首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
沱沱河盆地是冻土天然气水合物潜在分布区之一,其内发育下-中二叠统开心岭群九十道班组、上二叠统乌丽群那益雄组、上三叠统结扎群巴贡组、中-渐新统雅西措组4套烃源岩以及不同类型的火山岩。研究表明,火山岩岩石类型主要为玄武岩、玄武安山岩、安山岩、玄武质粗面安山岩和粗面安山岩。火山岩主量元素低TiO2,Al2O3含量较高,K2O含量较低,K2O < Na2O;火山岩的稀土元素配分模式为轻稀土富集型;微量元素配分模式呈锯齿状,Ta、Nb、P2O5、TiO2、Y、Yb以及铁族元素Sc、Cr、Ni亏损,综合判断青海南部沱沱河地区火山岩形成于岛弧环境。结合火山岩的地球化学特征,推断火山活动可以加快烃源岩的热成熟,进而促使有机质裂解,产生热解气,为水合物的生成提供气源条件。同时,火山岩的气孔构造发育,连通性较好,有可能成为水合物的储层。火山热液具有的高压使周围的烃源岩产生裂隙,这些裂隙不仅是水合物气源的运移通道,还可以为水合物提供形成场所和储存空间。  相似文献   

2.
Late Permian-Early Triassic (P2-T1) volcanic rocks distributed on the eastern side of ocean-ridge and oceanic-island basalts in the Nan-Uttaradit zone were analyzed from aspects of petrographic characteristics, rock assemblage, REE, trace elements, geotectonic setting, etc., indicating that those volcanic rocks possess the characteristic features of island-arc volcanic rocks. The volcanic rock assemblage is basalt-basaltic andesite-andesite. The volcanic rocks are sub-alkaline, dominated by calc-alkaline series, with tholeiite series coming next. The chemical composition of the volcanic rocks is characterized by low TiO2 and K2O and high Al2O3 and Na2O. Their REE patterns are of the flat, weak LREE-enrichment right-inclined type. The trace elements are characterized by the enrichment of large cation elements such as K, Rb and Ba, common enrichment of U and Th, and depletion of Nb, Ta, Zr and Hf. The petrochemical plot falls within the field of volcanic rocks, in consistency with the plot of island-arc volcanic rocks in the Jinsha River zone of China. This island-arc volcanic zone, together with the ocean-ridge/oceanic island type volcanic rocks in the Nan-Uttaradit zone, constitutes the ocean-ridge volcanic rock-island-arc magmatic rock zones which are distributed in pairs, indicating that the oceanic crust of the Nan-Uttaradit zone once was of eastward subduction. This work is of great significance in exploring the evolution of paleo-Tethys in the Nan-Uttaradit zone.  相似文献   

3.
寨北山矿区海相火山岩为一套富钠的玄武安山玢岩、安山岩、英安岩、流纹岩组合,属于钙碱性系列岩石,具有低MgO(0.51%~5.93%,平均2.54%)、FeO(0.54%~6.39%,平均2.84%)和钛(TiO2=0.09%~1.10%,平均0.58%),富铝(Al2O3=12.23%~17.75%,平均15.20%,A/CNK=0.79~1.42,平均1.11)以及富钠(Na2O/K2O平均为7.30)、富水的特征。火山岩中斜长石主要为钠长石,少量更长石。轻、重稀土分馏较明显((LREE/HREE)N=3.68~9.00),微量元素显示大离子亲石元素(如Th、U、Rb)、轻稀土的富集和高场强元素(如Nb、Ta、Ti、P)相对亏损的特征。获得矿区雅满苏组钠质玄武安山玢岩SHRIMP锆石U-Pb谐和年龄为(337.6±3.3)Ma,为早石炭世火山活动的产物。火山岩岩石学及地球化学特征表明研究区钠质火山岩可能形成于俯冲带近大陆方向的岛弧构造环境,是早石炭世洋壳俯冲熔融产生的岩浆在海底喷发过程中与海水相互反应后,经低变质相作用产生的。成矿元素在钠长石化过程中可能被淋滤出来进入含矿热液,后期在适当的温压等条件下沉淀形成本区的矿床。  相似文献   

4.
 本文论述了中昆仑(北坡)4个地区第四纪火山岩的地质产状、岩石学、地球化学特征及时代。这一套岩石以安粗岩类为主,普遍含有普通辉石和斜长石斑晶,少数还有橄榄石、紫苏辉石或石英、透长石、黑云母斑晶。在化学上以富碱尤其富钾为突出特点,K2O/Na2O≥1,而且 Rb、Sr、Ba 等低场强元素和 LREE 也强烈富集,构成一个连续的钾玄岩系列(Shoshoaite Serics)。区域构造,地球化学和深源捕虏体的证据表明,本区钾玄质岩浆来自于上地幔的低度部分熔融,并受到地壳的同化和污染。火山活动大致从晚第三纪开始一直延续到第四纪,特别是中、晚更新世最为剧烈,是昆仑山及青藏高原快速隆升的新构造运动表现形式之一。  相似文献   

5.
Abstract: The Mesozoic potash‐rich volcanic rocks which hosted several gold or gold (copper) deposits are widely distributed around the Yishu deep fault zone, eastern China. Lithologically, these rocks include basaltic trachyandesite, trachyandesite, latite and trachyte, of which the trachyandesite and latite are the predominant rock types. Whole‐rock Rb‐Sr isochron ages and 40Ar‐39Ar plateau dates of them are 108.2 ? 119.6 Ma and 114.7 ? 124.3 Ma, respectively. Chemically, they are characterized by high and variable Al2O3 contents, high K2O+Na2O values, and high K2O/Na2O and Fe2O3/FeO ratios. The rocks also have enriched LILE and LREE concentrations, low HFSE abundance, and display extraordinary Sr‐Nd isotope signatures (ISr = 0.7084 ? 0.7125, εNd(t) = ‐9.43 ? ?18.07). Integrated geological and geochemical data suggest that they were formed in a continental‐arc setting and most likely originated from the partial melting of enriched mantle which was induced by source contamination of subducted continental crustal materials. Gold (copper) deposits in this district are closely related to Mesozoic volcanic‐subvolcanic magmatism. They are frequently located either at the margin or adjacent to the volcanic basins. Most of them are spatially associated with maar‐diatreme systems and/or flow‐dome complexes. The formations of two gold (copper) deposits, the Qibaoshan breccia pipe‐porphyry type Au‐Cu deposit and the Guilaizhuang tellurium‐gold type epithermal Au deposit, have been proved to be in close relation with potash‐rich magmatism. The genetic relations between potash‐rich magmatism and Cu‐Au mineralization is still quite unclear. Detailed review of the previous works demonstrates that the high contents of volatiles (such as H2O, CO2, S, F and Cl, especially F and Cl) and the high oxidation state of the potash‐rich magmas may be the main favorable factors for the formation of the Cu‐Au deposits.  相似文献   

6.
Proximal and distal lithogeochemical alteration patterns associated with precious-metal and polymetallic vein mineralization in the Andes of Bolivia and Peru are delineated both by sulphophile elements such as Ag, As, Pb, S, Sb, Sn and Zn, and also by hydrothermal alteration indicators such as CaO/MgO, K2O/Na2O, Rb/K and Rb/Sr. In some cases, single-element, ratio and normalized data additive plots permit the detection of a vein at a distance of more than 100 m even when the visible alteration extends for less than 10 m. Asymmetric hanging-wall-footwall halos in both volcanic and sedimentary rocks provide a useful supra-ore/sub-ore indicator for inclined veins. The K2O/Na2O ratio appears to be the most reliable lithogeochemical guide to ore-related hydrothermal alteration.  相似文献   

7.
安徽滁县中生代火山岩岩石化学及斜长石特征   总被引:3,自引:0,他引:3       下载免费PDF全文
齐进英 《地质科学》1982,(2):152-161
安徽滁县中生代火山岩盆地为长江中下游一系列火山岩盆地之一,它位于张八岭隆起的东侧,受平行于郯庐断裂的次级断裂控制,形成北北东向的断陷盆地。盆地基岩较老,西部直接覆盖在震旦亚界灯影组之上,其分布受古地形的制约(图1),南部、东部不整合在早古生界地层之上。  相似文献   

8.
阿尔金山北缘早古生代岩浆活动的构造环境   总被引:17,自引:0,他引:17  
阿尔金山北缘地处塔里木盆地和柴达木盆地之间的阿尔金断裂的西北,是青藏高原北部边界地区。该区花岗岩类主要形成于早古生代以来,为钙碱性岩系(碱性程度不高),发育Ⅰ型和A型两种花岗岩类,缺少S型花岗岩。早古生代与蛇绿岩伴生的双峰式火山岩系属于亚碱性系列,其中的玄武岩主要为拉斑系列,流纹岩属钙碱系列。花岗岩类构造环境分析和判别结果表明,阿尔金山北缘早古生代处在破坏性活动板块边缘,构造环境可能经历了早古生代活动陆缘的(火山)岛弧、中生代大陆造陆抬升以至新生代的后造山作用演化过程。火山岩类的构造环境分析结果表明,玄武岩类可能具有洋脊区、岛弧区和板内区各种构造环境,流纹岩类则主要处在板内区。以上分析说明早古生代"阿尔金洋"的存在。   相似文献   

9.
本文对青藏高原羌北-昌都地块阿布日阿加措地区的晚二叠世那益雄组火山岩进行了年代学和地球化学研究。该火山岩主要由玄武岩、安山玄武岩、安山岩、流纹岩、凝灰岩组成,具有碱性玄武岩到酸性熔岩的特征。锆石U-Pb年代学研究表明该火山岩的形成时代为251. 1±4. 8~249. 6±1. 3 Ma之间。地球化学分析结果表明,该地区的流纹岩具有高的Si O2(74. 85%~77. 55%)和Na2O+K2O(5. 40%~6. 61%)含量,较低的MgO、K2O和Ca O含量,Al2O3含量低且稳定,里特曼指数平均为1. 15,小于3. 3。安山岩Si O2含量55. 13%~56. 28%,Na2O+K2O含量4. 13%~6. 15%,里特曼指数平均为2. 20,小于3. 3,属于钙碱性安山岩。碱性玄武岩Si O2含量51. 49%,Na2O+K2O含量6. 34%,里特曼指数为4. 73,属于碱性系列。稀土元素配分曲线为富集LREE的右倾型。另外,富集大离子亲石元素(LILE) Th、U,亏损高场强元素(HFSE) Nb、Ta等特征,均说明羌北-昌都地块阿布日阿加措地区的火山岩形成于陆缘岛弧环境。  相似文献   

10.
广泛分布于拉萨地块南部的林子宗群火山岩被普遍认为是新特提斯洋北向俯冲消减结束并由同碰撞向后碰撞构造背景转化过程中的岩浆作用产物,记录了从新特提斯洋俯冲结束到印度-欧亚大陆碰撞-后碰撞的丰富信息。本文对采集于拉萨地块西部亚热地区的林子宗群火山岩样品进行了年代学和岩石地球化学研究,结果显示:林子宗群火山岩为一套钾玄质系列的流纹岩,该岩石具有高硅(w(SiO2)=73.90%~74.03%)、高钾(w(K2O)=6.15%~6.28%)、高钾钠比(w(K2O)/w(Na2O)=2.14~2.65),富集K、Rb、Th、U、Hf等元素,亏损Nb、Ta、P、Ti、Sr等元素,具有明显的Eu负异常;林子宗群火山岩样品LA-ICP-MS锆石U-Pb年龄为50.1 Ma±0.3 Ma—51.3Ma±0.4Ma之间;结合前人研究,笔者认为亚热地区林子宗群火山岩为形成于印度-欧亚大陆同碰撞背景下的大陆地壳部分熔融的产物。  相似文献   

11.
Statistical study of volcanic rocks from oceanic islands and seamounts in the Atlantic Ocean based on approximately 6000 analyses (data from the authors’ databank) makes it possible to recognize rocks close to the parental melts (approximately 2000 analyses). This set is demonstrated to include a unique group of high-potassium (K2O/Na2O > 1) rocks, whose K2O/Na2O ratio is several times higher than in the mantle and calls for the explanation of the mechanism that increased the K2O concentration during the melting of the mantle and for the identification of an additional K2O source in the mantle and a process responsible for K and Na differentiation. A new model is proposed to account for the genesis of high-potassium melts-fluids, whose ascent brings about extensive mantle metasomatism. The genesis of high-potassium fluid is related to solid-state reactions at deep mantle levels.  相似文献   

12.
Sixteen selected samples from the Upper Cretaceous volcanic belt of the Eastern Pontids have been analysed for major elements, Rb, Sr and Zr. On the basis of the K2O versus SiO2 distribution, two groups of rocks have been distinguished, one with calc-alkaline affinity and a second group with shoshonitic character. The calc-alkaline rocks have porphyritic texture with clinopyroxene, plagioclase and orthopyroxene as phenocryst and in the groundmass. The orthopyroxene is lacking in the shoshonites where plagioclase, clinopyroxene and, in the more evolved terms, amphibole and biotite are the main phenocryst minerals. The shoshonitic rocks have higher K2ONa2O ratio, K2O, P2O5 and Rb, contents with respect to the calc-alkaline samples. The TiO2 content is invariably low, never exceeding approximately 1%. The occurrence of volcanic rocks ranging in composition from calc-alkaline to shoshonitic in the Upper Cretaceous volcanic belt of the Eastern Pontids suggests that the Upper Cretaceous volcanic cycle reached its mature stage before the onset of the Eocene calc-alkaline volcanism which is believed to be neither genetically nor tectonically related with the Upper Cretaceous volcanism.  相似文献   

13.
We undertook zircon U-Pb dating and geochemical analyses of volcanic rocks from the Manitu Formation in the Hongol area,northeastern Inner Mongolia,to determine their age,petrogenesis and sources,which are important for understanding the Late Mesozoic tectonic evolution of the Great Xing'an Range.The volcanic rocks of the Manitu Formation from the Hongol area consist primarily of trachyandesite,based on their chemical compositions.The zircons from two of these trachyandesites are euhedral-subhedral in shape,display clear oscillatory growth zoning and have high Th/U ratios(0.31-1.15),indicating a magmatic origin.The results of LA-ICP-MS zircon U-Pb dating indicate that the volcanic rocks from the Manitu Formation in the Hongol area formed during the early Early Cretaceous with ages of 138.9-140.5 Ma.The volcanic rocks are high in alkali(Na_2O + K_2O = 6.22-8.26 wt%),potassium(K_2O = 2.49-4.58 wt%) and aluminium(Al_2O_3 = 14.27-15.88 wt%),whereas they are low in iron(total Fe_2O_3 = 3.76-6.53 wt%) and titanium(TiO_2 = 1.02-1.61 wt%).These volcanic rocks are obviously enriched in large ion lithophile elements,such as Rb,Ba,Th and U,and light rare earth elements,and are depleted in high field strength elements,such as Nb,Ta and Ti with pronounced negative anomalies.Their Sr-Nd-Pb isotopic compositions show positive ε_(Nd)(t)(+0.16‰ to+1.64‰) and low T_(DM)(t)(694-767 Ma).The geochemical characteristics of these volcanic rocks suggest that they belong to a shoshonitic series and were likely generated from the partial melting of an enriched lithospheric mantle that was metasomatised by fluids released from a subducted slab during the closure of the MongolOkhotsk Ocean.Elemental and isotopic features reveal that fractional crystallization with the removal of ferromagnesian minerals,plagioclase,ilmenite,magnetite and apatite played an important role during the evolution of the magma.These shoshonitic rocks were produced by the partial melting of the enriched lithospheric mantle in an extensional regime,which resulted from the gravitational collapse following the final closure of the Mongol-Okhotsk Ocean in the Middle-Late Jurassic.  相似文献   

14.
塔里木北部二叠纪长英质火山岩年代学及地球化学特征   总被引:3,自引:2,他引:3  
大面积分布于塔里木盆地的二叠纪玄武岩构成了面积250000km2的大火成岩省(LIP),长英质火山岩的发现为塔里木二叠纪火山作用的研究打开了新的窗口。本文从塔北地区约5000m深的钻井中收集了4件二叠纪长英质火山岩的样品。通过对其进行锆石U-Pb同位素测试,得出其形成时代为274~282Ma,为塔里木大火成岩省晚期岩浆作用的产物。岩石具有高钾的特征K2O+Na2O=7.29%~8.34%,K2O/Na2O>1,大部分属于高钾钙碱性系列,且属于过铝质(A/CNK=1.32~1.53)。具有富集LREE和Zr、Hf、Y,亏损Sr、P、Ti、Nb、Ta等特征,微量元素分布曲线形态与地壳相近,具有右倾的稀土元素配分曲线,且显示出一定的负铕异常。通过Sr-Nd-Pb同位素的分析得出其源区有大量地壳物质,这与其具有较高的Th、U含量和与地壳平均值相似的Nb/La、Nb/U、Th/Ta相一致。综合年代学、地球化学特征及构造环境的判断,认为塔北地区二叠纪长英质火山岩形成于地幔柱活动背景下的地壳物质的部分熔融。  相似文献   

15.
The Neoproterozoic Wadi Ranga metavolcanic rocks, South Eastern Desert of Egypt, constitute a slightly metamorphosed bimodal sequence of low-K submarine tholeiitic mafic and felsic volcanic rocks. The mafic volcanic rocks are represented by massive and pillow flows and agglomerates, composed of porphyritic and aphyric basalts and basaltic andesites that are mostly amygdaloidal. The felsic volcanic rocks embrace porphyritic dacites and rhyolites and tuffs, which overlie the mafic volcanic rocks. The geochemical characteristics of Wadi Ranga volcanic rocks, especially a strong Nb depletion, indicate that they were formed from subduction-related melts. The clinopyroxene phenocrysts of basalts are more akin to those crystallizing from island-arc tholeiitic magmas. The tholeiitic nature of the Wadi Ranga volcanics as well as their LREE-depleted or nearly flat REE patterns and their low K2O contents suggest that they were developed in an immature island arc setting. The subchondritic Nb/Ta ratios (with the lowest ratio reported for any arc rocks) and low Nb/Yb ratios indicate that the mantle source of the Wadi Ranga mafic volcanic rocks was more depleted than N-MORB-source mantle. Subduction signature was dominated by aqueous fluids derived from slab dehydration, whereas the role of subducted sediments in mantle-wedge metasomatization was subordinate, implying that the subduction system was sediment-starved and far from continental clastic input. The amount of slab-derived fluids was enough to produce hydrous magmas that follow the tholeiitic but not the calc-alkaline differentiation trend. With Mg# > 64, few samples of Wadi Ranga mafic volcanic rocks are similar to primitive arc magmas, whereas the other samples have clearly experienced considerable fractional crystallization.The low abundances of trace elements, together with low K2O contents of the felsic metavolcanic rocks indicate that they were erupted in a primitive island arc setting. The felsic volcanic rocks are characterized by lower K/Rb ratios compared to the mafic volcanic rocks, higher trace element abundances (~ 2 to ~ 9 times basalt) on primitive arc basalt-normalized pattern and nearly flat chondrite-normalized REE patterns, which display a negative Eu anomaly. These features are largely consistent with fractional crystallization model for the origin of the felsic volcanic rocks. Moreover, SiO2-REE variations for the Wadi Ranga volcanic rocks display steadily increasing LREE over the entire mafic to felsic range and enriched La abundances in the felsic lavas relative to the most mafic lavas, features which are consistent with production of the felsic volcanic rocks through fractional crystallization of basaltic melts. The relatively large volume of Wadi Ranga silicic volcanic rocks implies that significant volume of silicic magmas can be generated in immature island arcs by fractional crystallization and indicates the significant role of intra-oceanic arcs in the production of Neoproterozoic continental crust. We emphasize that the geochemical characteristics of these rocks such as their low LILE and nearly flat REE patterns can successfully discriminate them from other Egyptian Neoproterozoic felsic volcanic rocks, which have higher LILE, Zr and Nb and fractionated REE patterns.  相似文献   

16.
Ghodrat Torabi 《Petrology》2011,19(7):675-689
In western margin of the CEIM (Ashin area), Middle Eocene volcanic shoshonites present very good exposures. This shoshonitic association comprises of all shoshonite group members from basic to acidic. Major minerals of basic members (absarokite and shoshonite) are olivine, clinopyroxene (augite), plagioclase (labradorite), K-feldspar (sanidine and anorthoclase), analcime, calcite, apatite, ilmenite and magnetite. Secondary minerals include chlorite, calcite, epidote and zeolite (mesolite). The Ashin shoshonitic rocks consist of SiO2 undersaturated (absarokite or phonotephrite) to SiO2 oversaturated (toscanite or rhyolite) units. The studied rocks are characterized by wide range of SiO2 (48 to 70 wt %), low content of TiO2 (0.35 to 1.17 wt %), and high values of Alkalis [(Na2O + K2O) = 7.03 to 11.4 wt %]. Other main geochemical characteristics of Ashin shoshonites are potassic to ultra-potassic nature (K2O/Na2O = 1.04 to 5.06), high ratios of LREE/HREE (e.g. La/Yb up to 19.16), and enrichment in LILEs. Primitive mantle normalized spidergram of the studied rocks shows positive anomalies of Cs, U, K, Pb, Hf and negative spikes of Nb, Ta, Sm, Ti and Y. All analyzed samples display markedly negative Nb, Ta, and Ti anomalies, typical features of orogenic magmas. These geochemical signatures point out to the subduction—related nature of Ashin shoshonites and their similarity to potassic volcanic rocks of continental arcs or convergent margins. The parental magma of these shoshonites is an alkalibasalt (absarokite) which produced by low-degree of partial melting of a metasomatized enriched mantle source. Petrographical evidences together with geochemical characteristics (e.g., high values of Pb and U) of the studied rocks conclude crustal contamination of magma during ascending throughout the continental crust. The former subduction of CEIM confining ocean from Triassic to Eocene is too enough for volatile enrichment of the mantle and shoshonitic magmatism in middle Eocene of Ashin area.  相似文献   

17.
东安金矿床是环太平洋成矿域的一处大型低硫型浅成低温热液金矿床,赋存于燕山期碱长花岗岩和中酸性火山岩中。本文通过LA-ICP-MS锆石U-Pb同位素定年,获得赋矿的碱长花岗岩和光华组流纹岩的加权平均年龄分别为183.2±1.3Ma和109.1±1.2Ma,表明碱长花岗岩的侵位年代为早侏罗世,光华组火山岩的喷出时代为早白垩世。在地球化学组成上,东安碱长花岗岩具高硅、高钾和低磷的特征,富集Rb、Th和K,亏损Nb、Ta、Sr、P和Ti,属于高分异的I型花岗岩,是太平洋板块俯冲作用的产物。光华组中酸性火山岩富集Rb、Th、U和K,亏损Nb、Ta、P和Ti,为太平洋板块俯冲方向发生改变后的岩石圈伸展减薄环境下,镁铁质下地壳部分熔融而形成的。东安金矿床成矿年龄(107~108Ma)与光华组火山岩的成岩年龄在误差范围内一致,表明成矿与成岩作用为同一地质事件,均形成于早白垩世太平洋板块俯冲背景下的拉张构造环境中。结合区内其他浅成低温热液型金矿床的赋矿围岩特征,认为早白垩世陆相火山岩是东北地区寻找浅成低温热液金矿床的有利场所。  相似文献   

18.
Volcanic evolution of the interarc and marginal basins is analysed using the available data on volcanics from the presently existent and ancient back-arc basins of the western Pacific and Mediterranean. It is shown that in early (pre-spreading) stages of back-arc rifting, the character of volcanism is determined by “maturity” of the adjacent island arc. It is predominantly alkaline or mildly alkaline for back-arc basins related to the island-arcs with high-potash calc-alkaline and shoshonitic volcanism. The back-arc alkaline and mildly alkaline basalts strongly differ from the continental and oceanic rift volcanoes by constantly lower Ti, Nb and Zr contents. Because of these features these basalts are akin to the basaltic members of the island-arc volcanic series. As the latter, they are generally strongly enriched in K2O and LIL elements, whereas Na2O reveals comparatively small variability. With initiation of spreading a sharp depression of K2O, LIL and light REE occurs in the axial basalts of back-arc basins, that progressively approach the MORB composition. But even tholeiites from the most evolved basins that underwent a considerable spreading reveal slight but detectable geochemical peculiarities, indicating their island-arc affinities. Origin of the low-Ti alkaline basaltic magmas of the active continental margins is discussed.  相似文献   

19.
姚雪  张虎  吴中海  陈光艳  田素梅  黄亮 《地质通报》2016,35(8):1346-1356
盈江地区上新世火山岩是腾冲火山岩的重要组成部分,但以往研究极少涉及。通过对该火山岩进行岩石地球化学和KAr年代学研究,同时与腾冲火山岩东侧的龙江河谷地区的上新世火山岩对比,认为盈江和腾冲地区上新世火山岩是大陆构造背景下造山带造山后伸展作用下形成的火山岩,具有高Al_2O_3(15.54%~17.44%)、高K_2O(0.94%~3.50%)的岩石化学特点,为高钾钙碱性系列火山岩,形成于拉张环境,为双峰式火山岩(玄武岩DI=33~50,英安岩DI=62~76)。造山带裂谷火山岩常具弧火山岩的岩石化学特点,但其形成于造山带造山后的拉张环境,与板块俯冲作用没有直接关系。造山带裂谷火山岩发育在早期造山带,是造山带发展过程中一定阶段的岩浆作用的产物。  相似文献   

20.
To discriminate the mineral potentiality of the trachybasalt around the Miocene Sarcheshmeh porphyry copper deposit, petrogeochemical characteristics of more than 45 samples of the volcanic rocks were studied. Sarcheshmeh is one of the world's largest Miocene porphyry copper deposits in a continental arc setting and contains about 1200 million tonnes of ores with an average grade of 1.2 percent copper, 0.03 percent molybdenum, 3.9 g/t Ag and 0.11 g/t Au. The biotized and sericitized trachybasalts around the Sarcheshmeh deposit are associated with chalcopyrite, pyrite and molybdenite and and are enriched in Cu (>3108 ppm), K2O (>4.2%), Rb (>155 ppm) and MgO (>2.9%), but depleted in yttrium (<11 ppm), MnO (<0.06%), CaO (<0.6%), Na2O (<0.33%), Sr (<107 ppm), and Ba (<181 ppm). The propylitized trachybasalts are enriched in CaO (>9.1%), Na2O (>3.2%), MnO (>0.24%), Y (>18.2 ppm), and Ba (>323 ppm). The results demonstrate that the diagrams of loss on ignition ? Cu, Cu ? Y, K2O/K2O + Na2O + CaO ? Cu and Y ? MnO may be used as an exploration guide for undiscovered porphyry copper mineralization in the Central Iranian volcano—plutonic copper belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号