首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Recent advances in wide-angle imaging by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and more recently by the Heliospheric Imagers (HI) aboard NASA’s Solar TErrestrial RElations Observatory (STEREO), have enabled solar wind transients to be imaged and tracked from the Sun to 1 AU and beyond. In this paper we consider two of the techniques that have been used to determine the propagation characteristics of solar wind transients based on single-spacecraft observations, in particular propagation direction and radial speed. These techniques usually assume that the observing spacecraft remains stationary for the duration of observation of the solar wind transient. We determine the inaccuracy introduced by this assumption for the two STEREO spacecraft and find that it can be significant, and it can lead to an overestimation of the transient velocity as seen from STEREO-A and an underestimation as seen by STEREO-B. This has implications for the prediction or solar wind transients at 1 AU and hence is important for the study of space weather.  相似文献   

2.
The solar wind velocity near Earth shows systematic structure in and around the heliospheric current sheet. The solar wind velocity measurements at IMF sector boundary crossings at 1 AU during 1972–1977 have been used to infer the azimuthal structure of the solar wind velocity in the current sheet. We found that the solar wind velocity in the in-ecliptic portion of the current sheet varies from longitude to longitude, where it originates from the corona. Also, the yearly average value of solar wind velocity in the HCS is found to vary with the phase of the solar cycle; with a maximum value around 1974. TheK-corona brightness on the source surface corresponding to the IMF sector boundary crossings during the period of study also shows a similar but opposite pattern of variation when the data are averaged over a long period. However, this relation is not observed when we considered them individually. So, we conclude that there exists a longitudinal variation of solar wind velocity in the heliospheric current sheet.  相似文献   

3.
Abstract– We have measured the isotopic composition and fluence of solar‐wind nitrogen in a diamond‐like‐carbon collector from the Genesis B/C array. The B and C collector arrays on the Genesis spacecraft passively collected bulk solar wind for the entire collection period, and there is no need to correct data for instrumental fractionation during collection, unlike data from the Genesis “Concentrator.” This work validates isotopic measurements from the concentrator by Marty et al. (2010, 2011) ; nitrogen in the solar wind is depleted in 15N relative to nitrogen in the Earth’s atmosphere. Specifically, our array data yield values for 15N/14N of (2.17 ± 0.37) × 10?3 and (2.12 ± 0.34) × 10?3, depending on data‐reduction technique. This result contradicts preliminary results reported for previous measurements on B/C array materials by Pepin et al. (2009) , so the discrepancy between Marty et al. (2010, 2011) and Pepin et al. (2009) was not due to fractionation of solar wind by the concentrator. Our measured value of 15N/14N in the solar wind shows that the Sun, and by extension the solar nebula, lie at the low‐15N/14N end of the range of nitrogen isotopic compositions observed in the solar system. A global process (or combination of processes) must have operated in interstellar space and/or during the earliest stages of solar system formation to increase the 15N/14N ratio of the solar system solids. We also report a preliminary Genesis solar‐wind nitrogen fluence of (2.57 ± 0.42) × 1012 cm?2. This value is higher than that derived by backside profiling of a Genesis silicon collector ( Heber et al. 2011a ).  相似文献   

4.
A two fluid stability analysis of an inhomogeneous solar wind plasma leads to prediction of possible instabilities of both Alfvénic and magnetoacoustic waves driven by local velocity gradients. The waves predicted to be possibly unstable have short wavelengths in comparison with the length scale of the gradients and, with different thresholds for the value of velocity shear, may have different directions of propagation with respect to the background magnetic field.We have performed a detailed study, based on Pioneer 6 magnetic and plasma data relative to several high speed streams in the solar wind, on the direction of propagation of the transverse waves which are found within the streams and on their association with velocity gradients within the stream structure. The analysis leads to the conclusion that the observed Alfvén waves may be consistent with the hypothesis of local generation through one of the above mentioned instabilities where velocity shear leads in fact to excitation of incompressible waves in directions almost parallel to the magnetic field.  相似文献   

5.
A simplified model for the interaction of the cold solar wind with lunar magnetic anomalies is considered. Since on the illuminated side of the Moon the dynamic pressure of the solar wind significantly exceeds the magnetic pressure of the anomalies, upward propagation of the lunar field is possible only by means of diffusion. This process does not depend on the velocity but only on the concentration of the solar wind and the characteristic size of anomalies. Theoretical calculations are compared with the data of Apollo 12 and Explorer 35.  相似文献   

6.
The anisotropy of 35–1000 keV ions in two corotating particle events associated with high-speed solar wind streams at 1 AU is examined in terms of the diffusion-convection propagation model using data from the Energetic Proton Anisotropy Spectrometer on ISEE-3. The calculated diffusive anisotropy in the solar wind frame is found to be sunward and closely field-aligned, with a nearly energy-independent magnitude of ~ 40%. For one stream, using the Voyager 2 data of Decker et al. (1981), a positive gradient of ~ 100%/AU is found for ? 50 keV ions between 1 and 4 AU. The observations do not appear to support the scatter-free propagation model and indicate that ions with energies as low as a few tens of keV may be in diffusive equilibrium with the solar wind in this class of events.  相似文献   

7.
太阳风源自太阳大气,在行星际空间传播过程中被持续加热,然而究竟是何种能量加热了太阳风至今未研究清楚.太阳风普遍处于湍动状态,其湍动能量被认为是加热太阳风的重要能源.然而,太阳风湍流通过何种载体、基于何种微观物理机制加热了太阳风尚不明确,这是相关研究的关键问题.将回顾人类对太阳风加热问题的研究历史,着重介绍近年来我国学者在太阳风离子尺度湍流与加热方面取得的研究进展,展望未来在太阳风加热研究中有待解决的科学问题和可能的研究方向.  相似文献   

8.
From data collected with the MTOF sensor of the CELIAS instrument on board the SOHO spacecraft we derived the elemental abundance ratios for Si/O and Fe/O in the solar wind with high time resolution. Since Si and Fe are elements with a low first ionization potential (FIP) and oxygen is a high FIP element, these abundance ratios are valuable diagnostic tools for the study of the FIP fractionation process. The abundance ratios we find for slow and fast solar wind are commensurate with published values for interstream and coronal hole type solar wind. Between these two extreme cases of solar wind flow we find a continuous decrease of the abundance ratios for increasing solar wind speed, from a high value indicative of solar wind originating from the streamer belt to low values associated with flow from coronal holes.  相似文献   

9.
During the decay of solar cosmic-ray events cosmic-rays with kinetic energies of about 1 MeV are convected outward with the solar wind. It is shown that, with currently available observations it should be possible to demonstrate directly the energy losses which are occurring. Observations from two spacecraft on the same heliocentric radial line are required. In this paper observations from Venera-4 and Imp-F have been used. A simple and direct demonstration would be provided by the observation of nearly mono-energetic pulses convected between the two spacecraft, but no such pulses were found to be present. A second method depends upon observing the ratio of the integral fluxes at the two spacecraft and comparing this with the value predicted by theory. The relevant theoretical analysis has been given. It is shown that in order to discriminate between energy-loss processes the spacecraft must be well separated. For spacecraft at Earth's orbit and the orbit of Venus the integral-flux ratio predicted with energy loss due to adiabatic deceleration is a factor of three higher than that predicted with no energy loss. Comparisons of integral-flux ratios for two events observed on spacecraft separated by approximately 0.1 AU gave inconclusive results. In view of the importance of energy-loss processes in the propagation of cosmic rays it is suggested that others with access to relevant data might continue this investigation.  相似文献   

10.
Under the geometrical optics approximation we discuss the propagation of a polarized magnetic profile, made up of Alfvén waves, in the solar wind. We show that (i) the profile propagates at an angle to the radial direction (the direction of the solar wind flow), (ii) the radial half-width of the profile stays essentially constant, or even diminishes a little, with distance from the Sun, (iii) the half-width in a direction transverse to the radial direction increases without limit as the magnetic profile moves outward from the Sun. Thus the profile stretches out into a ‘ribbon’ which could, of course, be experimentally identified as a discontinuity. We also give equations for the variation of polarization of the profile, and illustrate the behavior of polarization in a simple case. We have done these calculations to show that the production of ‘discontinuities’ in the solar wind can arise from propagation effects on irregularly shaped ‘blobs’ of magnetic field, as well as from other causes.  相似文献   

11.
Abstract— We report mass‐spectrometric measurements of light noble gases pyrolytically extracted from 28 interplanetary dust particles (IDPs) and discuss these new data in the context of earlier analyses of 44 IDPs at the University of Minnesota. The noble gas database for IDPs is still very sparse, especially given their wide mineralogic and chemical variability, but two intriguing differences from isotopic distributions observed in lunar and meteoritic regolith grains are already apparent. First are puzzling overabundances of 3He, manifested as often strikingly elevated 3He/4He ratios—up to >40x the solar‐wind value—‐and found primarily but not exclusively in shards of some of the larger IDPs (“cluster particles”) that fragmented on impact with the collectors carried by high‐altitude aircraft. It is difficult to attribute these high ratios to 3He production by cosmic‐ray‐induced spallation during estimated space residence times of IDPs, or by direct implantation of solar‐flare He. Minimum exposure ages inferred from the 3He excesses range from ~50 Ma to an impossible >10 Ga, compared to Poynting‐Robertson drag lifetimes for low‐density 20–30 μm particles on the order of ~0.1 Ma for an asteroidal source and ~10 Ma for origin in the Kuiper belt. The second difference is a dominant contribution of solar‐energetic‐particle (SEP) gases, to the virtual exclusion of solar‐wind (SW) components, in several particles scattered throughout the various datasets but most clearly and consistently observed in recent measurements of a group of individual and cluster IDPs from three different collectors. Values of the SEP/SW fluence ratio in interplanetary space from a simple model utilizing these data are ~1% of the relative SEP/SW abundances observed in lunar regolith grains, but still factors of approximately 10–100 above estimates for this ratio in low‐energy solar particle emission.  相似文献   

12.
The annual average values of the solar wind velocity over the period 1962–1972 were investigated on the basis of data obtained from different space probes. The comparison of the pattern of the annual average solar wind velocities observed by the Vela and Pioneer 6 satellites indicates that the pattern presented by Gosling et al. (1971) is realistic. The long-range trend in the solar wind velocity during the 11-year cycle is governed by the number and intensity of irregularities occurring in the corona. These irregularities may represent motions of mass or some types of MHD shock waves and they are responsible for the increased heating of the corona which then in turn causes an increase in the values of the solar radar cross-section and of the solar wind velocity. A close relation is demonstrated between the monthly and annual average values of the solar wind velocity and of the cross-section.  相似文献   

13.
The X-ray spectrometer of the Near-Earth Asteroid Rendezvous (NEAR) mission discovered a low abundance of sulfur on the surface of asteroid Eros, which is seemingly inconsistent with the match of the overall surface composition to that of ordinary chondrites. Since troilite, FeS, is the primary sulfur-bearing mineral in ordinary chondrites, we investigated the hypothesis that sulfur loss from surface FeS could result from ‘space weathering’ by impact of solar wind ions and micrometeorites. We performed laboratory studies on the chemical alteration of FeS by 4 keV ions simulating exposure to the solar wind and by nanosecond laser pulses simulating pulsed heating by micrometeorite impact. We found that the combination of laser irradiation followed by ion impact lowers the S:Fe atomic ratio on the surface by a factor of up to 2.5, which is consistent with the value of at least 1.5 deduced from the NEAR measurements. Thus, our results support the hypothesis that the low abundance of sulfur at the surface of Eros is caused by space weathering.  相似文献   

14.
We study the propagation of solar wind disturbances caused by single, double and six successive flares in the dipolar and quadrupolar patterns of the interplanetary magnetic field (IMF) and the associated solar wind flow. This study is based on a kinematic and empirical method developed by Hakamada and Akasofu (1982). Each flare is characterized by six parameters (such as the highest speed flow, its extent and duration). The successive IMF patterns in the equatorial plane of the heliosphere during a time span of 0.5–60 days after flares are presented for a variety of flares. The solar wind speed and IMF magnitude are also given as a function of distance along a radial line fixed in space and also as a function of time at several points fixed in space (simulating approximately space probe observations). Some of the results are qualitatively compared with recent space probe observations, demonstrating fair similarity with the observed time profiles of solar wind speed variations over a wide range of both distances (0–10 a.u.) and time spans (60 days). Our method provides a first order construction, temporal and spatial, of flare-induced shocks and their multiple interactions with each other, as well as with the corotating interaction regions.  相似文献   

15.
P. K. Manoharan 《Solar physics》2006,235(1-2):345-368
Knowledge of the radial evolution of the coronal mass ejection (CME) is important for the understanding of its arrival at the near-Earth space and of its interaction with the disturbed/ambient solar wind in the course of its travel to 1 AU and further. In this paper, the radial evolution of 30 large CMEs (angular width > 150, i.e., halo and partial halo CMEs) has been investigated between the Sun and the Earth using (i) the white-light images of the near-Sun region from the Large Angle Spectroscopic Coronagraph (LASCO) onboard SOHO mission and (ii) the interplanetary scintillation (IPS) images of the inner heliosphere obtained from the Ooty Radio Telescope (ORT). In the LASCO field of view at heliocentric distances R≤30 solar radii (R), these CMEs cover an order of magnitude range of initial speeds, VCME≈260–2600 km s−1. Following results have been obtained from the speed evolution of these CMEs in the Sun–Earth distance range: (1) the speed profile of the CME shows dependence on its initial speed; (2) the propagation of the CME goes through continuous changes, which depend on the interaction of the CME with the surrounding solar wind encountered on the way; (3) the radial-speed profiles obtained by combining the LASCO and IPS images yield the factual view of the propagation of CMEs in the inner heliosphere and transit times and speeds at 1 AU computed from these profiles are in good agreement with the actual measurements; (4) the mean travel time curve for different initial speeds and the shape of the radial-speed profiles suggest that up to a distance of ∼80 R, the internal energy of the CME (or the expansion of the CME) dominates and however, at larger distances, the CME's interaction with the solar wind controls the propagation; (5) most of the CMEs tend to attain the speed of the ambient flow at 1 AU or further out of the Earth's orbit. The results of this study are useful to quantify the drag force imposed on a CME by the interaction with the ambient solar wind and it is essential in modeling the CME propagation. This study also has a great importance in understanding the prediction of CME-associated space weather at the near-Earth environment.  相似文献   

16.
We consider a stationary model of the propagation of galactic cosmic rays (GCR) in the heliosphere and adjacent interstellar space. The heliosphere is assumed to be a two-layer medium consisting of two adjacent regions that are spherically symmetric relative to the sun. The solar wind velocity is supersonic in the inner heliosphere bounded by the standing termination shock, and this velocity is subsonic in the outer heliosphere bounded by the heliosheath. The GCR scattering in these regions is due to different factors characterized by relevant diffusion coefficients. The solar wind velocity is assumed to be zero in the interstellar medium, where the scattering becomes weaker. No particle sources are presumed to exist at the boundaries between the layers. An exact analytical solution of the corresponding mathematical problem can be obtained without essential difficulties, although it is extremely cumbersome. Analytical expressions for the GCR spectra of particles with very high energies (>2500 MeV) and very low energies (<1400 MeV) are obtained for each region of particle propagation. The low-energy particle distribution corresponds to the data obtained by the Voyager spacecraft. It is shown that the low-energy particle density continuously increases from the sun toward the heliospheric boundary, regardless of the scattering mode in the inner and outer parts of the heliosphere.  相似文献   

17.
The Apollo-12 ALSEP solar wind spectrometer obtained data from the lunar surface starting November 20, 1969. To a first approximation, the general features of the positive ion flux depend only on the instrument's orientation and location in space relative to the Sun-Earth system. However, there are some detectable effects of the interaction of the solar wind with the local magnetic field and surface, including the deceleration of incident positive ions and the enhancement of fluctuations in the plasma. The expected asymmetry of sunset and sunrise times due to the motion of the Moon about the Sun is not observed. On one occasion, the solar wind was incident on the ALSEP site as early as 36 hr (18°) before sunrise.  相似文献   

18.
This paper reports on the first combination of results from in-situ plasma measurements at Venus, using data from Venus Express, and remote sensing data from observations of interplanetary scintillation (IPS). In so doing, we demonstrate the value of combining remote sensing and in-situ techniques for the purpose of investigating interaction between solar wind, under several different conditions, and the Venusian magnetosphere. The ion mass analyser instrument (IMA) is used to investigate solar wind interaction with the Venusian magnetosphere in the presence of two different solar wind phenomena; a co-rotating interaction region (CIR) and a coronal mass ejection (CME). The CIR, detected with IPS and sampled in-situ at Venus is found to dramatically affect upstream solar wind conditions. These case studies demonstrate how combining results from these different data sources can be of considerable value when investigating such phenomena.  相似文献   

19.
Abstract Noble gases and N were analyzed in handpicked metal separates from lunar soil 68501 by a combination of step-wise combustions and pyrolyses. Helium and Ne were found to be unfractionated with respect to one another when normalized to solar abundances, for both the bulk sample and for all but the highest temperature steps. However, they are depleted relative to Ar, Kr and Xe by at least a factor of 5. The heavier gases exhibit mass-dependent fractionation relative to solar system abundance ratios but appear unfractionated, both in the bulk metal and in early temperature steps, when compared to relative abundances derived from lunar ilmenite 71501 by chemical etching, recently put forward as representing the abundance ratios in solar wind. Estimates of the contribution of solar energetic particles (SEP) to the originally implanted solar gases, derived from a basic interpretation of He and Ne isotopes, yield values of about 10%. Analysis of the Ar isotopes requires a minimum of 20% SEP, and Kr isotopes, using our preferred composition for solar wind Kr, yield a result that overlaps both of these values. It is possible to reconcile the data from these gases if significant loss of solar wind Ar, Kr and presumably Xe has occurred relative to the SEP component, most likely by erosive processes that are mass independent, although mass-dependent losses (Ar > Kr > Xe) cannot be excluded. If such losses did occur, the SEP contribution to the solar implanted gases must have been no more than a few percent. Nitrogen is a mixture of indigenous meteoritic N, whose isotopic composition is inferred to be relatively light, and implanted solar N, which has probably undergone diffusive redistribution and fractionation. If the heavy noble gases have not undergone diffusive loss, then N/Ar in the solar wind can be inferred to be at least several times the accepted solar ratio. The solar wind N appears, even after correction for fractionation effects, to have a minimum δ15N value ≥+150‰ and a more probable value ≥+200‰.  相似文献   

20.
The heliosphere is the region filled with magnetized plasma of mainly solar origin. It extends from the solar corona to well beyond the planets, and is separated from the interstellar medium by the heliopause. The latter is embedded in a complex and still unexplored boundary region. The characteristics of heliospheric plasma, fields, and energetic particles depend on highly variable internal boundary conditions, and also on quasi-stationary external ones. Both galactic cosmic rays and energetic particles of solar and heliospheric origin are subject to intensity variations over individual solar cycles and also from cycle to cycle. Particle propagation is controlled by spatially and temporally varying interplanetary magnetic fields, frozen into the solar wind. An overview is presented of the main heliospheric components and processes, and also of the relevant missions and data sets. Particular attention is given to flux variations over the last few solar cycles, and to extrapolated effects on the terrestrial environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号