首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
为探明黄淮海典型农区冬小麦干热风灾害发生规律,以商丘为例,利用1963-2012年历年冬小麦生长后期的气象资料,系统分析了近50年冬小麦干热风年平均发生日数分布特征及其对气候变化的响应,探讨了干热风发生次数与冬小麦单产的关系。结果表明:近50年商丘地区冬小麦轻度、重度干热风灾害总体表现为减少趋势,轻度、重度干热风灾害年际变化较大,20世纪60年代干热风危害最严重,20世纪80年代和最近10年干热风危害较轻。1972年干热风发生期日最高气温呈现递增突变(P0.05),14时风速在1984年前后出现了显著的减小突变(P0.05),14时相对湿度显著增加,在1981年出现了一次显著的递增突变(P0.05)。日最高气温、14时风速和14时相对湿度三个气候要素综合作用决定了商丘冬小麦干热风灾害整体上呈递减趋势,其中风速的显著减小对干热风灾害减弱起主要作用。商丘地区干热风的年均发生日数与冬小麦单产呈明显的负相关关系。  相似文献   

2.
气候变暖背景下中原腹地冬小麦气候适宜度变化   总被引:6,自引:0,他引:6  
朱新玉  刘杰  史本林  张怡 《地理研究》2012,31(8):1479-1489
通过构建冬小麦光照、温度、降水及综合气候适宜度计算模型,探讨气候变化对冬小麦气候适宜性的影响。结果表明:冬小麦全生育期温度、光照、降水及综合气候适宜度均值分别为0.54、0.64、0.37及0.50;冬小麦对光照适宜性较好,降水是限制冬小麦生长发育的主要因子;温度和降水适宜度以0.001·a-1线性趋势下降,光照适宜度以0.002·a-1线性趋势下降,气候因子匹配效果变差对冬小麦的生长不利。冬前生长阶段温度、光照和降水适宜性较弱,各气候因子匹配效果较差。出苗-拔节期降水适宜性较强,各气候因子组合效果较差;拔节-抽穗期和抽穗-乳熟期温度与光照适宜性较强,水分胁迫较大,气候因子组合效果趋好。乳熟-成熟期光照和降水适宜性较强,综合气候适宜性变差。光照、温度和降水适宜度在全生育期的中后期与冬小麦产量的相关性比较显著。  相似文献   

3.
气候变化对甘肃省冬小麦气候适宜性的影响   总被引:9,自引:3,他引:9  
运用甘肃省冬小麦种植区西峰、天水农业气象试验站及平凉、成县农业气象观测站1981~2008年冬小麦试验田平均物候观测资料及试验点气象站1971~2008年逐日日照、温度、降水量测量值,建立了冬小麦日照、温度、降水及综合气候适宜度计算模型,并对1971~2008年冬小麦各生产年度气候适宜度动态变化进行了评价.结果表明:冬...  相似文献   

4.
5.
《地理研究》2012,31(1)
为探明气候变化对商丘地区冬小麦产量的影响,根据1991~2010商丘市气候资料和小麦产量资料,利用数学统计与Thornthwaite Memoriae模型,结合未来气候预测结果定量分析了气候变化对冬小麦产量的影响。结果表明,冬小麦产量整体上呈波动上升趋势;主成分分析表明,气温、降水量、蒸发量与极端温度为影响冬小麦产量的主要气候因子,蒸发量过大及极端低温对冬小麦生产不利。商丘地区“暖湿型”气候有利于冬小麦生产力的提高,“冷干型”气候对冬小麦生产最为不利;未来几十年内气候可能将向“暖湿型”变化,对商丘地区粮食作物产量的提升较为有利。  相似文献   

6.
气候变化对海河流域主要作物物候和产量影响   总被引:3,自引:0,他引:3  
基于海河流域30 个气象站点1960-2009年的实测资料,分析该流域1960年以来农业气象指标的变化趋势,并利用VIP模型模拟分析大气CO2浓度增加、温度、降雨和日照时数变化对作物产量的影响。结果显示:冬季温度的显著上升使冬小麦种植北界在50年间向北移动大约70 km;在品种和灌溉条件不变的前提下,小麦产量平均每10年上升0.2%~3.4%,其中CO2浓度增加、温度、降雨及日照时数变化对其产量的影响分别为11.0%、0.7%、-0.2%和-6.5%;大气CO2浓度增加的产量正效应大于日照时数减少的负效应。气候变化使夏玉米产量呈下降趋势(0.6%~3.8%/10年),其中大气CO2浓度增加、温度、降雨及日照时数变化对其产量的影响分别为0.7%、-3.6%、-1.0%和-6.8%,温度上升和辐射下降是玉米产量下降的主要原因。研究结果可为气候变化影响的评估和适应性对策制定提供科学依据。  相似文献   

7.
以中国东北春麦区为例,实证分析了1978—2020年生长季积温、降雨和小麦单产的变化趋势,并分别应用一次多项式、二次多项式和柯布道格拉斯生产函数模拟了气候因素(尤其是积温)对小麦产量的影响。研究结果表明小麦单位面积产量和积温存在显著的升高趋势,而降雨的时间变化趋势并不明显;在对小麦产量和积温变量进行平稳化处理后发现,二次多项式可以更好地模拟天气因素对小麦产量的影响,且在近50年来积温对小麦产量存在显著的负向影响,而降雨对小麦产量的影响并不显著。研究认为气候变暖导致积温升高,从而对小麦产量产生不利影响。为规避积温升高对小麦产量的负面影响,建议开发抗高温小麦品种,调整播期,以及开发金融衍生品或指数保险等方式应对气候变化风险。通过定量分析气候变化对作物产量的影响机制,并提出针对性对策建议,为研究气候变化影响及适应对策提供了重要借鉴。  相似文献   

8.
水分胁迫对冬小麦物质分配及 产量构成的影响   总被引:13,自引:1,他引:12  
通过设置不同土壤水分条件和不同生育期受旱处理,研究土壤水分条件对冬小麦生长发育的影响。从器官水平上详细考察了水分条件对小麦物质积累、分配以及产量的影响,并建立产量和耗水量关系。在相对适宜的土壤水分条件,茎秆所占比例较小,为24%,穗部则占56%;而过度灌溉和水分亏缺条件下,茎秆所占比例较大,分别为36%和37%,穗部比例相对较小,仅为43%和48%。各种条件下均以茎秆对产量的贡献量大。相对适宜的土壤水分条件,茎秆对产量的贡献量最大,为0.308g/茎;水分亏缺条件下,叶鞘对产量贡献量较适宜土壤水分条件的叶鞘贡献量要大,分别为0.18克/茎和0.09克/茎;而过度灌溉条件下各器官对产量的贡献量均较小。根据实测产量和蒸散耗水量模拟的产量、水分利用效率与蒸散耗水量的关系可知:禹城地区在现有的肥力水平和栽培管理措施下冬小麦的理论最大产量为6240kg/hm2,蒸散耗水量为473mm,而获得最高水分利用效率的蒸散耗水量为403mm。由于该地区地下水埋深浅,地下水对冬小麦生育期需水量的补给作用明显,试验年份冬小麦拔节期至成熟期地下水补给量占同期耗水量的22%。  相似文献   

9.
气候变化对吉林省粮食产量影响的模拟研究   总被引:2,自引:0,他引:2  
马树庆 《自然资源》1994,13(1):34-40
本文采用农作物生长发育和产量形成对气温、降水等环境条件的反应函数,建立了粮食产量变率计算模式,发析了在作物各生长季内气温升、降1-2℃与降水增、减10%-20%的不同组合条件下,吉林省各地主要粮豆作物产量的变率,提出了气候变化的农业对策。结果表明,气候变化对吉林省各地粮豆产量影响较大,地域间有较大差异。气温升、降1℃,粮豆单产将升、降4%-3%,东部山区变幅最大;降水增加10%,西部粮豆产量将增加  相似文献   

10.
李国振 《干旱区地理》2001,24(2):189-192
根据阜康生态试验站试验小区1999-2000年冬小麦不同灌溉量控制试验,验证了冬小麦水分敏感期为拔节-灌浆期,探讨了该区冬小麦产量与灌水量之间的关系。提出了阜康地区冬小麦返青水应采用“小水”灌溉的方式。同时通过对小区冬小麦成熟期灌水过程不同深度土壤水分含量的动态观测分析,提出冬小麦在成熟期对灌溉水分的消耗利用集中在0-30cm土壤层内的观点。  相似文献   

11.
气候变化对山东省潘庄灌区冬小麦生长的影响(英文)   总被引:1,自引:1,他引:1  
Global climate change has significant impacts on agricultural production.Future climate change will bring important influences to the food security.The CERES-Wheat model was used to simulate the winter wheat growing process and production in Panzhuang Irrigation District(PID) during 2011-2040 under B2 climate scenario based on the Special Report on Emissions Scenarios(SRES) assumptions with the result of RCMs(Regional Climate Models) projections by PRECIS(Providing Regional Climates for Impacts Studies) system introduced to China from the Hadley Centre for Climate Prediction and Research.The CERES-Wheat model was calibrated and validated with independent field-measured growth data in 2002-2003 and 2007-2008 growing season under current climatic conditions at Yucheng Comprehensive Experimental Station(YCES),Chinese Academy of Sciences(CAS).The results show that a significant impact of climate change on crop growth and yield was noted in the PID study area.Average temperature at Yucheng Station rose by 0.86℃ for 1961-2008 in general.Under the B2 climate scenario,average temperature rose by 0.55℃ for 2011-2040 compared with the baseline period(1998-2008),which drastically shortened the growth period of winter-wheat.However,as the temperature keep increasing after 2030,the top-weight and yield of the winter wheat will turn to decrease.The simulated evapotranspiration shows an increasing trend,although it is not very significant,during 2011-2040.Water use efficiency will increase during 2011-2031,but decrease during 2031-2040.The results indicate that climate change enhances agricultural production in the short-term,whereas continuous increase in temperature limits crop production in the long-term.  相似文献   

12.
LIU Yujie  YUAN Guofu 《地理学报》2010,20(6):861-875
Global climate change has significant impacts on agricultural production. Future climate change will bring important influences to the food security. The CERES-Wheat model was used to simulate the winter wheat growing process and production in Panzhuang Irrigation District (PID) during 2011–2040 under B2 climate scenario based on the Special Report on Emissions Scenarios (SRES) assumptions with the result of RCMs (Regional Climate Models) projections by PRECIS (Providing Regional Climates for Impacts Studies) system introduced to China from the Hadley Centre for Climate Prediction and Research. The CERES-Wheat model was calibrated and validated with independent field-measured growth data in 2002–2003 and 2007–2008 growing season under current climatic conditions at Yucheng Comprehensive Experimental Station (YCES), Chinese Academy of Sciences (CAS). The results show that a significant impact of climate change on crop growth and yield was noted in the PID study area. Average temperature at Yucheng Station rose by 0.86℃ for 1961–2008 in general. Under the B2 climate scenario, average temperature rose by 0.55℃ for 2011–2040 compared with the baseline period (1998–2008), which drastically shortened the growth period of winter-wheat. However, as the temperature keep increasing after 2030, the top-weight and yield of the winter wheat will turn to decrease. The simulated evapotranspiration shows an increasing trend, although it is not very significant, during 2011–2040. Water use efficiency will increase during 2011–2031, but decrease during 2031–2040. The results indicate that climate change enhances agricultural production in the short-term, whereas continuous increase in temperature limits crop production in the long-term.  相似文献   

13.
基于陕西省1960—2019年94个气象站点冬季逐日气温资料,分陕北、关中和陕南3个气候区,从时间和空间2种尺度分析了陕西冷、暖冬事件的变化特征.结果 表明:近60 a陕西冬季增温明显并在1987年前后发生突变,冬季平均0℃等温线北抬1~2个纬度,增温幅度以陕北最强陕南最弱.从时间尺度上,气候变化导致暖冬指数以9.5%...  相似文献   

14.
东北地区未来气候变化对农业气候资源的影响   总被引:5,自引:1,他引:4  
初征  郭建平  赵俊芳 《地理学报》2017,72(7):1248-1260
为探求未来气候变化对东北地区农业气候资源的影响,本文基于区域气候模式系统输出的东北地区IPCC AR5提出的低辐射和高辐射强迫RCP_4.5(低排放)、RCP_8.5(高排放)情景下2005-2099年气象资料,通过与东北地区1961-2010年91个气象站点观测资料同化,分析了历史资料(Baseline)、RCP_4.5、RCP_8.5情景下东北地区农业热量资源和降水资源空间分布及其变化趋势。结果表明:① 年均温度空间分布自南向北降低,未来各地区温度均有升高,RCP_8.5情景下升温更明显,Baseline情景年均温度为7.70 ℃,RCP_4.5和RCP_8.5年均温度分别为9.67 ℃、10.66 ℃;其他农业热量资源随温度变化一致,具体≥ 10 ℃初日提前3 d、4 d,初霜日推迟2 d、6 d,生长季日数延长4 d、10 d,积温增加400 ℃·d、700 ℃·d;水资源稍有增加,但不明显。② 历史增温速率为0.35 ℃/10a,未来增温速率最快为RCP_8.5情景0.48 ℃/10a,高于RCP_4.5的0.19 ℃/10a。21世纪后期,RCP_8.5增温趋势明显快于RCP_4.5,北部地区增温更加速。其他农业热量资源随温度变化趋势相一致,但具体空间分布有所不同。生长季降水总体呈增加趋势,但不显著,年际间变化较大;东部地区降水增加,西部减少。未来东北地区总体向暖湿方向发展,热量资源整体增加,但与降水的不匹配可能将会对农业生产造成不利的影响。  相似文献   

15.
In this study, the spatial distribution and changing trends of agricultural heat and precipitation resources in Northeast China were analyzed to explore the impacts of future climate changes on agroclimatic resources in the region. This research is based on the output meteorological data from the regional climate model system for Northeast China from 2005 to 2099, under low and high radiative forcing scenarios RCP4.5 (low emission scenario) and RCP8.5 (high emission scenario) as proposed in IPCC AR5. Model outputs under the baseline scenario, and RCP4.5 and RCP8.5 scenarios were assimilated with observed data from 91 meteorological stations in Northeast China from 1961 to 2010 to perform the analyses. The results indicate that: (1) The spatial distribution of temperature decreases from south to north, and the temperature is projected to increase in all regions, especially under a high emission scenario. The average annual temperature under the baseline scenario is 7.70°C, and the average annual temperatures under RCP4.5 and RCP8.5 are 9.67°C and 10.66°C, respectively. Other agricultural heat resources change in accordance with temperature changes. Specifically, the first day with temperatures ≥10°C arrives 3 to 4 d earlier, the first frost date is delayed by 2 to 6 d, and the duration of the growing season is lengthened by 4 to 10 d, and the accumulated temperature increases by 400 to 700°C·d. Water resources exhibit slight but not significant increases. (2) While the historical temperature increase rate is 0.35°C/10a, the rate of future temperature increase is the highest under the RCP8.5 scenario at 0.48°C/10a, compared to 0.19°C/10a under the RCP4.5 scenario. In the later part of this century, the trend of temperature increase is significantly faster under the RCP8.5 scenario than under the RCP4.5 scenario, with faster increases in the northern region. Other agricultural heat resources exhibit similar trends as temperature, but with different specific spatial distributions. Precipitation in the growing season generally shows an increasing but insignificant trend in the future, with relatively large yearly fluctuations. Precipitation in the eastern region is projected to increase, while a decrease is expected in the western region. The future climate in Northeast China will change towards higher temperature and humidity. The heat resource will increase globally, however its disparity with the change in precipitation may negatively affect agricultural activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号