首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 866 毫秒
1.
Airborne measurements of pure Saharan dust extinction and backscatter coefficients, the corresponding lidar ratio and the aerosol optical thickness (AOT) have been performed during the Saharan Mineral Dust Experiment 2006, with a high spectral resolution lidar. Dust layers were found to range from ground up to 4–6 km above sea level (asl). Maximum AOT values at 532 nm, encountered within these layers during the DLR Falcon research flights were 0.50–0.55. A significant horizontal variability of the AOT south of the High Atlas mountain range was observed even in cases of a well-mixed dust layer. High vertical variations of the dust lidar ratio of 38–50 sr were observed in cases of stratified dust layers. The variability of the lidar ratio was attributed to dust advection from different source regions. The aerosol depolarization ratio was about 30% at 532 nm during all measurements and showed only marginal vertical variations.  相似文献   

2.
Vertical profiles of dust key optical properties are presented from measurements during the Saharan Mineral Dust Experiment (SAMUM) by Raman and depolarization lidar at two ground-based sites and by airborne high spectral resolution lidar. One of the sites, Tinfou, is located close to the border of the Sahara in Southern Morocco and was the main in situ site during SAMUM. The other site was Ouarzazate airport, the main lidar site. From the lidar measurements the spatial distribution of the dust between Tinfou and Ouarzazate was derived for 1 d. The retrieved profiles of backscatter and extinction coefficients and particle depolarization ratios show comparable dust optical properties, a similar vertical structure of the dust layer, and a height of about 4 km asl at both sites. The airborne cross-section of the extinction coefficient at the two sites confirms the low variability in dust properties. Although the general picture of the dust layer was similar, the lidar measurements reveal a higher dust load closer to the dust source. Nevertheless, the observed intensive optical properties were the same. These results indicate that the lidar measurements at two sites close to the dust source are both representative for the SAMUM dust conditions.  相似文献   

3.
Vertical profiles of the linear particle depolarization ratio of pure dust clouds were measured during the Saharan Mineral Dust Experiment (SAMUM) at Ouarzazate, Morocco (30.9°N, –6.9°E), close to source regions in May–June 2006, with four lidar systems at four wavelengths (355, 532, 710 and 1064 nm). The intercomparison of the lidar systems is accompanied by a discussion of the different calibration methods, including a new, advanced method, and a detailed error analysis. Over the whole SAMUM periode pure dust layers show a mean linear particle depolarization ratio at 532 nm of 0.31, in the range between 0.27 and 0.35, with a mean Ångström exponent (AE, 440–870 nm) of 0.18 (range 0.04–0.34) and still high mean linear particle depolarization ratio between 0.21 and 0.25 during periods with aerosol optical thickness less than 0.1, with a mean AE of 0.76 (range 0.65–1.00), which represents a negative correlation of the linear particle depolarization ratio with the AE. A slight decrease of the linear particle depolarization ratio with wavelength was found between 532 and 1064 nm from 0.31 ± 0.03 to 0.27 ± 0.04.  相似文献   

4.
Lifting of dust particles by dust devils and convective plumes may significantly contribute to the global mineral dust budget. During the Saharan Mineral Dust Experiment (SAMUM) in May–June 2006 vertical profiling of dusty plumes was performed for the first time. Polarization lidar observations taken at Ouarzazate (30.9°N, 6.9°W, 1133 m height above sea level) are analyzed. Two cases with typical and vigorous formation of convective plumes and statistical results of 5 d are discussed. The majority of observed convective plumes have diameters on order of 100–400 m. Most of the plumes (typically 50–95%) show top heights <1 km or 0.3DLH with the Saharan dust layer height DLH of typically 3–4 km. Height-to-diameter ratio is mostly 2–10. Maximum plume top height ranges from 1.1 to 2.9 km on the 5 d. 5–26 isolated plumes and clusters of plumes per hour were detected. A low dust optical depth (<0.3) favours plume evolution. Observed surface, 1 and 2–m air temperatures indicate that a difference of 17–20 K between surface and 2-m air temperature and of 0.9–1 K between the 1 and 2-m temperatures are required before convective plumes develop. Favourable horizontal wind speeds are 2–7 m s−1.  相似文献   

5.
We observed a long-range transport event of mineral dust from North Africa to South Europe during the Saharan Mineral Dust Experiment (SAMUM) 2006. Geometrical and optical properties of that dust plume were determined with Sun photometer of the Aerosol Robotic Network (AERONET) and Raman lidar near the North African source region, and with Sun photometers of AERONET and lidars of the European Aerosol Research Lidar Network (EARLINET) in the far field in Europe. Extinction-to-backscatter ratios of the dust plume over Morocco and Southern Europe do not differ. Ångström exponents increase with distance from Morocco. We simulated the transport, and geometrical and optical properties of the dust plume with a dust transport model. The model results and the experimental data show similar times regarding the appearance of the dust plume over each EARLINET site. Dust optical depth from the model agrees in most cases to particle optical depth measured with the Sun photometers. The vertical distribution of the mineral dust could be satisfactorily reproduced, if we use as benchmark the extinction profiles measured with lidar. In some cases we find differences. We assume that insufficient vertical resolution of the dust plume in the model calculations is one reason for these deviations.  相似文献   

6.
In May–June 2006, airborne and ground-based solar (0.3–2.2 μm) and thermal infrared (4–42 μm) radiation measurements have been performed in Morocco within the Saharan Mineral Dust Experiment (SAMUM). Upwelling and downwelling solar irradiances have been measured using the Spectral Modular Airborne Radiation Measurement System (SMART)-Albedometer. With these data, the areal spectral surface albedo for typical surface types in southeastern Morocco was derived from airborne measurements for the first time. The results are compared to the surface albedo retrieved from collocated satellite measurements, and partly considerable deviations are observed. Using measured surface and atmospheric properties, the spectral and broad-band dust radiative forcing at top-of-atmosphere (TOA) and at the surface has been estimated. The impact of the surface albedo on the solar radiative forcing of Saharan dust is quantified. In the SAMUM case of 19 May 2006, TOA solar radiative forcing varies by 12 W m−2 per 0.1 surface-albedo change. For the thermal infrared component, values of up to +22 W m−2 were derived. The net (solar plus thermal infrared) TOA radiative forcing varies between −19 and +24 W m−2 for a broad-band solar surface albedo of 0.0 and 0.32, respectively. Over the bright surface of southeastern Morocco, the Saharan dust always has a net warming effect.  相似文献   

7.
In May/June 2006, the largest mineral dust experiment to date (Saharan Mineral Dust Experiment, SAMUM-1) was conducted in Southern Morocco. The aim was to characterize dust particles near the world's largest mineral dust source, and to quantify dust-related radiative effects. At one of the two ground-based measurement sites dust particle size distribution, optical, hygroscopic, chemical and structural particle characteristics were measured. One research aircraft mainly measured solar spectral irradiances and surface albedo. The other aircraft provided in situ physical aerosol measurements and samples and lidar profiles through the dust layers. Three ground-based lidars were operated at the second ground-based measurement site. They determined optical dust properties, particle shape and temporal development of dust layers. Columnar, ground-based sun photometer measurements complemented the lidar data. Additionally a station in Évora, Portugal monitored dust outbreaks from the North African source region to the Iberian Peninsula during SAMUM-1.
Volumetric and columnar closure exercises utilized these detailed measurements of dust characteristics together with optical and radiative transfer models. Concurrent developments of a mesoscale dust transport model were validated with the experimental data. The paper gives an overview over rationale and design of SAMUM-1, introduces and highlights the subsequent reports on experimental and modelling results.  相似文献   

8.
During the Saharan Mineral Dust Experiment (SAMUM) conducted in summer 2006 in southeast Morocco, the complex refractive index of desert dust was determined from airborne measurements of particle size distributions and aerosol absorption coefficients at three different wavelengths in the blue (467 nm), green (530 nm) and red (660 nm) spectral regions. The vertical structure of the dust layers was analysed by an airborne high spectral resolution lidar (HSRL). The origin of the investigated dust layers was estimated from trajectory analyses, combined with Meteosat 2nd Generation (MSG) scenes and wind field data analyses. The real part n of the dust refractive index was found almost constant with values between 1.55 and 1.56, independent of the wavelength. The values of the imaginary part k varied between the blue and red spectral regions by a factor of three to ten depending on the dust source region. Absolute values of k ranged from 3.1 × 10−3 to 5.2 × 10−3 at 450 nm and from 0.3 × 10−3 to 2.5 × 10−3 at 700 nm. Groupings of k values could be attributed to different source regions.  相似文献   

9.
北京地区对流层中上部云和气溶胶的激光雷达探测   总被引:39,自引:8,他引:39  
介绍了近年来研制的一台多波长激光雷达及其探测对流层高云和气溶胶的实验,并依据探测结果重点分析了北京2000年1月至4月对流层上部云和气溶胶在532 nm波长的消光系数分布特征.结果表明:从6 km至11 km的气溶胶光学厚度值在0.0152至0.0284之间变化,均值为0.0192.从6 km至11 km的云光学厚度值在0.014至0.23之间变化.观测到的单层高云的厚度最大为6 km.4月6日,近年来最强的一次沙尘暴袭击北京.4月7日北京地区无可见云,激光雷达探测结果表明,从4 km至10 km高度范围内,存在一层厚度约为6 km的气溶胶粒子层,消光系数峰值处于8 km附近,比晴天无云时的消光系数值约大一个数量级.估计这是一层沙尘气溶胶,系由远距离输送至北京形成的.  相似文献   

10.
Lidar methods for observing mineral dust aerosols are reviewed.These methods include Mie scattering lidars,polarization lidars,Raman scattering lidars,high-spectral-resolution lidars,and fluorescence lidars.Some of the lidar systems developed by the authors and the results of the observations and applications are introduced.The largest advantage of the lidar methods is that they can observe vertical distribution of aerosols continuously with high temporal and spatial resolutions.Networks of ground-based lidars provide useful data for understanding the distribution and movement of mineral dust and other aerosols.The lidar network data are actually used for validation and assimilation of dust transport models,which can evaluate emission,transport,and deposition of mineral dust.The lidar methods are also useful for measuring the optical characteristics of aerosols that are essential to assess the radiative effects of aerosols.Evolution of the lidar data analysis methods for aerosol characterization is also reviewed.Observations from space and ground-based networks are two important approaches with the lidar methods in the studies of the effects of mineral dust and other aerosols on climate and the environment.Directions of the researches with lidar methods in the near future are discussed.  相似文献   

11.
In the framework of the Saharan Mineral Dust Experiment (SAMUM) for the first time the spectral dependence of particle linear depolarization ratios was measured by combining four lidar systems. In this paper these measurements are compared with results from scattering theory based on the T-matrix method. For this purpose, in situ measurements—size distribution, shape distribution and refractive index—were used as input parameters; particle shape was approximated by spheroids. A sensitivity study showed that lidar-related parameters—lidar ratio   S p   and linear depolarization ratio  δ p   —are very sensitive to changes of all parameters. The simulated values of the  δ p   are in the range of 20% and 31% and thus in the range of the measurements. The spectral dependence is weak, so that it could not be resolved by the measurements. Calculated lidar ratios based on the measured microphysics and considering equivalent radii up to 7.5 μm show a range of possible values between 29 and 50 sr at  λ= 532 nm  . Larger   S p   might be possible if the real part of the refractive index is small and the imaginary part is large. A strict validation was however not possible as too many microphysical parameters influence   S p   and  δ p   that could not be measured with the required accuracy.  相似文献   

12.
利用激光雷达观测兰州沙尘气溶胶辐射特性   总被引:11,自引:3,他引:8       下载免费PDF全文
曹贤洁  张镭  周碧  鲍婧  史晋森  闭建荣 《高原气象》2009,28(5):1115-1120
利用微脉冲激光雷达CE370-2与太阳光度计CE-318, 在兰州观测分析了2007年3月27~29日扬沙过程沙尘气溶胶辐射特性, 并利用HYSPLIT-4模式分析了沙尘过程气溶胶粒子的后向轨迹。分析表明, 此沙尘过程气溶胶粒子的传输路径主要有两条: 一条起源于青海西北经西宁抵兰州, 另一条起源于塔克拉玛干沙漠经河西走廊抵兰州; 沙尘气溶胶主要集中于离地1.5 km高度层内; 沙尘气溶胶消光系数随高度先增加, 到0.2 km左右高度达到最大, 然后急剧减小。沙尘气溶胶光学厚度的时间演变呈双峰型, 最高峰出现在28日12:00, 次高峰在27日22:00。验证表明由CE370-2得到的气溶胶光学厚度与CE-318得到的很接近; 雷达观测资料的处理方法可以较好地反演气溶胶消光系数和光学厚度。  相似文献   

13.
The Saharan Mineral Dust Experiment (SAMUM) was conducted in May/June 2006 in southern Morocco. As part of SAMUM, airborne in situ measurements of the particle size distribution in the diameter range 4 nm < D p < 100 μm were conducted. The aerosol mixing state was determined below D p < 2.5 μm. Furthermore, the vertical structure of the dust layers was investigated with a nadir-looking high spectral resolution lidar (HSRL). The desert dust aerosol exhibited two size regimes of different mixing states: below 0.5 μm, the particles had a non-volatile core and a volatile coating; larger particles above 0.5 μm consisted of non-volatile components and contained light absorbing material. In all cases, particles larger than 10 μm were present, and in 80% of the measurements no particles larger than 40 μm were present. The abundance of large particles showed almost no height dependence. The effective diameter D eff in the dust plumes investigated showed two main ranges: the first range of D eff peaked around 5 μm and the second range of D eff around 8 μm. The two ranges of D eff suggest that it may be inadequate to use one average effective diameter or one parametrization for a typical dust size distribution.  相似文献   

14.
We report on clear‐sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE‐2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in‐situ (optical particle counter, nephelometer, and absorption photometer) measurements taken aboard the Pelican aircraft, space‐borne NOAA/AVHRR data and ground‐based lidar and sunphotometer measurements. During both days discussed here, vertical profiles flown in cloud‐free air masses revealed 3 distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. A key result of this study is the achievement of closure between extinction or layer aerosol optical depth (AOD) computed from continuous in‐situ aerosol size‐distributions and composition and those measured with the airborne sunphotometer. In the dust, the agreement in layer AOD (λ=380–1060 nm) is 3–8%. In the MBL there is a tendency for the in‐situ results to be slightly lower than the sunphotometer measurements (10–17% at λ=525 nm), but these differences are within the combined error bars of the measurements and computations.  相似文献   

15.
Aerosol properties of mineral particles in the far field of an African desert dust outbreak were investigated that brought Saharan dust over the Mediterranean in different layers to Portugal. The measurements were performed inside the project Desert Aerosols over Portugal (DARPO) which was linked to the Saharan Mineral Dust Experiment (SAMUM). The maximum particle mass concentration was about 150 μg m−3 and the corresponding scattering coefficient was 130 M m−1 which results in a mass scattering efficiency of 0.87 m2 g−1. The aerosol optical depth reached values up to 0.53 and the lidar ratio was between 45 and 50 in the whole dust loaded column. A comparison between particle size distributions and refractive indices derived from different instruments and models showed a general good agreement but some minor differences could also be observed. Measurements as well as calculations with a particle transport model suggest that there is a relatively higher concentration of very large particles in the upper region of the dust layer than on the surface which is likely connected with meteorological conditions at the observational site (Évora, Portugal).  相似文献   

16.
The aerosol optical depth (AOD) in the range 340–1550 nm was monitored at Ouarzazate (Morocco) during the Saharan Mineral Dust Experiment (SAMUM) experiment in May–June 2006. Two different sun photometers were used for this purpose. The mean AOD at 500 nm was 0.28, with a maximum of 0.83, and the mean Ångström exponent (AE) was 0.35. The aerosol content over the site changed alternatively from very low turbidity, associated to Atlantic air masses, to moderate dust load, associated to air masses arriving in the site from Algeria, Tunisia and Libya. The dusty conditions were predominant in the measurement period (78% of data), with AOD (500 nm) above 0.15 and AE below 0.4. The spectral features of the AOD under dusty conditions are discussed. Air mass back trajectory analysis is carried out to investigate the origin and height patterns of the dust loaded air masses. The advection of dust occurred mainly at atmospheric heights below 3000 m, where east flow is the predominant. At the 5000 m level, the air masses originate mainly over the Atlantic Ocean. Finally the Optical Properties of Aerosols and Clouds (OPAC) model is used to perform a set of simulations with different aerosol mixtures to illustrate the measured AOD and AE values under varying dust concentrations, and a brief comparison with other measurement sites is presented.  相似文献   

17.
Multiple‐angle micro‐pulse lidar (MPL) observations were made at Las Galletas on Tenerife, Canary Islands during the Aerosol Characterization Experiment‐2 (ACE‐2) conducted June–July, 1997. A principal objective of the MPL observations was to characterize the temporal/spatial distributions of aerosols in the region, particularly to identify and profile elevated Saharan dust layers which occur intermittently during the June–July time period. Vertical and slant angle measurements taken 16 and 17 July characterize such an occurrence, providing aerosol backscatter, extinction, and optical depth profiles of the dust layer between 1 and 5 km above mean sea level (MSL). Additionally, horizontal measurements taken in Las Galletas throughout the 6‐week period provide a time profile of the varying aerosol extinction at the surface. This profile exhibits the alternating periods of clean maritime air and pollution outbreaks that typified the region. Horizontal measurements also provide some evidence suggesting the possible influx of Saharan dust from the free troposphere to the surface. This paper presents estimates of aerosol optical properties retrieved from the multi‐angle MPL measurements in addition to an outline of the methodologies employed to obtain these results.  相似文献   

18.
Ground-based lidars can provide continuous observations of tropospheric humidity profiles using the Raman scattering of light by water vapour and nitrogen molecules. We will present specific humidity profiles obtained at the high Arctic location Ny-Ålesund (Spitsbergen, 79°N). Under nighttime conditions the observations cover a range from about 500 m altitude up to the upper troposphere. Daylight limits the observations to the lower troposphere, depending on atmospheric transmission and the water vapour content. In a case study on 29 January, simultaneous observations of humidity and aerosol extinction show distinct differences in the various altitudes during the advection of aerosol-rich air masses. In the boundary layer, the aerosol is less affected by the humidity. In the free troposphere, the lidar ratio was observed to be up to 60 sr with some evidence for the uptake of water vapour by the aerosol particles. In another case study from 28 February 2002, the influence of the mean wind direction and the orography on the water vapour concentration near the ground and in the free troposphere will be discussed. During wintertime, a humidity inversion up to about 1.5 km altitude with dry air near the ground has frequently been found with wind from the southeast. Such local effects and small-scale structures observed by stationary lidar mostly cannot be resolved by other sounding methods like passive satellite soundings.  相似文献   

19.
雷达比是激光雷达反演气溶胶光学特性的重要参数和影响因素。利用北京地区2016年一次清洁过程(12月10日)和两次污染过程(11月15~18日和12月16~19日)的微脉冲激光雷达、机载浊度计和黑碳仪以及多种地基观测设备,综合研究基于飞机观测订正雷达比的方法及其分布特征。清洁过程地面PM2.5浓度低于40 μg m?3;污染严重时期的PM2.5均高于150 μg m?3且能见度低于5 km,污染过程1存在高空传输的特征。研究结果表明相较于采用单一的柱平均雷达比,利用本文方法获得的雷达比垂直廓线反演得到的气溶胶消光系数和光学厚度更接近原位跟踪观测,精度均有提升。基于此方法获得的雷达比在污染发展不同时期垂直分布差异较大,主要分布在19~76 sr之间,清洁时期雷达比较小且垂直分布差异不大。污染过程1雷达比随高度波动增加至边界层顶(19~45 sr);污染过程2严重期边界层内雷达比随高度由70 sr降低到20 sr;边界层以上均呈现小幅波动变化。边界层内雷达比垂直分布与气溶胶来源特别是高空气溶胶传输有密切联系,混有沙尘的区域传输显著提升了所在高度的雷达比值。边界层以上雷达比受少量大粒子或者强吸收性的气溶胶粒子的影响波动变化。边界层内消光系数增大时雷达比呈增加趋势;当相对湿度高于40%,边界层内雷达比随相对湿度增加而增大。  相似文献   

20.
We present measurements of the vertical aerosol structure and the aerosol optical depth in the lower troposphere performed above the city of Sofia (an urban area situated in a mountain valley), western Bulgaria by means of a ground-based aerosol lidar operating continuously for a number of years. The lidar measurements were accompanied by measurements of the aerosol optical depth (AOD) in the visible and near infrared regions of the spectrum performed in October 2004 using Microtops II radiometers. The maximum values of the AOD were found to occur 1–2 h before the complete development of the atmospheric boundary layer, i.e. during the residual layer destruction, which confirms our hypothesis concerning the slope circulation effect on the processes taking place in the atmospheric boundary layer. The AOD values obtained by the lidar are lower than those taken by the sun photometer. Further, the AOD exhibits two different types of behaviour. In the case of a ‘clear atmosphere’ (i.e. in the absence of volcanic eruptions and/or dust transport from the Sahara) most of the aerosol accumulated within the atmospheric boundary layer over the urban area considered. The combined use of the two instruments allows the comparison between the optical characteristics of the atmospheric aerosol (e.g. aerosol extinction coefficient, etc.) obtained by the lidar and through an independent method (sun photometer).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号