional boundary integral equation methods.  相似文献   

15.
A closed-form solution of two-dimensional scattering of plane SH waves by a cylindrical canyon of circular-arc cross-section in a half-space is studied using the wave functions expansion method. The solution is reduced to solving infinite linear algebraic equations using the Graf's addition theorem in an appropriate form. Numerical results of the solution are obtained by truncation of the infinite equations and accuracies of the truncation are checked by the extent to which the numerical results fit the boundary condition and by convergence of the numerical results with the truncation order. Complicated effects of the depth-to-width ratio of the canyon on surface ground motion are shown by the numerical results for typical cases.  相似文献   

16.
三维复杂山谷地形SV波垂直输入地震反应分析   总被引:3,自引:0,他引:3       下载免费PDF全文
本文基于显式有限元法研究了地震波垂直入射时三维复杂山谷地形对地震地面运动的影响,在数值分析中应用了三维化二维的解法和黏弹性人工边界的处理方法,实现了地震波垂直输入下三维复杂场地地震动数值模拟,并验证了该方法的合理性.以四川桃坪地区一山谷地形作为研究对象,基于地表高程数据分别建立了二维和三维场地模型,对比研究表明:在复杂地形情况下考虑二、三维模型时具有明显差异,三维模型能更真实地反映地形变化对地震动的影响,复杂地形条件下有必要考虑三维实际场地模型.本文对边界自由场的处理方法也可用于处理三维复杂场地地震动斜入射问题,为三维复杂地形场地地震效应研究提供参考.  相似文献   

17.
本文利用曲线坐标的分析方法研究SH波对凹陷地形散射的边值问题。首先给出了在曲线坐标系中波动方程解的逼近函数序列,并使此解满足由曲线坐标所描述的具有不同深度的凹陷地形上的边界条件,最后将待解的问题归结为对一组无穷代数方程组的求解.本文提供的方法有如下的特点:(1)可将通常求解凹陷地形对SH波散射的波动方程的混合边值问题(指在不同边界区域上给出不同的应力分量的边界条件)化为一应力边值问题;(2)本文所使用的曲线坐标,可描述具有不同深度与宽度比的拟半圆形凹陷地形散射问题,并给出一般解;(3)本文方法可推广用于求解P(-SV)波对凹陷地形的散射问题。作为算例,本文给出了SH波对具有不同深度与宽度比的凹陷地形散射的数值结果,并进行了分析比较。  相似文献   

18.
Azimuth dependent wave amplification in alluvial valleys   总被引:1,自引:0,他引:1  
An extension of the indirect boundary element method (IBEM) to three-dimensional scattering by two-dimensional alluvial valleys is presented. While the valley is two-dimensional, the incident plane waves can arrive outside the 2D plane so the scattering is three-dimensional with coupling of P---SV---SH waves. Such a method makes it possible to take earthquake location into account in the estimation of site effects in alluvial valleys. The method is validated by transparency tests, by comparison with 2D simulations, and by comparison with results of other authors. The advantage of the method is that is combines high accuracy with cost-efficiency in terms of computer-time. It is applied to theoretically estimate site effects across a simplified model of an alluvial valley in the French Alps where azimuth dependence of local amplification has been observed. A parametric study with simulations for a range of azimuths and incidence angles shows that (1) the local amplification depends strongly on both azimuth and incidence of the incoming waves, (2) the global pattern of amplification across the valley is very complex for all azimuths, and (3) it is not possible to predict the 3D response of the valley from 2D modeling. Theoretical spectral ratios are in approximate agreement with observed ones for a station in the center of the valley where the local structure justifies use of a simplified model for the comparison.  相似文献   

19.
An extensive numerical analysis on the seismic site effects due to local topographical and geotechnical characteristics is carried out. 2D configurations under incidence of vertically propagating SV waves is modeled with the aid of HYBRID program, combining finite elements in the near field and boundary elements in the far field. The filling ratio and the impedance ratio effects on the modification of the seismic response of alluvial valleys are underlined. Parametric analysis is done on the central point of alluvial valleys where the critical point of response under existence of sediments stands. Specifying the amplification pattern under filling ratio effects, effective geometrical parameters are introduced. Subsequently, to assess the effect of the type of sediments on the seismic response, mechanical properties of materials are changed and impedance contrast coefficient is considered in combination with geometrical parameters. Finally, practical curves are presented for engineering applications.  相似文献   

20.
Elastic wave propagation in an irregularly layered medium   总被引:1,自引:0,他引:1  
The indirect boundary element method (IBEM) is used to simulate wave propagation in two-dimensional irregularly layered elastic media for internal line sources. The method is based on the integral representation for scattered elastic waves using single layer boundary sources. Fulfillment of the boundary conditions leads to a system of integral equations. Results are obtained in the frequency domain and seismograins are computed through Fourier synthesis. In order to test and validate the method we present various comparisons between our results and the time series obtained analytically for a buried line source in a half-space and by using the recently developed spectral element method (SEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号