首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field trials of water-spray curtain tests performed by the (British) Health and Safety Executive and designated by HSE 41 and HSE 46 were modeled at a scale ratio of 1:28.9 in an atmospheric boundary-layer wind tunnel. The tests confirmed that dense clouds of carbon dioxide gas were significantly diluted by additional air entrained by the water curtain. Linear and logarithmic scatter diagrams of concentrations measured at equivalent scaled points produced correlations of 0.87 and 0.97, respectively. Results confirm the use of Froude-number modeling of both the dense gas cloud and water spray droplet fluid dynamics.Professor, Colorado State University.Research Associate, Colorado State University.Senior Scientist, Factory Mutual Research Corp., Boston, Mass.  相似文献   

2.
A higher order closure mesoscale model is used to study the influence of different surface properties on stratiform boundary-layer clouds. The model is hydrostatic, has a terrain-following coordinate system and a sub-grid scale condensation scheme. It also has a radiation parameterisation for shortwave and longwave radiation in order to calculate radiative cooling/heating. The simulations show the effects on a cloud field when cool or cold air is advected over warm water, the possible influence of local circulation systems on cloud fields in situations with weak synoptic forcing and the influence on a cloud field by growing internal boundary layers. Some of the results are compared with simpler physical models, and limitations in those are demonstrated.  相似文献   

3.
对三维非静力中尺度模式ARPS的云降水微物理方案进行了改进,利用改进后的ARPS模式模拟了祁连山地区夏季的两个地形云个例,通过对各自模拟结果的对比分析并结合实况资料研究了夏季祁连山地区地形云的发展状况、动力场特征、降水特征以及云微物理结构特征。研究结果表明,地形云的发展受地形影响很大,地形的抬升促进了云和降水的发展,地形的作用也改变了地面降水特征,使云的宏、微观物理结构发生较大变化。  相似文献   

4.
海洋飞沫对台风“Morakot”结构影响的数值模拟研究   总被引:1,自引:0,他引:1  
将海洋飞沫参数化引入到高分辨率、非静力中尺度模式中,并对0908号台风"Morakot"进行了数值模拟,研究了海洋飞沫对台风"Morakot"结构和强度的影响。结果表明:(1)不论是否考虑海洋飞沫作用,模式均能较好地模拟出台风"Morakot"的移动路径,说明海洋飞沫对其移动路径影响不大;(2)引入海洋飞沫参数化后,台风眼墙区域的切向风速、径向风速、垂直速度、涡度、云水混合比、雨水混合比等物理量均增强,表明飞沫对台风结构变化的影响明显;(3)海洋飞沫对台风"Morakot"演变的直接影响是在对流层低层,低层风速明显增大,大风速区的影响尤为显著;(4)飞沫的蒸发使台风范围内的潜热和感热通量明显增强,尤其是潜热通量,其大值区对应着台风中心附近的最大风速区。由于水汽和热量输送的增强,使台风眼壁附近的云水量与雨水量增多,因此降水强度明显增加。  相似文献   

5.
6.
一次高原强降水过程及其云物理结构的数值模拟   总被引:2,自引:2,他引:0  
马恩点  刘晓莉 《气象科学》2018,38(2):177-190
本文利用中尺度WRF数值模式,对2010年8月7—8日发生在青藏高原东部一次强降水过程进行数值模拟,利用常规观测资料、FY卫星云图和数值模拟结果对此次强降水过程的宏微观演变特征和降水机制进行分析。本次模拟选用Milbrandt-Yau(MY)微物理方案,有较为完整的双参数计算过程,较为全面地考虑了各类云物理过程,对云微物理结构的描述和处理精细而复杂。结果表明,此次强对流降水发生在副热带高压与南亚高压相连、中高纬短波槽分裂南下、并与西南暖湿气流相遇形成低涡切变线的有利天气形势下,西南暖湿气流带来大量水汽、降水区存在大量不稳定能量、以及低层辐合高层辐散的高低空配置为暴雨发生发展提供了必要条件。WRF模式较好地模拟出了此次强降水过程的降水落区、降水中心和降水量级,对青海平安和甘南上空云团合并过程、强对流云团范围也模拟较好。对云微物理结构的分析结果表明,此次对流云降水为冷云降水,暖层浅薄,冰相粒子丰富,其中霰粒对过冷水的碰冻能力最强,使得其含量远大于冰雪晶含量,其融化是雨水的主要来源。雪晶含量最少,或与其碰冻过冷水能力较弱有关。  相似文献   

7.
沈新勇  施义舍  王宏  张梦  韩静 《暴雨灾害》2022,17(3):336-347

基于GEAPES_Meso模式,分别利用Morrison方案和WDM6方案对2017年1月5—7日一次以层状云为占主导的云系中冷云过程进行模拟和对比分析,评估两种云微物理方案对本次冷云过程云微物理及云辐射过程演变的影响。结果表明:包含丰富暖云和冷云物理过程的Morrison双参数云微物理方案模拟效果优于WDM6方案。Morrison方案模拟的云水路径、云冰有效半径及云光学厚度均大于WDM6方案的模拟结果,而模拟云水有效半径小于WDM6的模拟结果。Morrison方案较WDM6方案对云水(云冰)有效半径、云光学厚度、云水路径及地表短波辐射的水平分布模拟结果更为准确。由于Morrison方案模拟云水有效半径大于WDM6方案,云冰有效半径小于WDM6方案,导致Morrison方案模拟的云水和雪混合比大于WDM6方案模拟结果,而雨水、云冰和霰的混合比则明显小于WDM6方案。相较于WDM6方案,Mor-rison方案模拟的地表短波辐射水平分布和量值一致性更接近于CERES卫星结果。两种方案中包含的不同微物理过程将影响潜热和感热过程,其中,Morrison方案模拟海平面温度和辐射通量小于WDM6方案,该差异在陆地区域更显著。

  相似文献   

8.
本文是祁连山夏季地形云结构和微物理过程模拟的第II部分。文中利用第I部分中祁连山夏季两个地形云降水个例的模拟结果,详细分析了地形云及其降水发展期间云微物理过程的特征及变化,并通过与平坦地面条件下模拟结果的对比,研究了云发展过程中的地形影响。研究表明,地形云中微物理过程的发展受地形影响很大,冰相微物理过程明显增强;地形影响下云的主要降水机制也受到影响甚至被改变。  相似文献   

9.
运用中尺度数值模式WRF3.5.1对2011年1月1日贵州境内的一次冻雨天气过程进行了数值模拟,研究了本次过程的大气层结、冻雨区云系的宏微观结构和云物理特征,初步分析了冻雨形成的云微物理过程和成因。结果表明,贵州境内的冻雨区(26°N~29°N)具有冷性和部分"冷—暖—冷"的温度层结,在高层没有显著的冰相粒子,冻雨区是相对较强的水汽辐合中心,丰富的水汽输送在冷性的环境条件下形成云滴,进而碰并产生雨滴,过冷雨水主要通过暖雨过程形成;雨滴继续下落至近地层并保持过冷雨水形式,最后接触到低于0°C的物体或地面,迅速冻结而产生地面冻雨。  相似文献   

10.
利用GRAPES模式研究气溶胶对云和降水过程的影响   总被引:2,自引:3,他引:2  
石荣光  刘奇俊  马占山 《气象》2015,41(3):272-285
在GRAPES中尺度模式的双参数微物理方案中加入了气溶胶活化参数化过程,实现了对云滴数浓度的预报。选取不同季节两个降水过程进行模拟,并分别开展了不同气溶胶背景下的两个试验进行对比分析,研究气溶胶对云和降水可能的影响。结果表明:气溶胶浓度增加后,因为活化产生了更多尺度较小的云滴,抑制了云雨的自动转化,使大气中滞留了更多的云水,暖云降水减小;另一方面,云水的增加会使冰相粒子,尤其是雪和霰通过碰并云水等过程而增大,最后融化成雨增加冷云降水,同时冰相粒子增加会释放更多的潜热,促进上升气流的发展,进一步增加冷云降水。气溶胶对降水的影响存在空间不一致性,暖云较厚的地方暖雨过程受到的抑制明显,使地面降水减小,冷云厚度相对较厚时,冷云降水的增加会大于暖云降水的抑制,使地面降水增加。同时由于在云降水发展的不同阶段冷暖云的变化,气溶胶对降水的影响也存在着时间不一致性。  相似文献   

11.
20世纪利用一维层状云模式对2002年4月4~5日河南省冷锋降水过程进行了模拟。数值模拟结果显示,此次冷锋降水属于冷云降水过程,冷锋前后云中主要以冰相粒子为主,云中水质粒自上而下的空间分布依次为冰晶、雪、云水、霰、雨水。冷锋前后,各种水质粒有着不同的含量及数密度,但形成水质粒的主要微物理过程都表现为:冰晶数密度的增加主要依靠核化、繁生,大部分雪主要靠凝华、撞冻过冷云水和冰晶增长,霰的质量增加主要靠撞冻雪、过冷云水和雪自动转化而来,大部分的雨水是由霰融化而来,因而此次冷锋降水机制表现为“水汽—雪—霰—雨水”。  相似文献   

12.
山东半岛低空冷流降雪分析研究   总被引:9,自引:0,他引:9  
李建华  崔宜少  单宝臣 《气象》2007,33(5):49-55
山东半岛的冷流天气和其他降水过程有不同的特征,对2005年12月山东半岛北部地区的连续2场暴雪天气过程进行了分析。常规的雷达资料表明回波顶最高高度为3km,体现了冷流过程的低空性。WRF中尺度数值模式的模拟结果表明:冷流过程与低层大气层结的结构特征有着密切的关系;850hPa冷平流与地面降水量有着较好的正相关关系;云水含量、云中霰含量和上升速度的垂直分布进一步证实了冷流降水的低空性。  相似文献   

13.
一个简化的混合相云降水显式方案   总被引:30,自引:5,他引:25       下载免费PDF全文
该文提出一个新的混合相云降水显式方案,它预报2个云物理量,即云水(冷区为过冷云水)和降水(冷区为冰雪,暖区为雨),考虑了7种云物理过程。文中给出了详细的方程组,可以作为一个子程序供大、中尺度天气模式使用。该方案还与详细微物理显式方案和暖云方案作了实例模拟比较。  相似文献   

14.
BCC_AGCM2.1对中国东部地区云辐射特征模拟的偏差分析   总被引:2,自引:0,他引:2  
张祎  王在志  宇如聪 《气象学报》2012,70(6):1260-1275
通过与观测及再分析资料的对比,评估了中国国家气候中心大气环流模式BCC_AGCM 2.1对中国东部地区云辐射特征的模拟性能,并着重分析了模拟偏差的原因.在云辐射特征的基本气候态模拟方面,模式能大致再现中国东部中纬度层状云大值带,以及层状云冷季多、暖季少的季节特征,模拟的短波云辐射强迫也具有与观测相对应的季节变化特征.在云辐射强迫和地面温度相互影响过程的模拟方面,模式也能模拟出与观测相近的相互作用过程,即地面温度降低伴随着层状云云量增多以及负的净云辐射强迫加强,升温时层状云云量减少和净云辐射强迫减弱.但模式模拟的大陆层状云云量系统性偏少(尤其在冷季),使得模式在该处的短波云辐射强迫明显偏弱.初步分析表明,造成层状云模拟差异的主要原因是在中国西南地区对流层低层模式模拟的偏南气流明显偏弱以及陆-气潜热通量偏小.偏南气流偏弱导致低层散度和垂直运动条件不利于中层云的形成.同时偏南气流偏弱也不利于向西南地区的水汽输送,再加上模式模拟地表向上潜热通量偏小,这二者都使得模式模拟中国西南区域对流层低层的水汽含量严重偏少,相对湿度偏低,同样不利于层状云生成和发展.水汽偏少进一步导致在冷异常情况下青藏高原下游云辐射-地表温度反馈模拟偏弱,即呈现冷异常时,水汽条件偏弱限制了云量增加,弱化了进一步降低温度的反馈过程.  相似文献   

15.
东北地区春季冷锋云系降水个例数值模拟及机理研究   总被引:2,自引:0,他引:2  
本文通过常规天气资料,结合WRF中尺度数值模式,深入研究了2007年5月22~24日一次发生在东北地区的锋面云系降水过程和云宏微观结构特征以及降水产生的物理机制。模拟结果表明冷锋云系降水分布不均匀,锋前中低层有弱的上升气流,云水比含水量较大,雪和霰几乎没有。冷锋过境时,垂直速度迅速增大,中低层有下沉气流,不利于云水形成,出现云水含量几乎没有的干层区,雪水比含水量迅速增加,降水形成应是通过雪和霰的融化过程。处于锋区时,垂直速度和雪比含水量继续增大,降水的形成主要是雪的融化过程。锋后,上升气流迅速减弱,云内雪比含水量减少,降水的形成主要是雪的融化和暖云微物理过程。  相似文献   

16.
南方夏旱期积云含水量和降水效率的云模式估算   总被引:5,自引:1,他引:5       下载免费PDF全文
在胡志晋二维对流云模式的物理框架上增加了对整块积云的含水量、地面降水量、降水效率的估算部分.改进后的模式模拟了福建夏旱期37 个降水个例,并估算出南方夏旱期冷云、混合云和暖云的含水量、地面降水、降水效率,其结果与湖南积云的实测值较接近.分析了含水量在关键时段的主要分布情况,为研究南方夏旱期积云的人工影响方法提供物理依据.  相似文献   

17.
一次西风槽过程过冷云水分布特征观测研究   总被引:2,自引:1,他引:1  
过冷云水生消演变规律是云物理学和人工影响天气的重要研究领域。根据Hobbs 1974年提出的假定,利用飞机、卫星、雷达和雨量计等观测资料,对2012年9月21日河北一次西风槽天气过程进行观测研究,分析其过冷云水分布特征及演变规律。结果表明,槽前云系过冷水区宽厚并且过冷水含量较高,云滴浓度和均立方根直径较大并且均匀,冷云区厚而且没有分层,没有暖云配合;近槽云系中冷云区小粒子浓度降低但云滴直径增大,冷云区夹有干层,云系变厚出现暖云配合,冷暖云液态水含量较高,冷暖云区大粒子和降水粒子浓度和尺度增大,中尺度云团移动较快;槽后云系中云滴浓度最大,但云滴均立方根直径明显减小,过冷水区出现的高度下降、厚度很薄、过冷水含量较低,冷、暖云之间有干层,暖云对应的大粒子浓度和降水粒子浓度非常大,地面降水主要由暖云过程产生;云水(过冷水)含量峰值常出现在云内逆温层的上方;利用云粒子测量系统(PMS)资料分析过冷云水生消演变特征与卫星和雷达资料具有较高的一致性。  相似文献   

18.
在利用卫星、雷达和机载PMS(粒子测量系统)等观测资料对2003年7月8日东北冷涡积层混合云系的降水形成机制分析的基础上,将观测分析与数值模拟研究相结合,用中尺度数值模式对积层混合云系做数值模拟,并结合观测资料进一步分析了积层混合云系的微物理结构、粒子形成过程和降水形成机制,获得如下结果:(1)混合云中对流云具有分层的微物理结构.冰晶含水量最大值出现的高度最高,其次由高到低的排序是雪、云水、霰和雨;雨水主要出现在云的暖区;各种粒子中以雨水含水量最高,其次是霰.对流云体生命期较长,微物理结构基本稳定.(2)粒子形成增长过程有差异.冰晶通过凝华过程增长.雪主要来源于冰晶,产生后主要通过撞冻、收集冰晶和凝华过程增长,其中撞冻过冷云水增长对雪质量贡献最大,其产生率极大值高度与过冷云水相当.丰富的过冷云水,给雪的撞冻增长提供了有利条件.在高、中和低层雪的形成有着不同的机制,高层雪收集冰晶长大后,下落到低层又以雪撞冻过冷云水的结淞增长为主要过程.霰主要由雨滴冻结和雪的转化产生,过冷雨滴与冰晶接触冻结成霰;过冷雨滴收集雪,雪随着雨滴的冻结而转化成霰.因此霰的产生与过冷雨滴关系极大.霰主要撞冻云水、收集雪和冰晶增长,其中撞冻是霰的重要增长过程.雨水主要由霰的融化形成,降水主要是由冷云过程产生的.在过冷层,霰撞冻增长占优势.云上部的冰晶和雪对云的中部具有播撒作用,过冷层中存在丰富的过冷水,对冰相粒子的撞冻增长有利.对云水消耗的分析表明,雨滴对云滴的收集、霰和雪对云水的撞冻增长是消耗云水的主要过程.(3)从各种粒子的形成和增长过程可以看出,大部分雨水由霰融化形成,暖云过程贡献要小得多.可见,降水主要是由冷云过程产生的,这与观测分析的结果一致.  相似文献   

19.
初始云滴浓度(CCN)对对流性降水作用的数值试验   总被引:6,自引:4,他引:6  
本文利用一个二维滞弹性非静力平衡云模式[1],选择三个典型个例,就初始云滴浓度(CCN)对对流性暖雨和冷雨过程的效应进行了数值试验。模拟结果表明:初始CCN对对流性降水影响较大。对暖雨过程而言,随着初始CCN的增大,地面累积降水量减弱;对冷雨过程而言,增大初始CCN,可削弱对流强度,减少地面累积降雹量,延缓液态水到达地面的时间,但最终增强了地面累积液态降水量。并且分析了初始CCN导致暖雨和冷雨过程这种差别的原因。  相似文献   

20.
青海对流云数值模拟分析   总被引:3,自引:0,他引:3  
房文 《气象科技》2004,32(5):343-347
利用中国气象科学研究院三维对流云模式和2002年青海省河南县秋季外场试验取得的资料,进行了数值模拟试验。该地区秋季对流云降水主要为冷云降水,暖雨过程不易启动。降雨主要是由于霰落入暖层融化,雨水的蒸发是雨水减少的主要机制。霰在降水的产生中发挥了重要作用。霰的生成又与冰晶密切相关。冰晶是霰的主要来源,而且也是霰生长的主要因素。初始的霰粒主要由冰霰自动转化生成,而较少由雨滴冻结生成。霰胚通过收集过冷云水和冰晶与霰的碰并又促进了霰的进一步生长。冰晶的生成主要是由于自然冰核的核化,因此,自然冰核的数浓度对整个降水过程都有影响。霰是云中过冷水消耗的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号